INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

A Simple Framework for Energy Efficiency Evaluation and Hardware Parameter

Tuning with Modular Support for Different HPC Platforms

Ondrej Vysocky, Jan Zapletal and Lubomir Riha
IT4Innovations, VSB — Technical University of Ostrava
Ostrava-Poruba, Czech Republic
{ondrej.vysocky|jan.zapletal [lubomir.riha} @vsb.cz

Abstract—High Performance Computing (HPC) faces the prob-
lem of the potentially excessive energy consumption require-
ments of the upcoming exascal machines. One of the proposed
approaches to reduce energy consumption coming from the
software side is dynamic tuning of hardware parameters during
the application runtime. In this paper, we tune CPU core
and uncore frequencies using Dynamic Voltage and Frequency
Scaling (DVFS), and number of active CPU cores by means
of OpenMP threads. For our research it is also essential that
the HPC cluster contains infrastructure that provides energy
consumption measurements. In this paper, we evaluate the energy
consumption of an ARM-based platform with lower performance
and even lower energy consumption, and two traditional HPC
architectures based on x86 CPU architecture - Intel Xeon E5-26xx
v3 (codename Haswell) and Intel Xeon Phi (codename KNL).
To improve the efficiency and quality of such research we have
developed a MERIC library. It enables both resource (time,
energy, performance counters) usage monitoring and dynamic
tuning of any HPC application that is properly instrumented.
This library is designed to contribute minimal overhead to
application runtime, and is suitable for analysis and tuning
of both simple kernels and complex applications. This paper
presents an extension of the library to support new architectures,
(i) the low power ARMvVS based Jetson TX1 and (ii) the HPC
centric Intel Xeon Phi (KNL) many-core CPU. The evaluation is
carried out using a Lattice Boltzmann based benchmark, which
shows energy savings on all presented platforms, in particular
20 % on Haswell processors.

Keywords—Energy Efficient Computing; MERIC; HDEEM;
RAPL; DVFS.

I. INTRODUCTION

High Performance Computing (HPC) is progressing to more
and more powerful machines that, with current technology,
would consume huge amounts of energy. This becomes one
of the most significant constraints to building upcoming
machines. For instance, an exascale machine based on Piz
Daint (the most powerful European cluster) hardware would
consume approximately 90 MW, based on a multiplication of
the power of the current system and number of systems we
would need to reach the exascale performance.

To reduce the power consumption of modern clusters, from
the runtime system point of view it is possible to control se-
lected hardware knobs to fit the needs of running applications.
Memory bound (high data bandwidth) kernels have different
requirements than compute bound (high CPU throughput)
kernels. Within memory bound regions, it is possible to reduce
the frequency of the CPU cores to reduce the power without

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

extending the application runtime. In the same fashion, the
frequency of the DDR memory controllers, the last level
caches, and the DDR memory itself can be similarly reduced
for compute bound regions.

For basic applications that generate a similar workload
through the entire execution, one can use simple static tuning.
For this approach one tunes the selected knobs at the applica-
tion start, and they remain the same for the entire application
runtime. However, more complex applications usually contains
several regions with different workloads, and therefore with
different optimal settings. These must be dynamically adjusted
during the application runtime.

To find optimal settings in terms of energy consumption
for particular HPC hardware, it is necessary to measure the
consumed energy on different granularity levels. Almost all
currently deployed HPC clusters based on Intel Xeon CPUs
starting from the Sandy Bridge generation are equipped with
Intel Running Average Power Limit (RAPL) counters [1]. The
advantage of RAPL is fast access to energy counters with a
very low overhead and quite a high sampling frequency of
1kHz. The main disadvantage is that it is able to measure
only the energy consumption of the CPU and DDR memory
but ignores the energy consumed by the rest of the compute
node (main board, fans, storage, network card, etc.). This,
called baseline energy consumption, must be accounted for
by different means. The most straight forward way is to use a
linear model, which predicts its power consumption based on
the power consumption of the CPUs and memory.

Other more advanced measurement systems, such as High
Definition Energy Efficiency Monitoring (HDEEM) [2], are
based on additional hardware attached to the compute node,
and provide out of bound energy measurements, which do
interfere with running applications and do not introduce any
additional overhead. These systems, in addition to the CPU
and DDR memory, also measure the energy consumption of
the entire compute node and thus provide all the necessary
information for finding optimal settings.

