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Abstract—In this work, we propose a new algorithm called to the one of the simplex algorithm of linear programming
"Simplex Algorithm with the Smallest Index Rule” for finding [10]: it starts by an initial extreme point obtained using some
a local minimum of a concave quadratic function subject to  existing initialization technique of the simplex method, then it
linear equality and non_n_egativity constraints. Firstz we present  moves in each iteration from one extreme point to a new one
and prove a new sufficient and necessary condition for local | 5ing g better value of the quadratic objective function and

optimality, then we describe the developed algorithm and we g1 "t stops when a local optimality condition is satisfied.
give a numerical example for illustration purpose. In order

to prove the efficiency of our algorithm, we developed an In order to test the efficiency of our method, we have
implementation using MATLAB, then we conducted numerical ~ implemented it in MATLAB and conducted numerical exper-
experiments on randomly generated and Rusakov’s concave iments on Rusakov’s test problems [5] inspired from prac-
quadratic test problems. The obtained numerical results show tical problems arising in the area of missile flight testing
that our algorithm outperforms the branch and bound algorithm and a set of randomly generated test problems with known
suggested by Rusakov in terms of CPU time and it gives the gIo_baI global minimum and size varying from 100 constraints and
o_ptlmal solution for t_he Rusakov’s test problems. Furthermore, it 120 variables up to 200 constraints and 240 variables. The
gives the global optimum for some generated test problems and ainag numerical results are very encouraging. Indeed, our
it finds, for other problems, a local minimizer which can be used . . . . :
to initialize global optimization algorithms. algorithm gives a local optimum which is also global for
. . L ~ Rusakov’s test problems and it outperforms the Rusakov’s
GIo}égm?:\?ns;grﬂnCsai\rlr’]apIgliaglréac?r?th?\zogNrimrenrliggi Ie;fggrlir;ne"r:lt?um, algorithm implemented in his software [11] in terms of CPU
' : ' time. Furthermore, SASIR finds the global optimum for some
randomly generated test problems in reasonable amount of
l. INTRODUCTION time and it gives, for other test problems, a local minimizer
The Concave Quadratic Programming (CQP) problenvhich can be used as initial point for global optimization
consists in minimizing a concave quadratic function underlgorithms.
a convex polyhedron delimited by linear constraints. This The paper is organized as follows: in Section I, we
optimization problem has important theoretic and practicapresent the problem, we give some definitions and we recall
aspects. Indeed, many practical problems are modeled as C@Bme fondamental results of concave quadratic programming.
problems, we can cite the quadratic assignment problem [1]n Section Ill, we present and prove the suggested local
missile flight testing [2], etc. optimality criterion. In Section IV, we describe and justify
Unlike the convex quadratic programming problem, thisthe suggested algorithm. Moreover, we illustrate our approach
problem is difficult to solve since a local optimal solution With a numerical example. In Section V, we present some
is not in general a global one. Therefore, in many researcRUMerical results in order to compare our algorlt_hm with the
articles, the authors developed algorithms for approximate theranch and bound algorithm of Rusakov [5] which uses the
global optimum of the problem. The first algorithm for solving Tuy cut. Finally, Section VI concludes the paper and gives
the problem is suggested by Tuy [3]. The principle of thesome future works.
Tuy’s algorithm is to compute a new linear constraint, called
Tuy cut, in order to eliminate points in feasible region, which 1l.  PRESENTATION OF THE PROBLEM AND DEFINITIONS

can not be global optimal solutions. Later, many algorithms  The concave quadratic programming problem with equality

are developed: branch and bound algorithms [4][5], cuttindand nonnegativity contraints is presented in the following form:
plane algorithms [6], successive underestimating method [7],

metaheuristic algorithms [8], etc. min f(z) = 227 D + Tz,
The majority of the proposed global optimization algo- . ? 1)
rithms starts by a local optimal solution. It is proved in [9] that subjectto Az =b, = >0,

a local optimal solution of the problem is an extreme point ofyyhere D is an (n x n) real symmetric negative semidefinite

the convex polyhedron corresponding to the linear constraint%atrix, ¢ and = are n-vectors: A is a matrix of dimension
Hence, in this work we suggest a new algorithm called,, . ., with Rank(A) =m < n.

