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Abstract—Combinations of 3 hardware parameters (number
of threads, core and uncore frequency) were tested for 4 sparse
matrix algorithms (matrix-matrix addition, matrix-matrix mul-
tiplication and matrix-vector multiplication in 2 formats) on a
set of over 2,000 matrices for the purpose of identifying the
best energy-to-solution setting for each matrix and sparse matrix
operation combination. On this set of data, the possibility of
optimal hardware settings prediction based on the properties
of each matrix were analysed using neural networks, support
vector machines and fast decision tree learners. All 3 classes of
algorithms have been proven to be a very effective instrument
in a lot of areas including prediction and classification. In
neural networks, the input neurons represented properties of a
given matrix, output neurons represented the optimal hardware
parameters. Network properties (hidden neuron layers, neurons
per layer, learning coefficient and training cycles) impact on
the prediction accuracy were analysed and the results showed
that a network with 30 hidden neurons produced results close
to the best achievable. The prediction accuracy of all neural
networks ranged from 20–95%, with roughly 70% being the
average. Support vector machines were accurate in 60–65% of
cases and Fast decision tree learners provided the least accurate
predictions, 50–55%.

Keywords—Sparse matrices, neural network, support vector
machine, fast decision tree learner, weka, energy efficiency,
prediction

I. INTRODUCTION

A sparse matrix is a matrix in which most of the elements
are equal to zero. Some common applications are partial
differential equations, numerical analysis and linear algebraic
operations. Sparse matrices can represent real-world problems
ranging from microscopic systems [1] up to whole galaxies
[2].

Sparse operations are characterised by low arithmetic inten-
sity, resulting in a challenging memory-bound problem, where
underclocking the processor or limiting the number of compute
threads can reduce the memory congestion and have a minimal
impact on the performance itself.

The goal is to find the optimal hardware setup to save the
most energy for each specific set of input parameters. One
way is to manually measure all combinations of the hardware
parameters and choose the optimal one. However, that quickly
becomes inconvenient for increasing number of matrices. This
approach is also called Hyper-Parameter Optimisation (HPO).

Bergsta et. al. [3] presented two popular HPO algorithms,
neural and deep belief networks with the Gaussian Process
approach and the Tree-structured Parzen Estimator approach,
and showed that the results obtained from running an image
classification problem with 32 hyper-parameters are human
and brute force random search competitive, with an average
error being just under 15%.

Bergsta et. al. [4] also put an emphasis on the initial hyper-
parameter layout. Grid and random layouts were compared
on a neural network case study. It showed that random
experiments were more efficient than the grid ones for the
hyper-parameter optimisation in the case of the most learning
algorithms on several data sets. The main reason is that not
all hyper-parameters are equally important to tune.

Stamoulis et. al. [5] focused on the hyper-parameter op-
timisation of neural networks in the direction of power and
memory constrains on GTX 1070 and Tegra X1 [6] GPUs
from Nvidia. The framework used Bayesian optimisation
model and overall the enhancements allowed for up to 57.2×
more function evaluations, which yielded significant accuracy
improvements by up to 67.6%.

Smithson et. al. [7] showed an approach for reducing
the state space of the neural network properties by using
another neural network, which reduced this state space by
hyper-parameter optimisations. In the end, a Pareto-optimal
set of networks was created. Compared to manually designed
networks from literature, this technique produced results with
nearly identical performance while reducing the associated
costs by a factor of 3.

Auto-weka [8] is a JAVA library and a machine learning
platform. Auto-sklearn [9] is its sister package written in
Python. These frameworks offer a set of popular learners and
algorithms for problems where it is hard to identify the best
approach. It automatically searches through the joint space
of Weka’s learning algorithms and their respective hyper-
parameter settings to maximise performance, using a state-
of-the-art Bayesian optimisation method.