Energy efficient high performance computing is an area
of interest for several research activities, most commonly
applying DVFS or power capping to the whole application
run [3][4]. In this case only separate code kernels are extracted
from the application and tuned. Complex application tuning is
a goal of the Adagio project [5], presenting a scheduling sys-
tem which changes the hardware configuration with a negligi-

25

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

ble time penalty based on previous application runs. Dynamic
application tuning is the goal of the Horizon 2020 READEX
(Runtime Exploitation of Application Dynamism for Energy-
efficient eXascale computing) project [6] [7], which develops
tools for application dynamic behavior detection, automatic
instrumentation, and analysis of available system parameters
configuration to attain the minimum energy consumption for
the production runs.

Our tool called MERIC uses the same approach, with
a focus on manual tuning, and is therefore more flexible
for certain tasks. MERIC is a library for efficient manual
evaluation of HPC applications’ dynamic behavior and manual
tuning from the energy savings perspective, applying the idea
of dynamic tuning.

The goal of this paper is to present energy measurement and
hardware parameters tuning using our MERIC tool on several
different hardware platforms (two Intel Xeon E5-26xx v3
(code name Haswell - HSW) processors with different energy
measurement systems (RAPL and HDEEM), Intel Xeon Phi
(code name Knights Landing - KNL), and an experimental
ARM platform). The approach is presented using the Lattice
Boltzmann application benchmark.

This paper is organized as follows. Section II describes the
MERIC library that was used for the application behavior
analysis and runtime tuning. Section III describes the used
hardware platforms and their energy measurement interfaces.
Following on, Section IV presents experiments we performed
on each hardware platform.

II. MERIC

MERIC [8][9] is a C++ dynamic library with a Fortran
interface designed to measure resource consumption and run-
time of analyzed MPI+OpenMP applications. In addition it
can also tune selected hardware (HW) parameters during the
application runtime.

MERIC automates hardware performance counters reading,
time measurements, and energy consumption measurements
for all user annotated regions of the evaluated application.
These are called significant regions, and in general the dif-
ferent regions should have different workloads. The main
idea of MERIC is that by running the code with different
settings of tuning parameters multiple times, one can identify
both optimal settings and possible energy savings for each
significant region.

The supported system parameters in MERIC are:

o CPU core frequency,

¢ CPU uncore frequency,

o number of active CPU cores by means of number of

OpenMP threads and thread placement, and

« selected application parameters (not used in this paper).

CPU uncore frequency refers to frequency of subsystems
in the physical processor package that are shared by multiple
processor cores e.g., L3 cache or on-chip ring interconnect.
This parameter is not supported on Intel Xeon Phi processors.

The measurement results are analyzed using our second tool
called RADAR [10]. This tool generates a detailed I&TpXreport

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

of application behavior for different settings, and generates a
final tuning model. The tuning model contains optimal settings
for each significant region and it is used by MERIC for final
runs of an application to perform dynamic tuning.

III. HPC PLATFORMS

Several current, and potentially future, HPC platforms are
able to be tuned and analyzed for energy consumption by the
MERIC library. Four of them are used to present the approach
of dynamic tuning ofparallel applications.

The Technische Universitidt Dresden Taurus machine has
nodes with Intel Haswell processors (2x Intel Xeon CPU
E5-2680v3, 12 cores) [11] from the Bull company, which
contain an energy measurement system called HDEEM [2]
that has capability to measure energy consumption of the entire
compute node with a sampling rate of 1kHz (the measurement
error is approximately 2%).

HDEEM provides energy measurements in two different
ways. In the first mode, HDEEM works as an energy counter
(similar to RAPL), and by reading this counter we measure
energy consumed from when HDEEM is initialized. Access
to HDEEM measurements is through the C/C++ API. In this
mode we read the counter at the start and end of each region.
This solution is straightforward, however there is a delay of
approximately 4 ms associated with every read from HDEEM.
To avoid this delay, we take advantage of the fact that during
the measurement HDEEM stores the power samples in its
internal memory. The samples are stored without causing any
additional overhead to the application runtime because all
samples are transferred from HDEEM memory at the end of
the application runtime. The energy is subsequently calculated
from these samples based on the timestamps that MERIC
records during the application runtime. The timestamps are
associated with every start and end of significant regions.

