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Abstract—In this work, we propose a new algorithm called
”Simplex Algorithm with the Smallest Index Rule” for finding
a local minimum of a concave quadratic function subject to
linear equality and nonnegativity constraints. First, we present
and prove a new sufficient and necessary condition for local
optimality, then we describe the developed algorithm and we
give a numerical example for illustration purpose. In order
to prove the efficiency of our algorithm, we developed an
implementation using MATLAB, then we conducted numerical
experiments on randomly generated and Rusakov’s concave
quadratic test problems. The obtained numerical results show
that our algorithm outperforms the branch and bound algorithm
suggested by Rusakov in terms of CPU time and it gives the global
optimal solution for the Rusakov’s test problems. Furthermore, it
gives the global optimum for some generated test problems and
it finds, for other problems, a local minimizer which can be used
to initialize global optimization algorithms.

Keywords–Concave quadratic programming; Local minimum;
Global minimum, Simplex algorithm, Numerical experiments.

I. I NTRODUCTION

The Concave Quadratic Programming (CQP) problem
consists in minimizing a concave quadratic function under
a convex polyhedron delimited by linear constraints. This
optimization problem has important theoretic and practical
aspects. Indeed, many practical problems are modeled as CQP
problems, we can cite the quadratic assignment problem [1],
missile flight testing [2], etc.

Unlike the convex quadratic programming problem, this
problem is difficult to solve since a local optimal solution
is not in general a global one. Therefore, in many research
articles, the authors developed algorithms for approximate the
global optimum of the problem. The first algorithm for solving
the problem is suggested by Tuy [3]. The principle of the
Tuy’s algorithm is to compute a new linear constraint, called
Tuy cut, in order to eliminate points in feasible region, which
can not be global optimal solutions. Later, many algorithms
are developed: branch and bound algorithms [4][5], cutting
plane algorithms [6], successive underestimating method [7],
metaheuristic algorithms [8], etc.

The majority of the proposed global optimization algo-
rithms starts by a local optimal solution. It is proved in [9] that
a local optimal solution of the problem is an extreme point of
the convex polyhedron corresponding to the linear constraints.
Hence, in this work we suggest a new algorithm called
”Simplex Algorithm with the Smallest Index Rule” (SASIR)
for finding an extreme point, which is a local minimum for the
considered problem. The principle of our algorithm is similar

to the one of the simplex algorithm of linear programming
[10]: it starts by an initial extreme point obtained using some
existing initialization technique of the simplex method, then it
moves in each iteration from one extreme point to a new one
having a better value of the quadratic objective function and
finally it stops when a local optimality condition is satisfied.

In order to test the efficiency of our method, we have
implemented it in MATLAB and conducted numerical exper-
iments on Rusakov’s test problems [5] inspired from prac-
tical problems arising in the area of missile flight testing
and a set of randomly generated test problems with known
global minimum and size varying from 100 constraints and
120 variables up to 200 constraints and 240 variables. The
obtained numerical results are very encouraging. Indeed, our
algorithm gives a local optimum which is also global for
Rusakov’s test problems and it outperforms the Rusakov’s
algorithm implemented in his software [11] in terms of CPU
time. Furthermore, SASIR finds the global optimum for some
randomly generated test problems in reasonable amount of
time and it gives, for other test problems, a local minimizer
which can be used as initial point for global optimization
algorithms.

The paper is organized as follows: in Section II, we
present the problem, we give some definitions and we recall
some fondamental results of concave quadratic programming.
In Section III, we present and prove the suggested local
optimality criterion. In Section IV, we describe and justify
the suggested algorithm. Moreover, we illustrate our approach
with a numerical example. In Section V, we present some
numerical results in order to compare our algorithm with the
branch and bound algorithm of Rusakov [5] which uses the
Tuy cut. Finally, Section VI concludes the paper and gives
some future works.

II. PRESENTATION OF THE PROBLEM AND DEFINITIONS

The concave quadratic programming problem with equality
and nonnegativity contraints is presented in the following form:

min f(x) = 1
2xT Dx + cT x,

subject to Ax = b, x ≥ 0,
(1)

whereD is an (n × n) real symmetric negative semidefinite
matrix, c and x are n-vectors;A is a matrix of dimension
m× n, with Rank(A) = m < n.
• Let us define the following sets of indices:

I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, J = JB ∪ JN ,
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JB ∩ JN = ∅, |JB | = m, K = {1, . . . , n−m}.

