
A Theoretical Concept: Towards Mathematical Declarations of Code Intentions

Athanasios Tsitsipas, Lutz Schubert
Institute of Information Resource Management

University of Ulm
Ulm, Germany

e-mail: {athanasios.tsitsipas, lutz.schubert}@uni-ulm.de

Abstract—”The whole is more than the sum of its parts” (Aris-
totle). Current imperative languages do not allow a program to
be simply broken up (decomposition) or to merge several parts
of a program, but demand appropriate knowledge and manual
effort. The idea behind is to transfer methods from mathematical
combinatorics to standard programming models to enable the
distribution of a task across multiple heterogeneous resources.
This approach allows distributed, heterogeneous resources to be
treated as an integrated platform, with no hassle of adaptation
for the developer. In this paper we propose and discuss a
theoretical framework, with which the correctness of the code can
be guaranteed with automated (de-)composition and adaptation.
This will lay the groundwork for new programming methods
that will allow code to be more fully understood, analysed and
modified. This is relevant for all areas that develop and use
software.

Keywords–Software Engineering; (De-)composition; Group
Theory.

I. INTRODUCTION

The world functions like a well-tweaked clock; it con-
stantly moves and changes as we struggle to keep pace with
it. We represent our world mathematically in order to explain,
predict and reason with it - in other words, to scientifically
deal with it. We base on theorems, axioms and lemmas that
will eventually enable us to break down a problem into
simpler steps, commonly understandable. Everything flows
(Heraclitus) in the world of Information Technology(IT) with
new types of resources and applications arriving on a daily
basis, making it hard to keep pace. Software Engineering
is still based on the principles of Alan Turing, and we are
still developing hardware-specific programs. However, as more
manufacturers specialize in Integrated Circuits for Dedicated
Devices, variations in platforms have increased. Thus, different
compilers become necessary, e.g., convert C / C ++ into code
optimized for the respective platform. This process is time
consuming and requires that the code itself should be adapted
to the target platform. Our goal is to create a theoretical frame-
work that establishes concepts and methodologies, harnessing
the power of mathematics as means to control, analyse and
reason over the dynamic elements of a modern IT environment.
We believe that we can define a program once and execute
it on and across multiple environments, with no exertion of
adaptability for specific resource types and environments. We
should be able to add, subtract or alternate functions and/or
features in an IT environment on demand, without having to
worry explicitly about correctness and feasibility.

Within this short paper we will first examine the back-
ground information in related areas of software engineering
(section II). In section III we outline the approach, where we
propose a theoretical framework that describes the dependen-
cies that arise in the decomposition and merging of subtasks

from a mathematical point of view and thereby ensures the
correctness of the resulting tasks. We conclude (section IV)
with a short summary and future work.

II. BACKGROUND

In current software development, the following things
cannot be done properly with standard programming models:
correctness of code (de)composition, multipurpose deploy-
ment, and easy execution. Currently, code (de)composition
can only be achieved using well-defined patterns, which im-
plicitly constrain execution to pre-defined use cases, logic
and situations (infrastructures). This is because a compiler
cannot understand a program automatically (so-called Halting
problem). Nevertheless, we need to be able to automatically
change the algorithmic logic when combining or separating
functionalities, as well as, when using new resources. The
functional behaviour needs to remain the same even though
we change the algorithm (the logic). By using predefined code
patterns, such as executing loops sequentially, or using map-
reduce. This can partially be achieved by the compiler, if
sufficient information is given (i.e., if it fits a certain pattern),
but not generally in a well-defined fashion. By applying group
theory to combine logical elements, we could in principle
develop a generic method for algorithmic (de)composition and
adaptation, thus not solving, but certainly reducing the Halting
problem considerably.

We change the way of standard programming with a
mathematical description that abstracts from the algorithmic
intention of the code, and not use programming models to
only parallelise it (i.e., Skeleton, TBB, Cilk). In order to utilize
arbitrary resources in changing environments, we have to be
able to break up (decompose) a function into a combination of
functions, aligned to the available resources. Something similar
has been attempted with the General Problem Solver [1] and
is proven to be NP-hard. The General Problem Solver tried to
find an optimal path over an infinite graph, whereas the group
theory defines the combinatorial behaviour that in itself can
generate a graph (and hence path) through a complex function
(much like solving an equation can be represented by graphs).

Non-functional properties of execution (such as perfor-
mance) depend on the available resources, which may change
unpredictably. However, if we can express the non-functional
properties as a projection of the function, then any decomposi-
tion of the functional declaration will be applicable to its pro-
jected functions too, and therefore to the non-functional prop-
erties. Since execution characteristics (non-functional proper-
ties) will change with the resources used, we need to exploit
the behavioural patterns for code execution in alignment with
the resource characteristics to find the best match between
intended properties and the way this pattern executes on said

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

resource. In our proposal, we exploit the (de)composition
capabilities of mathematics, i.e., that the same function can
be expressed as different compositions of functions - this
decouples the algorithmic (de)composition complexity from
the actual functional intention and can be solved through
a set of reference transformation rules, as demonstrated in
POLCA [2]–[6].