"Simplex Algorithm with the Smallest Index Rule” (SASIR) 4 [ et us define the following sets of indices:
for finding an extreme point, which is a local minimum for the
considered problem. The principle of our algorithm is similar I ={1,2,...,m}, J={1,2,...,n}, J=JgUJy,
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JpNJn =10, |Jg| = m, KZ{L...,TL—m}.

We can partition the vectors, ¢ and the matrixA as follows:
(o

TN ) y TB = (xjv.j € JB>7 N = (1'37] € JN)a

C i )
C(C§>,CB(Cj7]€JB)’ CN:(Cj;]GJN)7
aij
A:(azg,ZEI,]EJ):(QJ,]EJ), a’j: ,
Qmj

A= (Ap,AN), Ap = A(1,JB), An = A(1, Jy).
e We denote the feasible region of problem (1) by
S={xeR": Az =0 andz > 0}.

e A vectorz € S is called a feasible solution for the problem
1).

e Let Jp C J be a subset of indices such thdg| = |I| = m.
The matrix A = A(I, Jp) is said to be a basis matrix if

det(Ap) # 0. Then the feasible solution = | “Z |, with

rg = A;}lb > 0 andzy = 0 is called a Basic Feasible
Solution (BFS).

e A BFS z is said to be nondegeneratezif > 0, j € Jp.

e Let Ap = A(I,Jg) be a basis matrix/y = J \ Jg and

x the corresponding BFS. Lely € Jy, j1 € Jp be two
indices, and/g = (Jg \ {j1}) U {Jo}, A = A(I,JB), such
that det(Ag) # 0. Let = be the BFS corresponding to the

new basis matrixdg. Hence, we say that the basic feasible

solutionsz andz are adjacent.

e Let z* be a feasible solution for problem (1). We say that

x* is a local minimizer if it exists a neighborhoaW (z*) of
x*, such thatvz € N(z*)n S, f(z*) < f(x). The vectorz*
is said to be a global minimizer if(z*) < f(x), Yz € S.
Let us recall the following fundamental result [9]:

Theorem 1. Let f be a concave function defined on the
bounded, closed convex s@t If f has a minimum ovef),
then it is achieved at an extreme point(f

e Since D is negative semidefinite, the quadratic functin

is concave. Therefore, the global minimizer is achieved at an

extreme point of the convex polyhedrgh This leads us to
give the following definitions: letd}; a basis matrix ane*
the corresponding BFS, we denote (z*) the set of all
basic feasible solutions, which are adjacenttoWe say that
x* is a local minimizer for problem (1), if it satisfie§x*) <
f(z), Yo € N(z*). We say thate* is a global minimizer for
problem (1), if for any BFS: € S, we havef(z*) < f(x).

e Let Jp be a set of basic indices for problem (1) and =
J\ Jg. We define the following vectors and matrices:

b= (bi,icl)=Az"b, A= (ay, ke K)=—-Az'Ay, (2)

o

where I,,_,,, represents the identity matrix of order— m
and D = PTDP, P is the permutation matrix obtained by
permuting columns of the identity matrik, with respect to

A

Infm

) andQ:(qij7 Z,]EK):ZTDZ, (3)
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the partition (Jp, Jx). Note that the matrix@Q is negative
semidefinite. Indeedyy € R"~™, we have

y'Qy=y"Z"DZy = (Zy)"D(Zy) < 0.

Moreover, we note that the diagonal elements of a negative
semidefinite matrix are less than or equal to zero. Indeed,
vy € R : yTQy < 0. Particularly, fory = e, whereey,

is the vector with all its components equal to zero except
for the kth component, it is equal to 1. Hence, we get
y"Qy = qrx < 0.

e A vectord € R” is said to be a feasible direction for
problem (1) if it satisfiesAd = 0.

IIl. | NCREMENT FORMULA OF THE OBJECTIVE FUNCTION

Using results presented in [12][13][14] on linear and
convex quadratic programming, we can deduce the increment
formula of the objective function for the concave quadratic
programming problem (1), when we move from a BFS to an
adjacent one.