We can partition the vectorsx, c and the matrixA as follows:

x =
(

xB

xN

)
, xB = (xj , j ∈ JB), xN = (xj , j ∈ JN ),

c =
(

cB

cN

)
, cB = (cj , j ∈ JB), cN = (cj , j ∈ JN ),

A = (aij , i ∈ I, j ∈ J) = (aj , j ∈ J), aj =

 a1j

...
amj

 ,

A = (AB , AN ), AB = A(I, JB), AN = A(I, JN ).

• We denote the feasible region of problem (1) by

S = {x ∈ Rn : Ax = b andx ≥ 0}.

• A vector x ∈ S is called a feasible solution for the problem
(1).
• Let JB ⊂ J be a subset of indices such that|JB | = |I| = m.
The matrix AB = A(I, JB) is said to be a basis matrix if

det(AB) 6= 0. Then the feasible solutionx =
(

xB

xN

)
, with

xB = A−1
B b ≥ 0 and xN = 0 is called a Basic Feasible

Solution (BFS).
• A BFS x is said to be nondegenerate ifxj > 0, j ∈ JB .
• Let AB = A(I, JB) be a basis matrix,JN = J \ JB and
x the corresponding BFS. Letj0 ∈ JN , j1 ∈ JB be two
indices, andJ̄B = (JB \ {j1}) ∪ {j0}, ĀB = A(I, J̄B), such
that det(ĀB) 6= 0. Let x̄ be the BFS corresponding to the
new basis matrixĀB . Hence, we say that the basic feasible
solutionsx and x̄ are adjacent.
• Let x∗ be a feasible solution for problem (1). We say that
x∗ is a local minimizer if it exists a neighborhoodN(x∗) of
x∗, such that∀x ∈ N(x∗) ∩ S, f(x∗) ≤ f(x). The vectorx∗

is said to be a global minimizer iff(x∗) ≤ f(x), ∀x ∈ S.
Let us recall the following fundamental result [9]:
Theorem 1. Let f be a concave function defined on the
bounded, closed convex setΩ. If f has a minimum overΩ,
then it is achieved at an extreme point ofΩ.

• SinceD is negative semidefinite, the quadratic functionf
is concave. Therefore, the global minimizer is achieved at an
extreme point of the convex polyhedronS. This leads us to
give the following definitions: letA∗

B a basis matrix andx∗

the corresponding BFS, we denote byN (x∗) the set of all
basic feasible solutions, which are adjacent tox∗. We say that
x∗ is a local minimizer for problem (1), if it satisfiesf(x∗) ≤
f(x), ∀x ∈ N (x∗). We say thatx∗ is a global minimizer for
problem (1), if for any BFSx ∈ S, we havef(x∗) ≤ f(x).
• Let JB be a set of basic indices for problem (1) andJN =
J \ JB . We define the following vectors and matrices:

b̄ = (b̄i, i ∈ I) = A−1
B b, Ā = (āk, k ∈ K) = −A−1

B AN , (2)

Z =
(

Ā
In−m

)
andQ = (qij , i, j ∈ K) = ZT D̄Z, (3)

where In−m represents the identity matrix of ordern − m
and D̄ = PT DP , P is the permutation matrix obtained by
permuting columns of the identity matrixIn with respect to

the partition (JB , JN ). Note that the matrixQ is negative
semidefinite. Indeed,∀y ∈ Rn−m, we have

yT Qy = yT ZT D̄Zy = (Zy)T D̄(Zy) ≤ 0.

Moreover, we note that the diagonal elements of a negative
semidefinite matrix are less than or equal to zero. Indeed,
∀y ∈ Rn−m : yT Qy ≤ 0. Particularly, fory = ek, whereek

is the vector with all its components equal to zero except
for the kth component, it is equal to 1. Hence, we get
yT Qy = qkk ≤ 0.
• A vector d ∈ Rn is said to be a feasible direction for
problem (1) if it satisfiesAd = 0.