III. PRINCIPAL APPROACH

Concepts from the realm of mathematics in abstract alge-
bra, and more specifically from group theory form the basis
for the proposed work. The theory of groups occupies a central
position in mathematics to delineate and control the space
occupied by any polynomial function. The definition of the
group is a well-formulated method in mathematics and can
be applied in many domains, including arithmetic, geometry,
but even beyond in biology, chemistry, physics [7]. A group is
a set of elements, equipped with an operation ? that comply
with certain algebraic laws (associativity). If we combine two
elements in a group (add two integers), the result is also in
the group. Mathematical groups are not constrained to simple
elements (such as numbers), but can be applied to complex
objects. In the context of this work, we will try to transfer
these concepts to programming languages, making computable
functions complex objects that can serve as elements in a
group. Note that this goes beyond the standard algorithmic
definition of a function. By trying to perceive the infrastructure
and the applications as a mathematical equation, we consider
them in sets and combinations of elements.

We impose approaches that were developed as early as the
1960s, but were not pursued because of their difficulties in
implementation: the mathematical declaration of the problem
instead of the imperative-algorithmic one. What is special
about the mathematical versus the algorithmic declaration is
that the same problem can be solved in different ways, namely
(1) by mathematical transformation

a2 + 2ab+ b2 = (a+ b)2 = (b+ a)2 = (a+ b)(b+ a) (1)

and, (2) by converting the formula into various algo-
rithmic forms:

double binom(double a, double b)
return (a*a+2*a*b+b*b);

or return (exp(a,2)+exp(b,2)+2*a*b);

Thus, the mathematical declaration is a superordinate definition
of the overall behavior of the application, which can be broken
down and distributed into different subtasks. Moreover, by
using the transformations of the group, the correctness of the
solution is always guaranteed, i.e., in the given case by the
commutativity, associativity and distributivity of + and * over
R in the above examples. The relevant point is that this applies
to every mathematical group, regardless of the definition of
the operation and the space (as long as they satisfy the basic
conditions) [3], [8].

The composition and in particular decomposition of code
in Software Engineering is an NP-hard task. The challenge
here is how to apply concepts from group theory to software
engineering to enable the distribution of functions across
multiple heterogeneous resources. Such an approach has never
really been attempted before and though the principle may
seem obvious, there are no well-defined methods yet and the

consequences of any such approach must still be explored: Due
to the inherent complexity of the problem there is an increased
risk that the methodology may be applicable only under limited
conditions. However, it will open discussions and will be an
intriguing topic and of relevance for scientific research and
industrial purposes.

IV. CONCLUSION AND FUTURE WORK

With the proposed idea, it will be possible to deal bet-
ter with complex applications that utilize multiple resources,
which is currently possible only with a tremendous amount
of effort. While programming and adapting programs is still
a hard task, we envision a programming model where a
functional abstraction through intentions of code will be re-
alised, thus enabling us to overcome the problems arising
from (de)composition of algorithmic logic (Halting Problem).
As future steps, by developing new compilation methods and
a novel code declaration to analyse, rearrange and manage
software and finally ensure correctness, we will initiate new
discussions for a path to rethink the way of programming.
One major challenge faced by the idea consists in the potential
combinatorial explosion: by applying group theory, a code can
be arbitrarily combined and segmented leading to a potential
infinite number of solutions (or rather: equivalent functions).
To counter this, new methods to constrain and guide the search
space will have to be examined, relating to current compiler
techniques.

REFERENCES
[1] A. Newell, J. C. Shaw, and H. A. Simon, “Report on a general problem

solving program,” in IFIP congress, vol. 256, 1959, p. 64.
[2] The mathematics behind polca. http://polca-

project.eu/downloads/presentations/33-math-behind-polca/file. Accessed:
2018-04-01.

[3] J. Kuper, L. Schubert, K. Kempf, C. Glass, D. R. Bonilla, and M. Carro,
“Program transformations in the polca project,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
882–887.

[4] S. Tamarit, J. Mariño-Carballo, G. Vigueras, and M. Carro, “Towards a
semantics-aware transformation toolchain for heterogeneous systems,” in
Program Transformation for Programmability in Heterogeneous Archi-
tecture Workshop (PROHA), 2016.

[5] D. R. Bonilla, C. W. Glass, and J. Kuper, “Optimized polynomial
evaluation with semantic annotations,” in Program Transformation for
Programmability in Heterogeneous Architecture Workshop (PROHA),
2016.

[6] S. Tamarit, G. Vigueras, M. Carro, and J. Marino, “A haskell imple-
mentation of a rule-based program transformation for c programs,” in
International Symposium on Practical Aspects of Declarative Languages.
Springer, 2015, pp. 105–114.

[7] E. P. Wigner, “The unreasonable effectiveness of mathematics in the
natural sciences,” in Mathematics and Science. World Scientific, 1990,
pp. 291–306.

[8] L. Schubert, J. Kuper, and J. Gracia, “Polca–a programming model for
large scale, strongly heterogeneous infrastructures,” Parallel Computing:
Accelerating Computational Science and Engineering (CSE), vol. 25,
p. 43, 2014.

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