Let Ap be a basis matrix for problem (1) and =
Ts ) > the corresponding BFS. Let= 7
TN 0 TN
be an arbitrary feasible solution (not necessarily basic) and
f(z) the value of the objective function &t
Sincez is feasible, we can write:

AT+ ANIN =b & T = Alglb—AglANi‘N = B-i-/_l.i‘]v.
4)
The objective function value at is

o=(2) ()42 o(2) o

By replacing the expression afg in equation (5), we get

1

)+

2

Tp
TN

Tp
TN

B
CN

. . 15\ ~(b
f(@ = c£b+(cﬁ+c£A)$N+2<O> D<0>
_ T _
b = AZn
(o) 2(5)
+1 Ai‘N TD A.f]\/
2 TN TN
1\ A b
_ T3t
= cBb—|—2<0> D(0>
— T —
+ c]TV+c£A+<8> D(Lfm) TN
1 1\ . )
+2xfTV(L:1m) D(Ifm>xN'
- 5 \.
= f(z)+ c%+c£A+(0) DZ|zn
1 T
+5ENZ" DZEy.

Thus, the objective function increment takes the following final
form:

£(7) ~ f(2) = Tan + Sk Qew, ©)
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where
— 5 T —
1T =k +cEA+0" 72, with o7 = ( ) D. (7)

Remark 1. - ~
e If we denote byD = (d;;, i,j € J) andv = (vj,j € J),

then the components of thevectorv are computed as follows:

m
Uy :Zgidij7 j: 1,2,...,7’1,.
i=1

Thus, we can move to a new BESsuch thatf (z) < f(x). In-
deed, we can improve the point= ;f} = Aélb ,
by increasing the value of the component by a positive
numberf and letting the other nonbasic components equal to
zero. Thus, we obtain a new poift= < gf, ) , such that

IN = xN + Oe, = Oe,.,

Tp=b+ AZx = b+ A(fe,) = b+ 0a;,,

e WhenD = 0, the problem (1) becomes a linear program wheree,. represents thén —m)-vector of zeros except for the

and the increment of the objective function becomes:

f@)—f(x) =1"2y = (cy+cpA)In = (cy—cp Az AN)ZN.

So, the vector is equal to the reduced costs vector in the

simplex method of linear programming.
Let us denote by

7j71,—'m} and.Jp = {jia]é? s vj;n}'

So, if k € K, then j; represents the index of positionin
Jn, and ifs € I, thenj’ represents the index of positianin
JB.

We introduce the following notations:

JNZ{jl,jQ,...

aj, = (i, € 1) = —Az'a;,. (8)
_Ei f 7. . .
6, — mindt, with g = | T =0 9)
oer ' +00, otherwise.
—21 H .
ol g <O
9’3 = —00, if qrr =0 andlk > 0; (10)

+o00, otherwise.

componentr, it is equal to 1. The positif numbet can be
chosen in such a way that the new paintemains feasible:

Ty =0e, >0, Zp =b+0a; >0,

and the objective function decreases:
1
f@) = flz) =10+ §q7.7-92 <0.

Indeed, using the nondegeneracy assumptign> 0, € I),
we getf; = 6; = min;;{67} > 0, then conditiondj < 6,
implies that the numbet can be chosen in the intervil, 6;)
if 65 <0, or in the intervalldg, 6,], otherwise. Hence, we get
z >0 and f(z) < f(x). Therefore, the BFS: is not a local
minimizer. ]

IV. AN ITERATION OF SASIR

Let  be an initial BFS of the problem (1). An iteration
of the algorithm SASIR consists in moving from the BES
to a new BFSz, with f(z) < f(x) following the descent
feasible direction used in the the simplex method for linear
programming. The algorithm stops when the local optimality
criterion (11) is satisfied.

The following theorem gives us a sufficient and necessanp. Computing the feasible descent direction

condition for the local optimality of the BFS.
Theorem 2. The condition

Vke K :0f >0, (12)

is sufficient for the local optimality of the BESand it is also
necessary whem is nondegenerate.

Proof:
Sufficient condition. Let  be an arbitrary adjacent BFS i0
and assume that the basis matrix corresponding A =
A(I, JB), whereJg = (JB \ {j;}) U {]r}
We assume that condition (11) holds. We have

1
f@) = f(2) = "oy + 575 Q.
However, for the BFSe, we havez;, = 0,k # r andz; =
0s > 0. Sincedj > 0, we get
1

F(@) = f(2) = lz), + 5

1
=2 2
QTrxj7, - lres + §QTT03 Z 0

We define the following set of indices:

K*={kcK:0f<0,} (13)
Two cases can occur:

Case 1.If K* = (), then the algorithm stops. The BESis a
local minimizer.