III. I NCREMENT FORMULA OF THE OBJECTIVE FUNCTION

Using results presented in [12][13][14] on linear and
convex quadratic programming, we can deduce the increment
formula of the objective function for the concave quadratic
programming problem (1), when we move from a BFS to an
adjacent one.

Let AB be a basis matrix for problem (1) andx =(
xB

xN

)
=
(

b̄
0

)
the corresponding BFS. Let̄x =

(
x̄B

x̄N

)
be an arbitrary feasible solution (not necessarily basic) and
f(x̄) the value of the objective function at̄x.
Sincex̄ is feasible, we can write:

ABx̄B +AN x̄N = b ⇔ x̄B = A−1
B b−A−1

B AN x̄N = b̄+Āx̄N .
(4)

The objective function value at̄x is

f(x̄) =
(

cB

cN

)T (
x̄B

x̄N

)
+

1
2

(
x̄B

x̄N

)T

D̄

(
x̄B

x̄N

)
(5)

By replacing the expression of̄xB in equation (5), we get

f(x̄) = cT
B b̄ + (cT

N + cT
BĀ)x̄N +

1
2

(
b̄
0

)T

D̄

(
b̄
0

)
+
(

b̄
0

)T

D̄

(
Āx̄N

x̄N

)
+

1
2

(
Āx̄N

x̄N

)T

D̄

(
Āx̄N

x̄N

)
= cT

B b̄ +
1
2

(
b̄
0

)T

D̄

(
b̄
0

)
+

[
cT
N + cT

BĀ +
(

b̄
0

)T

D̄

(
Ā

In−m

)]
x̄N

+
1
2
x̄T

N

(
Ā

In−m

)T

D̄

(
Ā

In−m

)
x̄N .

= f(x) +

[
cT
N + cT

BĀ +
(

b̄
0

)T

D̄Z

]
x̄N

+
1
2
x̄T

NZT D̄Zx̄N .

Thus, the objective function increment takes the following final
form:

f(x̄)− f(x) = lT x̄N +
1
2
x̄T

NQx̄N , (6)
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where

lT = cT
N + cT

BĀ + vT Z, with vT =
(

b̄
0

)T

D̄. (7)

Remark 1.
• If we denote byD̄ = (d̄ij , i, j ∈ J) and v = (vj , j ∈ J),
then the components of then-vectorv are computed as follows:

vj =
m∑

i=1

b̄id̄ij , j = 1, 2, . . . , n.

• WhenD = 0, the problem (1) becomes a linear program
and the increment of the objective function becomes:

f(x̄)−f(x) = lT x̄N = (cT
N+cT

BĀ)x̄N = (cT
N−cT

BA−1
B AN )x̄N .

So, the vectorl is equal to the reduced costs vector in the
simplex method of linear programming.

Let us denote by

JN = {j1, j2, . . . , jn−m} andJB = {j′1, j′2, . . . , j′m}.

So, if k ∈ K, then jk represents the index of positionk in
JN , and if s ∈ I, thenj′s represents the index of positions in
JB .
We introduce the following notations:

ajk
= (aijk

, i ∈ I) = −A−1
B ajk

. (8)

θik
= min

i∈I
θk

i , with θk
i =

{ −b̄i

āijk
, if āijk

< 0;

+∞, otherwise.
(9)

θk
0 =


−2lk
qkk

, if qkk < 0;

−∞, if qkk = 0 and lk > 0;

+∞, otherwise.

(10)

The following theorem gives us a sufficient and necessary
condition for the local optimality of the BFSx.

Theorem 2. The condition

∀k ∈ K : θk
0 ≥ θik

(11)

is sufficient for the local optimality of the BFSx and it is also
necessary whenx is nondegenerate.

Proof:
Sufficient condition. Let x̄ be an arbitrary adjacent BFS tox
and assume that the basis matrix corresponding tox̄ is ĀB =
A(I, J̄B), whereJ̄B = (JB \ {j′s}) ∪ {jr}.
We assume that condition (11) holds. We have

f(x̄)− f(x) = lT x̄N +
1
2
x̄T

NQx̄N .