Intel RAPL counters [1] are used to extrapolate the energy
consumption. Both the RAPL and HDEEM energy mea-
surement systems provide the same sampling frequency of
1kHz, but the RAPL counters only approximate the energy
consumption of the CPUs and RAM DIMMs, and do not take
into account the energy consumption of the mainboard and
other parts of the compute node. This fact may have major
effect on the code analysis. If we were to measure only CPUs
and RAM DIMMs without considering consumption of the
rest of the node it would result in lower CPU frequencies
and a longer runtime. however, the longer runtime leads to
higher energy consumption of the entire node due to its
baseline. Based on measurements made on the Taurus system,
where the same type of hardware is present, the Haswell node
baseline (the power consumption of the entire node without the
power consumed by the CPUs and memory DIMMs) has been
measured as 70 W. We add this constant to each measurement
taken by RAPL to calibrate energy measurements.

Both energy measurement systems were compared on the
Intel Haswell processor, which allows the CPU uncore fre-
quency to be set in the range of 1.2-3.0 GHz and the CPU core
frequency in range of 1.2-2.5 GHz, which we used for UFS

26

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

and DVFS in our Experiments section. Haswell experiments
using RAPL counters were performed on IT4Innovations’
Salomon cluster [12].

As a modern Intel platform, Intel Xeon Phi 7210 (KNL)
supports energy consumption measurement using RAPL coun-
ters. Similarly to the case of Haswell nodes, we had to evaluate
a node power baseline for more precise power consumption
results. According to our measurements from Intelligent Plat-
form Management Interface (IPMI), when not under a load
the node consumes 75 W.

Xeon Phi platforms host GPU cards, and many smaller, less
complex and low frequency cores. This is the reason why these
cards provides a better FLOPs per Watt ratio than the usual
x86 processors [13]. KNL nodes can also be tuned during
the application runtime due to the changing number of active
OpenMP threads (64 cores each with up to 4 hyper-threads)
and a CPU core frequency which can scale from 1.0 GHz to
1.4 GHz. Uncore frequency tuning is not supported on KNL.

For KNL nodes it is possible to setup in a different memory
mode, where MCDRAM works as a last-level cache (Cache
mode), as an extension of RAM (Flat mode), or partially as
a cache and partially as a RAM extension (Hybrid mode).
Due to DVFS and energy measurement requirements, we had
access to nodes in Cache mode only.

Another tested platform is Jetson/TX1, which is an ARM
system (ARM Cortex-A57, 4 cores, 1.3 GHz), which is not
a very powerful system, but which can set much lower fre-
quencies than standard HPC systems, consequently allowing
ARM systems to consume less energy. This fact makes such
platforms interesting for further investigation. In the case of
this system, it is not possible to set the uncore frequency,
however, the user may change the frequency of the RAM. The
minimum CPU core frequency is 0.5 GHz and the maximum
is 1.3 GHz. The minimum and maximum RAM frequencies
are 40 MHz and 1.6 GHz respectively.

TABLE I. JETSON/TX1 ENERGY MEASUREMENT
INTERFACE AND ITS EFFECT ON THE CPU LOAD

frequency [Hz] CPU load
10 2%
50 4%
100 8%
200 14%
500 23%
1000 30%

This system was selected from the available Barcelona
Supercomputing Center ARM prototype systems under the
Mont-Blanc project [14] because it is the only one that
allows DVFS and supports energy measurements. To gather
the power data from the board, the Texas Instruments INA3221
is featured on the board [15]. It measures the per node energy
consumption and stores sample values in a file. It is possible to
take approximately hundreds of samples per second, however
the measurement runs on the CPU. Table I shows how the
CPU is effected due to different energy measurement sampling
frequencies, measured via the htop process-manager.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

IV. EXPERIMENTS

In the following section we compare presented hardware
platforms using the Lattice Boltzmann benchmark, which is a
computational fluid dynamics application that describes flows
in two or three dimensions.

- 02 = 1.2
: A A A A A A A A A].4
£ —— 16
= “ 2y L a4 a 1.8
=
t"a 0.157 i P — 2.0
g A—ala o A A ala o a A —— 22
g i S G G G W Sy 24
=}
é’ 0 1 | A—a 4 A A A A A A | —A— 25

| | | |

1.5 2 2.5 3

UnCF [GHz]

Figure 1: Collide region runtime when different CPU core and
uncore frequencies are applied on a Haswell node.

CF[GHz]
—— 12

35+ 1 —— 14

/ — 16

1.8

30| 1 20
/,A

22
24
2.5
2.6

25

Energy consumption [J]

|
1.5 2 2.5 3
UnCF [GHz]

Figure 2: Collide region energy consumption when different CPU
core and uncore frequencies are applied on a Haswell node.