Case 2.If K* # (), then we choose an indej € Jy that
satisfies the smallest index rule, i.e., we choose the index
that satisfies

r =min{k, k € K"}
and we compute the feasible descent directicas follows:

dy = e, dp = aj,., (14)

where j,. corresponds to the index of positienin Jy.

Note that the directiond is a feasible direction because it
satisfiesAd = 0.

We move along the directiod with a steplengthd* = 6, ,

to achieve a new BFS = x + 0*d, with a better objective

Necessary conditionAssume that: is nondegenerate and the function value:

condition (11) is not satisfied, i.e.,
dre K :6; <6;, (12)
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F(2) = F() + 10 + S0 (6 < f2).
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Then, we proceed to the change of the basis:

jB = (JB \ {];}) U {jr}a 5 =lp.

We start a new iteration with the new BESand the new basis
matrix Ag = A(I, Jp).

B. Algorithm SASIR

() Computeb, A, Z, Q and the vectot with formu-
las (2)-(3) and (7);

(2 (Computing the entering index)

For every indext in K, computed;, anddf with

relations (9)-(10); then compute the g6t with

relation (13);

Cas 1.If K* = (), then the algorithm stops with

a local minimizerz.

Cas 2.1f K* #(, then

compute the entering indek. corresponding to

the index of position in Jy, with the smallest

index rule, i.e.;y = min{k, k € K*}, and set the

leaving indexs = i,;

(Computing the direction and the steplength)

Compute the directiod with formula (14);

set the steplength* =0, = 6, ;

(Change of the current solution)

Set

(3)
(4)

1
T=x+0%d, f(z)=f(z)+10" + 5‘1rr(0*)2§

()

(Change of the current basis)
Set

Jp = (I \ {7} Ui}
(6) Setx = z, Jg = Jp and go to step (1).

Remark 2.

e Under the nondegeneracy assumption, our algorithm moves

from one BFSx to a new oneZz, with f(Z) < f(x). Since
the number of extreme points of the convex polyhedtds
finite, our algorithm finds a local optimum in a finite number
of steps.

e We can choose the entering indgxwith the best improve-
ment rule:

, 1
Af, = max{Afy, k € K*}, with Afy = x0;, + §qkk9?k~

This rule gives the maximal local improvement of the objective/Ve COMPUted;,
function. In other words, we move from the current extreme

We have

I=1{1,2,3}, J=1{1,2,3,4,5}, K ={1,2}.

~1 —2 0 0 0 O

-2 0-6 0 0 O
c= 0 |, D= 000 0 0|,

0 0 0 0 0 O

0 0 0 0 0O

~1 1 1 0 0 3
A_<1—1010),b_<6>.

1 2 0 0 1 12

We start SASIR with the following initial BFS:
Jp ={3,4,5}, Jy = {1,2}, 2% = (3,6,12),
x5 =(0,0), 27 =(0,0,3,6,12), f(z) =0.

First iteration :

We have
~1 1
Ap =13, Ay = < 1-1 ) ek = Ops, ¢k = (—1,-2).
1 2

Computing the vectors, [ and the matrices!, Z, Q:

1-1
BAglbb,AAglAN<—1 1),
—1-2
1-1
. -1 1
Z:(f): 122 |,
2 1 0
0 1
0000 0
) 0000 0 ) 5 0
D=|000 0 0 ,QZTDZ(0_6>,
00 0-2 0
00 0 0—6
b\ - .
v:(o) D =0gs, 1" =ck +cEA+07Z = (—1,-2).

Computing the entering and leaving indices:
and ok for k € {1,2}:

6;, = min{f}, 03,03} = min{+o0, 6,12} = 63 = 6,

point to the adjacent one with the best objective function value.

However, some preliminary numerical experiments show that
this version of the algorithm consumes much time than the

version SASIR presented above.

C. Numerical example
Consider the following concave quadratic program [14]:

f(x)
7%14’%24’%3:3,
Tl — X2 + x4 =6,
$1+21‘2+I5:12,
x; >0, j=1,5.

min
subject to

—x — 229 — 27 — 323,

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

0;, = min{#?,03, 65} = min{3, +-00,6} = 67 = 3,
20
qi1

1

05 =-1, 03 =

So,
K*={kecK:0f<0,}=1{1,2}.