However, for the BFS̄x, we havex̄jk
= 0, k 6= r and x̄jr

=
θs ≥ 0. Sinceθr

0 ≥ θs, we get

f(x̄)− f(x) = lrx̄jr +
1
2
qrrx̄

2
jr

= lrθs +
1
2
qrrθ

2
s ≥ 0.

Necessary condition.Assume thatx is nondegenerate and the
condition (11) is not satisfied, i.e.,

∃r ∈ K : θr
0 < θir

(12)

Thus, we can move to a new BFS̄x, such thatf(x̄) < f(x). In-

deed, we can improve the pointx =
(

xB

xN

)
=
(

A−1
B b
0

)
,

by increasing the value of the componentxjr by a positive
numberθ and letting the other nonbasic components equal to

zero. Thus, we obtain a new pointx̄ =
(

x̄B

x̄N

)
, such that

x̄N = xN + θer = θer,

x̄B = b̄ + Āx̄N = b̄ + Ā(θer) = b̄ + θājr
,

whereer represents the(n−m)-vector of zeros except for the
componentr, it is equal to 1. The positif numberθ can be
chosen in such a way that the new pointx̄ remains feasible:

x̄N = θer ≥ 0, x̄B = b̄ + θājr
≥ 0,

and the objective function decreases:

f(x̄)− f(x) = lrθ +
1
2
qrrθ

2 < 0.

Indeed, using the nondegeneracy assumption(b̄i > 0, i ∈ I),
we getθs = θir

= mini∈I{θr
i } > 0, then conditionθr

0 < θs

implies that the numberθ can be chosen in the interval]0, θs]
if θr

0 ≤ 0, or in the interval]θr
0, θs], otherwise. Hence, we get

x̄ ≥ 0 andf(x̄) < f(x). Therefore, the BFSx is not a local
minimizer.

IV. A N ITERATION OF SASIR

Let x be an initial BFS of the problem (1). An iteration
of the algorithm SASIR consists in moving from the BFSx
to a new BFSx̄, with f(x̄) ≤ f(x) following the descent
feasible direction used in the the simplex method for linear
programming. The algorithm stops when the local optimality
criterion (11) is satisfied.

A. Computing the feasible descent direction

We define the following set of indices:

K∗ = {k ∈ K : θk
0 < θik

}. (13)

Two cases can occur:
Case 1.If K∗ = ∅, then the algorithm stops. The BFSx is a
local minimizer.
Case 2.If K∗ 6= ∅, then we choose an indexjr ∈ JN that
satisfies the smallest index rule, i.e., we choose the indexr
that satisfies

r = min{k, k ∈ K∗}

and we compute the feasible descent directiond as follows:

dN = er, dB = ājr , (14)

wherejr corresponds to the index of positionr in JN .
Note that the directiond is a feasible direction because it
satisfiesAd = 0.
We move along the directiond with a steplengthθ∗ = θir ,
to achieve a new BFS̄x = x + θ∗d, with a better objective
function value:

f(x̄) = f(x) + lrθ
∗ +

1
2
qrr(θ∗)2 ≤ f(x).
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Then, we proceed to the change of the basis:

J̄B = (JB \ {j′s}) ∪ {jr}, s = ir.

We start a new iteration with the new BFS̄x and the new basis
matrix ĀB = A(I, J̄B).

B. Algorithm SASIR

(1) Computēb, Ā, Z, Q and the vectorl with formu-
las (2)-(3) and (7);

(2) (Computing the entering index)
For every indexk in K, computeθik

andθk
0 with

relations (9)-(10); then compute the setK∗ with
relation (13);
Cas 1. If K∗ = ∅, then the algorithm stops with
a local minimizerx.
Cas 2. If K∗ 6= ∅, then
compute the entering indexjr corresponding to
the index of positionr in JN , with the smallest
index rule, i.e.,r = min{k, k ∈ K∗}, and set the
leaving indexs = ir;

(3) (Computing the direction and the steplength)
Compute the directiond with formula (14);
set the steplengthθ∗ = θs = θir

;
(4) (Change of the current solution)

Set

x̄ = x + θ∗d, f(x̄) = f(x) + lrθ
∗ +

1
2
qrr(θ∗)2;

(5) (Change of the current basis)
Set

J̄B = (JB \ {j′s}) ∪ {jr};

(6) Setx = x̄, JB = J̄B and go to step (1).