The most significant parts of the code are functions called
Collide and Propagate. Figure 1 shows the Collide region
runtime for various CPU core and uncore frequencies on
an Intel Xeon CPU (Haswell). The Collide region performs
all the mathematical steps, so it is a typical compute-bound
region, and its runtime is not effected by the uncore frequency.
Figure 2 shows that on the other hand, the energy consumption
is affected by increasing the uncore frequency, and that by
reducing it to its minimum we save energy.

conversely, the Propagate region demonstrates very different
behavior. It consists of a large number of sparse memory
accesses, so it is highly affected by the uncore frequency, while
core frequency has minimal impact on its runtime, as show in
Figure 3. Also Figure 4 shows that the CPU core frequency can

27

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

CF [GHz]
= 1| 14
2 — 16
= 1.8
=)
:o 1= 2.0
© —a— 272
5 2.4
g —a— 25
[
. | 2.6

|
1.5 2 2.5 3
UnCF [GHz]

Figure 3: Propagate region runtime when different CPU core and
uncore frequencies are applied on a Haswell node.

_ 500} E[GIHZZ]
= —— 14
% —— 16
2 450 |- 18
z e 20
S —a— 272
& 24
5]

S 400 o ;2

| | |

|
15 2 25 3
UnCF[GHz]

Figure 4: Propagate region energy consumption when different CPU
core and uncore frequencies are applied on a Haswell node.

be reduced, but only to a specific minimum, since afterwards
the energy consumption starts to grow again.

Main
N
17“<
‘Propagate ‘ Collide ’

Figure 5: Diagram of significant regions in the LBM benchmark.

These two regions take most of the time of the main loop,
however, an initialization of the application itself also takes
several seconds, depending on the problem size, and we should
not ignore this region. In this simple benchmark, we inserted

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

TABLE II. LBM APPLICATION REGIONS’ OPTIMAL
CONFIGURATIONS FOR THE ANALYZED PLATFORMS

HSW HSW

Region Parameter HDEEM RAPL KNL JTX
threads [-] 24 24 256 4

Main CF [GHz] 2.5 2.5 14 1.33
UCF [GHz] 2.2 2.2 - -

RAMF [GHz] - - - 1.1
threads [-] - - - —

Init CF [GHz] 2.6 2.6 14 1.33
UCF [GHz] 14 1.6 - -

RAMF [GHz] - - — 0.41
threads [-] 6 6 128 4

P ‘ CF [GHz] 1.6 1.6 1.0 1.22
OPagAe YCF [GHz] 22 24 - -
RAMF [GHz] - - — 1.6
threads [-] 24 24 256 4

. CF [GHz] 2.5 2.5 1.2 1.33
Collide UCF [GHz] 1.6 1.4 - -
RAMF [GHz] - - - 0.41

four regions as illustrated in Figure 5. Please note that Loop
region is not evaluated as it only repeatedly calls the Propagate
and Collide regions.

A. Application Analysis

The application analysis runs the benchmark in the follow-
ing configurations:

o Intel Xeon Haswell CPU (HSW) - CPU core frequency
(1.2 — 2.6 GHz, step 0.2 GHz), CPU uncore frequency
(1.2 to 3.0 GHZ, step 0.2 GHz), number of OpenMP
threads (2 — 24 threads, step 2 threads);

« Intel Xeon Phi (KNL) - CPU core frequency (1.0 — 1.4
GHz, step 0.1 GHz), number of OpenMP threads (16, 32,
64, 128,192, 256 threads);

e Jetson TX1 - CPU core frequency (0.5 — 1.3 GHz,
variable step), RAM frequency (0.04 to 1.6 GHZ, variable
step), number of OpenMP threads (1 — 4 threads, step 1
thread).

First, we explore the analysis done on Intel Xeon Haswell
processors, using different energy measurement systems. Ta-
ble II presents the optimal configuration for the inserted
regions. Despite the inaccuracy of the RAPL counters, the
optimal configuration of the regions is very similar (the
optimal configurations differs in one step of the analysis). The
differences are caused by several factors: (i) small differences
might be caused due to running the analysis on a different
node; (ii) the proximity of the measured values; (iii) the
baseline estimation for RAPL counters.