We chooser with the smallest index rule, we get
r=min{k, k € K*} =min{l,2} =1=r=1, s =143 = 2.

So, the entering index is the index of position= 1 in Jy,
i.e., j1 = 1 and the leaving index is the index of positierin
Jg, i.e.,jé =4,
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Computing the feasible descent direction and the steplengti€omputing the matriceg, @ and the vectot:

We have -1 0
dy = (0,1)7, dp =ay = (-1,1,-2)", —2/3 -1/3 14/9 2/9
T . Z=|[1/3-1/3 ’Q:( 2/9 8/9)’
4" =(1,0,1,—-1,-1), 6* =6;, =6. 1 0
Computing the new solutiort and the new value of the 0 1
objective functionf(z): 1=(20/3, 31/3)".
T=x+0"d=(6,0,9,0,6)T, f(z)=—42 < f(x). We computed;, andéf, k € {1,2}:
Change of the basis: 0;, = {9,12,+00} =0} =9, 6} =60/7,
_ _ R _pn2 __ 2 _
To = (Js\ {4) U1} = {3,1,5), Jw = (4,2} b = {hoo, 24,6} =6 =6, & =93/
Second iteration: So, k
We have K" ={keK:0; <0;}={1}.

We chooser with the smallest index rule, we get
r=min{k, ke K’} =1=>r=1, s=i1=1.
1 71 O O 1 . . . . . .
f(x)=—42, Ag = < 01 0 > . An = ( 1-1 > , So, the entering index ig; = 4 and the leaving index is
0 1 1 0 2 ji1=3. o
The feasible descent direction and the steplength are:
dl =(-2/3,1/3,-1,1,0), 0* =6;, = 9.
Computing the new BF% and the new value of the objective

Jp ={3,1,5}, Jy ={4,2}, 2T =(6,0,9,0,6),

cg = (0,—1,0)7, ¢y = (0,-2)T.
Computing the matricedl, Z, Q and the vectot:

-1 0 function f(z):
N (2 2 (13 Z=z+0d= (2500907, f(z)=-91< f(z).
Z= 13 |,@=(75 5 ) =15 )
10 Change of the basis:
0 1 _ _
. Jp = (Jp\{3}) U{4} ={4,1,2}, Jy ={3,5}.
We computed;, andég, k € {1,2}: Fourth iteration -
0;, = {9,6,4+00} = 02 =6, 6} =13, We have
Qiz — {—‘,—0074—0072} — Qg = 27 93 = —15/4 JB = {47 1a2}a JN = {375}7 xT = (2757()’9’0)7 f(ﬂ?) =-91
so. K A (?_%1>A <(1)8>
* . . — B — - ) N = )
K ={keK:0; <6, }=1{2}. 0 1 o 01

We choose- with the smallest index rule, we get
r=min{k, k€ K"} =2=r=2, s =iy =3.

cg = (0,—1,-2)T, ¢y = (0,0)T.
Computing the matriceg, Q and the vectot:

So, the entering inde), = 2 and the leaving index ig; = 5. 1 0
Computing the feasible descent direction and the steplength: _
o[ A on (s
d" = (1,1,0,0,-3), 0" = 0;, = 2. = 9= {20 80 )
Computing the new BF$ and the new value of the objective 0 1

function f(z):
T=x+0"d= (82,9007, f(z)=-88 < f(z).

Change of the basis:

1=(22/3, 37/3)".
We computed;, anddf, k € {1,2}:
0;, = min{9, +00,15} = 01 =9, 0 = 66/7,

Jp = (Jp\ {5})U{2} = {3,1,2}, Jn = {4,5}. 0;, = min{-+o00,6,15} = 62 = 6, 62 = 111/4.
Third iteration : So
We have K*={keK:08<0,}=0.
Jp={3,1,2}, Jy ={4,5}, 2" =(8,2,9,0,0), Therefore, the local optimal BES and the corresponding ob-
1-1 1 0 0 jective function value are:
f(z)=-88, Ap = ( 0 1-1 ) Ay = < Lo > * =(2,5,0,9,0)T, f(z*) = —91.
0 1 2 0 1

Let us remark that the local minimizer found by our algorithm
cg = (0,—1,-2)T, e = (0,0)7T. in this example is also global.
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V. NUMERICAL EXPERIMENTS that our algorithm has found the global optimum for 5 gener-
In order to compare our algorithm with the algorithm of ated test problems in a short CPU time (test problems 3,4,9,10