Remark 2.
• Under the nondegeneracy assumption, our algorithm moves
from one BFSx to a new onex̄, with f(x̄) < f(x). Since
the number of extreme points of the convex polyhedronS is
finite, our algorithm finds a local optimum in a finite number
of steps.
• We can choose the entering indexjr with the best improve-
ment rule:

∆fr = max{∆fk, k ∈ K∗}, with ∆fk = lkθik
+

1
2
qkkθ2

ik
.

This rule gives the maximal local improvement of the objective
function. In other words, we move from the current extreme
point to the adjacent one with the best objective function value.
However, some preliminary numerical experiments show that
this version of the algorithm consumes much time than the
version SASIR presented above.

C. Numerical example

Consider the following concave quadratic program [14]:

min f(x) = −x1 − 2x2 − x2
1 − 3x2

2,

subject to −x1 + x2 + x3 = 3,
x1 − x2 + x4 = 6,

x1 + 2x2 + x5 = 12,

xj ≥ 0, j = 1, 5.

We have

I = {1, 2, 3}, J = {1, 2, 3, 4, 5}, K = {1, 2}.

c =


−1
−2

0
0
0

 , D =


−2 0 0 0 0

0 −6 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

A =

(−1 1 1 0 0
1 −1 0 1 0
1 2 0 0 1

)
, b =

( 3
6
12

)
.

We start SASIR with the following initial BFS:

JB = {3, 4, 5}, JN = {1, 2}, xT
B = (3, 6, 12),

xT
N = (0, 0), xT = (0, 0, 3, 6, 12), f(x) = 0.

First iteration :
We have

AB = I3, AN =

(−1 1
1 −1
1 2

)
, cT

B = 0R3 , cT
N = (−1,−2).

Computing the vectors̄b, l and the matrices̄A, Z, Q:

b̄ = A−1
B b = b, Ā = −A−1

B AN =

( 1 −1
−1 1
−1 −2

)
,

Z =
(

Ā
I2

)
=


1 −1

−1 1
−1 −2

1 0
0 1

 ,

D̄ =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 −6

 , Q = ZT D̄Z =
(
−2 0

0 −6

)
,

v =
(

b̄
0

)T

D̄ = 0R5 , lT = cT
N + cT

BĀ + vT Z = (−1,−2).

Computing the entering and leaving indices:
We computeθik

andθk
0 for k ∈ {1, 2}:

θi1 = min{θ1
1, θ

1
2, θ

1
3} = min{+∞, 6, 12} = θ1

2 = 6,

θi2 = min{θ2
1, θ

2
2, θ

2
3} = min{3,+∞, 6} = θ2

1 = 3,

θ1
0 = −2l1

q11
= −1, θ2

0 = −2l2
q22

= −2/3.

So,
K∗ = {k ∈ K : θk

0 < θik
} = {1, 2}.

We chooser with the smallest index rule, we get

r = min{k, k ∈ K∗} = min{1, 2} = 1 ⇒ r = 1, s = i1 = 2.

So, the entering index is the index of positionr = 1 in JN ,
i.e., j1 = 1 and the leaving index is the index of positions in
JB , i.e., j′2 = 4.

91Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation



Computing the feasible descent direction and the steplength:
We have

dN = (0, 1)T , dB = ā2 = (−1, 1,−2)T ,

dT = (1, 0, 1,−1,−1), θ∗ = θi1 = 6.

Computing the new solution̄x and the new value of the
objective functionf(x̄):

x̄ = x + θ∗d = (6, 0, 9, 0, 6)T , f(x̄) = −42 < f(x).

Change of the basis:

J̄B = (JB \ {4}) ∪ {1} = {3, 1, 5}, J̄N = {4, 2}.

Second iteration :
We have

JB = {3, 1, 5}, JN = {4, 2}, xT = (6, 0, 9, 0, 6),

f(x) = −42, AB =

( 1 −1 0
0 1 0
0 1 1

)
, AN =

( 0 1
1 −1
0 2

)
,

cB = (0,−1, 0)T , cN = (0,−2)T .

Computing the matrices̄A, Z, Q and the vectorl:

Z =


−1 0
−1 1

1 −3
1 0
0 1

 , Q =
(
−2 2

2 −8

)
, l =

(
13

−15

)
.