By evaluating the optimum configuration for each signifi-
cant region while running the application with a domain size
of 512x4096 for one hundred iterations, the tuned application
has an approximately 1.5% longer runtime, but consumes
19.8 % less energy.

Figure 6 shows the application behavior (energy consump-
tion of the Main region) when running on Jetson/TX1 using
different CPU core and RAM frequencies. The smallest pos-
sible RAM frequencies have a massive impact on application

28

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

CF [MHz]

- 1,400 |- s 204
= —a— 307
2 1,200 | |—a— 403
g 518
z s 614
g 1,000 | 1 710
& 825
2 800 4= 921
- . 1036
| | | | —a— 1132

0 500 1,000 1,500 |-a- 1224

RAMF [MHz] —— 1326

Figure 6: Jetson/TX1 application analysis comparing the energy
consumption when applying various available CPU core and RAM

frequencies.

' CF [MHz]

- 250 1| —— 204

= —— 307
o

g 200 1] ‘5‘(1)2
=

2; s 614

S 150 Il—— 710

5 825
[=]

Z 100f H= %21

S—% 11 ||~ 1036

\ \ \ ! —— 1132

0 500 1,000 1,500 |-—a— 1224

RAMF [MHz] s 1326

Figure 7: Jetson/TX1 application analysis comparing application
runtime when applying various available CPU core and RAM
frequencies.

runtime, as can be seen in Figure 7, which results in sig-
nificantly higher energy consumption. In this case the graph
of the application energy consumption follows the graph of
application runtime. The minimum consumed energy was in
the configuration 1065.6 MHz RAMF and 1326.00 MHz CF,
when the application consumed 684.53J.

From the analysis, see Table II, we can see the different
behavior of th Propagate (optimum at 1600 MHz RAMF and
1224 MHz CF) and Collide (optimum at 408 MHz RAMF
and 1326 MHz CF) regions. However the difference in RAM
frequency does not translate into significant energy savings
because the CPU core frequencies are quite similar for both
regions.

When comparing tuned and non-tuned runs on Jetson the
time remains the same while energy consumption drops about
49%. When comparing to the same test case executed on
Haswell CPUs where the tuned application finishes in 234 s
and consumes 1992 J, the Haswell solved the same problem 10
times faster but consumed 2.3 times more energy than Jetson.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

We evaluated the same test case on the Intel Xeon Phi
7210 (KNL), but since the test size was selected to run
on Jetson/TX1, the test was too small for KNL node. In
the 512x4096 domain size configuration, the Propagate and
Collide regions take about 50 milliseconds only, which results
very frequent frequency switching.

The overhead of switching CPU core frequencies on KNL
limits its usage for such short regions. The Haswell processor
can change the CPU core frequencies in about10 microsec-
onds, while KNL nodes requires 20 milliseconds if it is done
in the OMP parallel region and each thread is switching the
frequency of its core. In case the master thread does the
switching for all cores, it takes more than 50 milliseconds
when using cpufreq library [16]. There are libraries providing
slightly faster DVFS/UFS than cpufreq, such as the x86_adapt
library [17], but these unfortunately currently do not support
KNL.

Dealing with such overheads forces us to specify much
higher restrictions for minimum region size. We have scaled
the Lattice domain size to find the minimum problem size,
which will provide some energy savings. When running the
LBM simulation on a 4096x8192 domain, each Propagate
and Collide region took 274.47 ms and 358.46 ms respectively.
From this configuration we can see only a three percent longer
runtime and one percent overall energy savings when running
100 iterations. Extending the region’s size would continue
the reduction of the DVFS overhead and increase the energy
savings.

On KNL the sequential Init region becomes much more
important because of the low single core performance of KNL.
When running the application for 100 iterations on a 5/2x4096
domain on Haswell, this region takes less than 5% of the
application runtime. When running the same test case on KNL
the initialization takes over 40 % of the application runtime.
For a domain size of 4096x8192 elements, the initialization
part takes longer than the Loop region with 100 iterations.
Of course this ratio will differ as the number of iterations
increases.