The current state-of-the-art in the hyper-parameters opti-
misation approaches, outlined in previous paragraphs, show
that machine learning techniques, neural networks especially,
provide a powerful tool for solving these tasks. This paper,
however, presents a unique challenge from the area of sparse
matrix operations. Based on the properties of a given ma-
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trix, the goal is to successfully predict the optimal hardware
parameters in terms of the best energy-to-solution and also
the energy consumption itself. This paper focuses mainly
on neural networks and their performance tuning as well
as comparing them to the support vector machines and fast
decision tree learners, provided and recommended by the
Weka library for this class of problems.

II. SETUP

In this section, all hardware and software used, their ver-
sions, settings, properties, algorithms etc. are described. All
source codes were compiled with the combination of Intel
Compiler 2017, -O3 -xHost flags and Intel MKL 2017to
perform the sparse calculations, which were provided as
modules on the cluster.

A. Sparse Algorithms

4 sparse algorithms were analysed:
• matrix-matrix addition in CSR format (SpMMadd)
• matrix-matrix multiplication in CSR format (SpMMmult)
• matrix-vector multiplication in CSR format

(SpMVmultCSR)
• matrix-vector multiplication in IJV (i.e. COO) format

(SpMVmultIJV)
IJV format stores data as a set of coordinates and is more
suitable for the matrix-vector multiplication than CSR. The
matrix-matrix addition and multiplication adds or multiplies a
given matrix with itself (transposed if necessary), respectively,
matrix-vector multiplication multiplies a given matrix with its
first row as a vector.

B. Matrices

All sparse matrices were sourced from the SuiteSparse
Matrix collection [10] [11] in the Matrix Market File (.mtx)
format. The collection contains 2757 matrices ranging from
a single up to almost 2 billion nonzero elements. Due to
the resource and allocation limitations of the cluster, only a
randomly chosen subset of matrices was used for each sparse
operation (1755 for SpMMadd, 1627 for SpMMmult, 2493 for
SpMVmultCSR, 2605 for SpMVmultIJV).

C. Neural Network and Weka

The Genann library [12] was used to implement the mul-
tilayer fully-connected feedforward neural networks with a
sigmoid activation function and the back-propagation learning.

Each network had 226 input neurons representing the pa-
rameters of a matrix. The numerical parameters were Rows,
Columns, Nonzero ratio and Symmetry percentage, each occu-
pying one input neuron. The values of these parameters were
normalised to [0, 1] range by the min-max normalisation as

Xnorm =
X −Xmin

Xmax −Xmin
(1)

The categorical parameters, normalised using the one-hot
encoding [13], are Group (143 variants), Kind (65 variants),
Type (12 variants) and SPD (symmetric positive definite,

1 variant). Each variant was represented by its own input
activating neuron.

Four output neurons represented Number of threads, Core
frequency, Uncore frequency (separate L3 cache frequency
introduced by Intel in the Haswell architecture) and Energy.

Editable analysed parameters are hidden neuron layers (1–
5), the number of neurons per hidden layer (10–250), learning
coefficients (0.1–0.99), the number of learning cycles (i.e.
epochs) (1, 10, 100, 1000) and the training set sizes (10–90%
of total data, the rest formed testing data).

For algorithms provided by the Weka library - support
vector machines for regression, referred to as SMOreg, and
fast decision learning trees, referred to as REPtree, the csv
files with all the input vectors (matrix properties) and exper-
imentally measured data were converted to the arff format.
The parameters of both of these algorithms were set to default
values recommended by the authors.

D. Hardware

All experiments were run on the Taurus supercomputer [14],
where each node consists of 2× Intel Xeon E5-2680v3 (12
cores) processors and 64–256 GB RAM. The benchmarked
core and uncore frequencies were 1.2, 1.5, 1.8, 2.1 and
2.5 GHz, and additionally 3.0 GHz for the uncore. The num-
bers of threads tested covered 2, 4, 6, 8 and 12. Ideally,
the whole Cartesian product of these parameters should be
measured, however, that would inadequatly increase the search
space without the benefit of much improved results. The
workload was duplicated to both sockets, because sparse
routines scale very poorly to a higher number of threads and
across NUMA regions and duplicating the calculations gives
more accurate energy measurements. The energy consumption
difference running the same algorithm and hardware settings
among the nodes is roughly ±5% on average.