We computeθik
andθk

0 , k ∈ {1, 2}:

θi1 = {9, 6,+∞} = θ1
2 = 6, θ1

0 = 13,

θi2 = {+∞,+∞, 2} = θ2
3 = 2, θ2

0 = −15/4.

So,
K∗ = {k ∈ K : θk

0 < θik
} = {2}.

We chooser with the smallest index rule, we get

r = min{k, k ∈ K∗} = 2 ⇒ r = 2, s = i2 = 3.

So, the entering indexj2 = 2 and the leaving index isj′3 = 5.
Computing the feasible descent direction and the steplength:

dT = (1, 1, 0, 0,−3), θ∗ = θi2 = 2.

Computing the new BFS̄x and the new value of the objective
function f(x̄):

x̄ = x + θ∗d = (8, 2, 9, 0, 0)T , f(x̄) = −88 < f(x).

Change of the basis:

J̄B = (JB \ {5}) ∪ {2} = {3, 1, 2}, J̄N = {4, 5}.

Third iteration :
We have

JB = {3, 1, 2}, JN = {4, 5}, xT = (8, 2, 9, 0, 0),

f(x) = −88, AB =

( 1 −1 1
0 1 −1
0 1 2

)
, AN =

( 0 0
1 0
0 1

)
,

cB = (0,−1,−2)T , cN = (0, 0)T .

Computing the matricesZ, Q and the vectorl:

Z =


−1 0
−2/3 −1/3

1/3 −1/3
1 0
0 1

 , Q =
(
−14/9 2/9

2/9 −8/9

)
,

l = (20/3, 31/3)T .

We computeθik
andθk

0 , k ∈ {1, 2}:
θi1 = {9, 12,+∞} = θ1

1 = 9, θ1
0 = 60/7,

θi2 = {+∞, 24, 6} = θ2
3 = 6, θ2

0 = 93/4.

So,
K∗ = {k ∈ K : θk

0 < θik
} = {1}.

We chooser with the smallest index rule, we get

r = min{k, k ∈ K∗} = 1 ⇒ r = 1, s = i1 = 1.

So, the entering index isj1 = 4 and the leaving index is
j′1 = 3.
The feasible descent direction and the steplength are:

dT = (−2/3, 1/3,−1, 1, 0), θ∗ = θi1 = 9.

Computing the new BFS̄x and the new value of the objective
function f(x̄):

x̄ = x + θ∗d = (2, 5, 0, 9, 0)T , f(x̄) = −91 < f(x).

Change of the basis:

J̄B = (JB \ {3}) ∪ {4} = {4, 1, 2}, J̄N = {3, 5}.
Fourth iteration :
We have

JB = {4, 1, 2}, JN = {3, 5}, xT = (2, 5, 0, 9, 0), f(x) = −91.

AB =

( 0 −1 1
1 1 −1
0 1 2

)
, AN =

( 1 0
0 0
0 1

)
,

cB = (0,−1,−2)T , cN = (0, 0)T .

Computing the matricesZ, Q and the vectorl:

Z =


−1 0
2/3 −1/3

−1/3 −1/3
1 0
0 1

 , Q =
(
−14/9 −2/9
−2/9 −8/9

)
,

l = (22/3, 37/3)T .

We computeθik
andθk

0 , k ∈ {1, 2}:
θi1 = min{9,+∞, 15} = θ1

1 = 9, θ1
0 = 66/7,

θi2 = min{+∞, 6, 15} = θ2
2 = 6, θ2

0 = 111/4.

So,
K∗ = {k ∈ K : θk

0 < θik
} = ∅.

Therefore, the local optimal BFS and the corresponding ob-
jective function value are:

x∗ = (2, 5, 0, 9, 0)T , f(x∗) = −91.

Let us remark that the local minimizer found by our algorithm
in this example is also global.
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V. NUMERICAL EXPERIMENTS

In order to compare our algorithm with the algorithm of
Rusakov, we have developed an implementation with MAT-
LAB2017a on a PC with a processor Intel Pentium Dual-Core
2.20 GHz and 4 Go of RAM. The Rusakov’s algorithm is
a branch and bound algorithm which uses the Tuy cut. It
is implemented in his free software [5][11]. Note that the
Rusakov’s test problems have one constraints andn bounded
variables and the available free version of the software is
limited to one constraint and 20 bounded variables, that is
why we have done numerical experiments on small size test
problems. Numerical results on Rusakov’s test problems are
presented in Table I.