Rusakov, we have developed an implementation with MAT-2nd 17). However, for other test problems, our algorithm gives
LAB2017a on a PC with a processor Intel Pentium Dual-Core? local minimizer whlch can.be used for the initialization of
2.20 GHz and 4 Go of RAM. The Rusakov's algorithm is the global optimization algorithms.
a branch and bound algorithm which uses the Tuy cut. It
is implemented in his free software [5][11]. Note that the VI. CONCLUSION
Rusakov's test problems have one constraints /atmbunded In this work, we have adapted the simplex algorithm of
variables and the available free version of the software idinear programming for finding a local optimum of a concave
limited to one constraint and 20 bounded variables, that igluadratic function subject to linear and nonnegativity con-
why we have done numerical experiments on small size tedtaints. In order to stop the algorithm, we suggested a simple
problems. Numerical results on Rusakov’s test problems argufficient and necessary condition for local optimality of the
presented in Table I. current extreme point. Numerical experiments_ on Rusakov and
In order to test the performance of our algorithm Onrandomly. test problems show that our algorithm is very fast
medium size test problems, we have generated concad can find the global optimum for some problems. In a future
quadratic test problems with known global optimum using theVork, we will combine our algorithm with an existing global
generation procedure presented in [15], see Table II. optimization algorithm in order to find the glpbal optimum
The notations in the first row of Tables | and I, of medium and large-scale concave quadratic programming

n, niter;, opt;, cput; represent respectively number of con- problems.

straints, number of variables, number of iterations, the opti- REFERENCES

mum found, the CPU time for Algorithnj, where Algorithm . . . . .

1 is the SASIR algorithm and Algorithm 2 is the Rusakov’s [ E. |L'9LaW|e£’ B&Quad;agtéc Qgg'glgn;,e\lmggg IggndlManagemem Sel.
- h vol. 9, no. 4, , pp- —599, : - .

a:(g(?]rlthm. In Tatél_e II, gopt ret?lresemz ,t,he glgbal optlmumh [2] A. . Rusakov, An Ir_nproved Redu_ction Algorithm to C‘heck Hypothe-

of the corresponding test problem and "Mean” represents the *  ses for the Multicollinear Regression Model,” Automation and Remote

average CPU time and the average number of iterations for  Control, vol. 62, no. 5, 2001, pp. 762-771, ISSN: 1608-3032.

each problem size. [3] H. Tuy, “Concave Programming under Linear Constraints,” Dokl. Akad.
Nauk SSSR English translation in Soviet Math. Dokl., vol. 5, 1964, pp.
TABLE |: NUMERICAL RESULTS ON RUSAKOV'S TEST PROBLEMS. 1437-1440, ISSN: 1531-8362.
_ _ [4] R. Horst, “An Algorithm for Nonconvex Programming Problems,”
Tl e gorithm L(SASIR) © Algorithm 2 { Ruiak(‘;‘;) Math. Programming, vol. 10, 1976, pp. 312-321, ISSN: 1436-4646.
nter 0] cpu O cput
5 ) ! -11[.)01694 p0_01031 _111_]0294 p1_12298 [5] A. I. Rusakov, “Concave programming under the simplest linear
10 6 -40.8382 0.0041 | -40.8382 2.0481 constraints,” Computational Mathematics and Mathematical Physics,
15 9 -88.9456 0.0051 | -88.9456 6.1074 vol. 43, no. 7, 2003, pp. 951-960, ISSN: 0044-4669.
18 10 -127.0726 0.0075 | -127.0726 9.7121 “Mayimisaf : ’ :
[6] H. Konno, “Maximization of a Convex Quadratic Function under Linear
20 11 ~156.1234 0.0092 | -156.1234 115236 Constraints,” Math. Programming, vol. 11, 1976, pp. 117-127, ISSN:
1436-4646.
TABLE Il: NUMERICAL RESULTS ON RANDOMLY GENERATED [7]1 K. L. Hoffman, “A Successive Underestimating Method for Concave
TEST PROBLEMS. Minimization Problems,” Ph.D. thesis, The George Washington Univer-
Prob X it i t t1 (S) sity, 1975.
m n nwter opt opt cpu
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