E. Benchmarking

During the initial experimental data collection phase, each
sparse operation for each matrix and each combination of HW
settings was run twice to warm up the caches, the measured
hot run was repeated to run at least 5 times and for at least
1 second. The energy and time measurement as well as the
dynamic hardware parameter settings were done using the
MERIC library [15] [16], which uses HDEEM [17] for high
frequency energy measurements. For each sparse matrix, all
tests were executed on the same node to reduce the initial I/O
overhead, but different matrices run in parallel on randomly
allocated nodes.

III. EXPERIMENTAL RESULTS

The impact on prediction accuracy was individually evalu-
ated for each dynamic neural network parameter. The accuracy
is expressed as the Euclidean norm in a 4-dimensional space
of error values as

Error distance =
√
Err2t + Err2c + Err2u + Err2e (2)
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Figure 1: Impact of number of neurons on prediction accuracy of
NN.
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Figure 2: Impact of neuron layers on prediction accuracy of NN.

0.1 0.4 0.7 0.99 0.1 0.4 0.7 0.99 0.1 0.4 0.7 0.99 0.1 0.4 0.7 0.99

Learning coefficient

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
rr

o
r 

d
is

ta
n
ce

matrixmatrix
addition

matrixmatrix
multiplication

matrixvector
multiplication
in CSR format

matrixvector
multiplication
in IJV format

Figure 3: Impact of learning coefficients on prediction accuracy of
NN.

where Errt = Pt−Mt, Errc = Pc−Mc, Erru = Pu−Mu,
Erre = Pe −Me, Pt is predicted number of threads, Mt is
measured number of threads, Pc is predicted core frequency,
Mc is measured core frequency, Pu is predicted uncore fre-
quency, Mu is measured uncore frequency, Pe is predicted
relative energy savings and Me is measured relative energy
savings. P values were predicted by a neural network on

the output neurons, M values were experimentally measured
on the cluster. All predicted and measured values were nor-
malised.

For the following Figs. 1, 2, 3 and 4, only 1 000 epoch
runs were plotted to ensure fully trained networks except for
the SpMVmultIJV, where more than 100 training cycles led to
overtraining. More than 1 000 epochs (not shown in the plots)
did not improve the error distance. Every box of each boxplot
represents all variants of neurons, layers, learning coefs. and
training set sizes. One of these attributes is always set on the
X axis of each chart.
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Figure 4: Impact of training on prediction accuracy of NN.
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Figure 5: Impact of the training cycles on prediction accuracy of NN.

Fig. 1 shows that about 30 hidden neurons is enough to
represent the relation between the input and output data. The
number of hidden layers (see Fig. 2) was not detrimental to
the results and 1–2 layers produced best mean results. The
learning coefficient (see Fig. 3) did not have a big impact
either, the best value depends on the algorithm. The number of
training cycles (see Fig. 5) was an important factor in ensuring
the network has converged to an optimal state.

The most important attribute turned up to be the training
set size. It is much less time and resource-consuming to train
a bigger network rather than enlarging the training set, which
always improved the prediction quite significantly (see Fig. 4).

Since the network training takes a negligible amount of
time compared to the sparse calculations on average matrices,
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(b) Core frequency
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(c) Uncore frequency
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(d) Total energy
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Figure 6: Prediction accuracy of the values back to absolute discrete values.

the best network was chosen for each sparse algorithm (see
Table I) and the effect of a training set size on prediction
accuracy is more closely analysed in Fig. 6. The Y axis
represents the percentage of correctly predicted values after
rounding each one to the closest discrete value experimentally
measured on the cluster. For example, if 6 is the optimal
number of threads and the neural network predicted any value
within the [5, 7) range, the prediction was considered correct.
The same applies to the core and uncore frequencies. The total
energy plot represents the average accuracy of predicted Joules
compared to measured Joules.