In order to test the performance of our algorithm on
medium size test problems, we have generated concave
quadratic test problems with known global optimum using the
generation procedure presented in [15], see Table II.

The notations in the first row of Tables I and II :m,
n, niterj , optj , cputj represent respectively number of con-
straints, number of variables, number of iterations, the opti-
mum found, the CPU time for Algorithmj, where Algorithm
1 is the SASIR algorithm and Algorithm 2 is the Rusakov’s
algorithm. In Table II,gopt represents the global optimum
of the corresponding test problem and ”Mean” represents the
average CPU time and the average number of iterations for
each problem size.

TABLE I: NUMERICAL RESULTS ON RUSAKOV’S TEST PROBLEMS.

n Algorithm 1 (SASIR) Algorithm 2 ( Rusakov)
niter1 opt1 cput1 (s) opt2 cput2 (s)

5 4 -11.0694 0.0031 -11.0694 1.1298
10 6 -40.8382 0.0041 -40.8382 2.0481
15 9 -88.9456 0.0051 -88.9456 6.1074
18 10 -127.0726 0.0075 -127.0726 9.7121
20 11 -156.1234 0.0092 -156.1234 11.5236

TABLE II: NUMERICAL RESULTS ON RANDOMLY GENERATED
TEST PROBLEMS.

Prob m × n niter1 opt1 gopt cput1 (s)
1 100× 120 40 -9.5894 -6.2500 0.1439
2 100× 120 2 -4.3225 -0.0625 0.0217
3 100× 120 30 -1.5625 -1.5625 0.2773
4 100× 120 39 -4.0272 -4.0272 0.5287
5 100× 120 3 -2.2500 -0.1600 0.0247
6 100× 120 6 -1.9492 -1 0.0330
7 100× 120 14 -2.9417 -2.2500 0.0564
8 100× 120 2 -23.6580 -0.3600 0.0240
9 100× 120 18 -3.0625 -3.0625 0.0552
10 100× 120 20 -1.7778 -1.7778 0.0786

Mean 100× 120 37.2 - - 0.0988
11 200× 240 2 -12.2500 -0.1600 0.0426
12 200× 240 2 -11.6224 -0.3600 0.0394
13 200× 240 18 -10.5901 -4.0000 0.4594
14 200× 240 2 -9.8212 -0.4900 0.0386
15 200× 240 2 -15.4605 -0.3600 0.0387
16 200× 240 2 -57.4326 -0.0400 0.0389
17 200× 240 27 -4 -4 0.5332
18 200× 240 2 -11.3498 -0.6400 0.0454
19 200× 240 5 -39.3321 -0.1600 0.0824
20 200× 240 2 -1.4400 -0.2304 0.0409

Mean 200× 240 6.4 - - 0.1359

We have started our algorithm by the extreme point, with
objective function equal to zero. Table I shows clearly that
our algorithm has succesfully found the global optimum for
the Rusakov’s test problems. Moreover, the simplex algorithm
with the smallest index rule outperforms the branch and bound
algorithm of Rusakov in terms of CPU time. Table II shows

that our algorithm has found the global optimum for 5 gener-
ated test problems in a short CPU time (test problems 3,4,9,10
and 17). However, for other test problems, our algorithm gives
a local minimizer which can be used for the initialization of
the global optimization algorithms.

VI. CONCLUSION

In this work, we have adapted the simplex algorithm of
linear programming for finding a local optimum of a concave
quadratic function subject to linear and nonnegativity con-
traints. In order to stop the algorithm, we suggested a simple
sufficient and necessary condition for local optimality of the
current extreme point. Numerical experiments on Rusakov and
randomly test problems show that our algorithm is very fast
and can find the global optimum for some problems. In a future
work, we will combine our algorithm with an existing global
optimization algorithm in order to find the global optimum
of medium and large-scale concave quadratic programming
problems.
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