Note that increasing the number of layers and neurons over
30 has negligible impact on optimal values, so if the neural
network learning effort was also considered important, a neural
network with 1 layer of 30 hidden neurons provided similarly
good results in this case.

The thread count prediction accuracy ranges from 40 to 70%
except for the SpMVmultIJV algorithm, which has a success
rate of a random prediction. The main reason is that no thread
count provided unambiguously best energy savings, more than
one setting was often very close to the optimal one, so the
neural network had more trouble learning the best value. The
same behaviour was observed with the uncore frequency. The
distribution for threads and uncore freq. was scattered across
the whole spectrum of values, on the other hand, the optimal

TABLE I. BEST NEURAL NETWORK SETTINGS.

Algorithm Neurons Layers Learning coef. Epochs
SpMMadd 100 1 0.99 1 000
SpMMmult 250 4 0.1 1 000
SpMVmultCSR 50 5 0.1 1 000
SpMVmultIJV 50 2 0.1 100
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(b) Core frequency
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(c) Uncore frequency

10 20 30 40 50 60 70 80 90
Training set size [% of total data]

0

10

20

30

40

50

60

70

80

90

100

Co
rre

ct
 o

pt
im

al
 u

nc
or

e 
fre

q.
 p

re
di

ct
io

n 
[%

]
(1

 o
ut

 o
f 6

 fr
eq

. s
te

ps
)

Random prediction

SpMMadd (SVM)
SpMMmult (SVM)
SpMVmultCSR (SVM)
SpMVmultIJV (SVM)

SpMMadd (TREE)
SpMMmult (TREE)
SpMVmultCSR (TREE)
SpMVmultIJV (TREE)

(d) Total energy

10 20 30 40 50 60 70 80 90
Training set size [% of total data]

0

10

20

30

40

50

60

70

80

90

100

To
ta

l e
ne

rg
y 

pr
ed

ict
io

n 
ac

cu
ra

cy
 [%

]

SpMMadd (SVM)
SpMMmult (SVM)
SpMVmultCSR (SVM)
SpMVmultIJV (SVM)

SpMMadd (TREE)
SpMMmult (TREE)
SpMVmultCSR (TREE)
SpMVmultIJV (TREE)

Figure 7: Prediction accuracy of Support Vector Machine (SVM in the legends) and Fast decision tree learners (TREE in the legends).

core frequency was 2.5 GHz in about 90% of the runs and
quite rarely 2.1 GHz or even lower, so the prediction was quite
simple, except for the SPMVmultCSR, where the values are
more distributed into the lower frequencies around 1.5 GHz.
Energy was also predicted quite precisely with up to 90%
accuracy.

Fig. 7 similarly shows the prediction accuracy using sup-
port vector machines (SVM) and fast decision tree learners
(TREE). SVM provide results similar to neural networks, on
average the precision is 5–10% worse. The worst results are
achieved in the same spots, predicting the number of threads
of the SPMVmultIJV algorithm and the core frequency of the
SPMVmultCSR, which only strenghten the argument that the
current data configuration is hard to predict. However, TREE
provides noticeably better results in these area and was able
to find some additional dependencies. On average, SVM is

about 5–10% more accurate than TREE and neural networks
are 5–10% more accurate than SVM.

IV. CONCLUSION

The ability of neural networks, support vector machines and
fast decision tree learners to predict the energy requirements
and optimal hardware parameters (number of threads and
core and uncore frequencies) for the best energy-to-solution
of sparse matrix operations was evaluated. The experiments
showed that 1 hidden layer of 30 neurons, 1000 learning
cycles and almost any learning coefficient were able to produce
results close the best achievable. The prediction accuracy
depends on the algorithm and the predicted parameter, and for
neural networks can reach up to 95%, with 60-70% being the
average for most combinations. Support vector machines were
5–10% less accurate in their prediction compared to neural
networks, and struggled on similar problems. Fast decision
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tree learners were 5–10% less accurate than SVMs, however,
they proved to be useful in specific areas. The tree structure
might be more appropriate in certain situations. Overall, all
algorithms proved to be a useful tool in the area of energy
efficiency.
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