TABLE III. TABLE OF PRESENTED RESULTS COMPARING

ENERGY SAVINGS FOR EACH PLATFORM WHEN RUNNING
THE LBM BENCHMARK FOR 100 ITERATIONS

platform default static savings dynamic savings
domain time energy time energy time energy
HSW -S 245 57k -11.6% 7.8% -1.5% 19.8%
JIX - S 2335 21Kl -2.4% 26% -0.1% 4.0%
KNL - S 9s 1.9 kJ 0% 0% 28% -3.6%
KNL-L 152s 322KJ 0% 0% -3.0% 1.4%

Table III shows how much energy it is possible to save if
one hardware configuration is set for the whole application run
(static savings). This table shows the results for two different
domain sizes - large (L) domain size represents a domain
of 4096x8192 elements, the small (S) domain has 512x4096
elements. Despite having two very different regions in the
application, on Haswell and Jetson/TX1 it is possible to save
7.8 % and 2.6 % energy respectively. This savings are reached

29

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

due to CPU uncore frequency (RAM frequency in the case
of Jetson/TX1) reduction (HSW: 2.6 GHz; JTX: 1065 MHz),
which explains why there are no static savings for KNL.
Selected optimal static configuration is friendly for the Collide
region, but extends the runtime of the Propagate region.
When applying optimal configuration dynamically for each
region (dynamic tuning) the application runtime, compared
to non-tuned run, extends slightly, but energy savings further
improves from static tuning.

V. CONCLUSION AND FUTURE WORK

The MERIC library is a lightweight tool for the evaluation
of resource consumption and dynamic hardware parameters
tuning. The library is focused on the tuning of complex
applications without rewriting the application itself. It is con-
tinually extended to support different and experimental plat-
forms. Two Intel Xeon CPU E5-26xx v3 (codename Haswell)
based machines with RAPL and HDEEM energy measurement
systems, one Intel Xeon Phi (codename KNL) system with
RAPL counters, and finally a Jetson/TX1 with an INA3221
system have been presented and compared using the Lattice
Boltzmann benchmark.

Tuning achieved up to 20 % energy savings with a 1%
longer runtime for Haswell nodes. On the Jetson and KNL
nodes there are several restrictions that limit reachable gains.
We attained about 4 % energy savings without any runtime
penalty in case of the Jetson TX1 system. For KNL it was
possible to reach savings only if the problem size had been
scaled, and regions’ sizes extended sufficiently to overcome
the problem of system slow frequency switching.

The ARM platforms become more and more interesting for
future HPC systems builders, because of their low energy
consumption. The possibility to tune within a wide range
of frequencies seems interesting in the case of Jetson/TXI.
Despite the limited performance of its CPU cores, it was able
to provide the simulation result, and consumed a significantly
smaller amount of energy than a usual HPC node powered
with two Intel Xeon CPUs.

Many more energy efficient platforms are coming to the
market, especially new ARM and IBM systems, as well as
GPU cards, and we would like to extend the MERIC library
and provide support for their hardware tuning.

ACKNOWLEDGMENT

This work was supported by The Ministry of Ed-
ucation, Youth and Sports from the Large Infrastruc-
tures for Research, Experimental Development and Innova-
tions project IT4Innovations National Supercomputing Center
LM2015070.

This work was supported by the READEX project - the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 671657.

This work was partially supported by the SGC grant No.
SP2018/134 “Development of tools for energy-efficient HPC
applications”, VSB - Technical University of Ostrava, Czech
Republic.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

This work was supported by Barcelona Supercomputing
Center under the grants 288777, 610402 and 671697.

REFERENCES

[1] M. Hihnel, B. Dobel, M. Volp, and H. Hirtig, “Measuring energy
consumption for short code paths using rapl,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 3, pp. 13-17, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2425248.2425252

[2] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schne, W. E. Nagel, M. Si-
mon, and Y. Georgiou, “HDEEM: High definition energy efficiency
monitoring,” in 2014 Energy Efficient Supercomputing Workshop, Nov
2014, pp. 1-10.

[3] A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov,
and J. Dongarra, “Investigating power capping toward energy-
efficient scientific applications,” Concurrency and Computation:
Practice and Experience, p. e4485. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4485

[4] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible
open power manager: A vehicle for hpc community collaboration on
co-designed energy management solutions,” in ISC. Cham: Springer
International Publishing, 2017, pp. 394-412.

[5] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. K. Bletsch, “Adagio: making dvs practical for complex hpc
applications,” ser. ICS "09. New York, NY, USA: ACM, 2009, pp. 460—
469. [Online]. Available: http://doi.acm.org/10.1145/1542275.1542340

[6] Y. Oleynik, M. Gerndt, J. Schuchart, P. G. Kjeldsberg, and W. E.
Nagel, “Run-time exploitation of application dynamism for energy-
efficient exascale computing (READEX),” in Computational Science
and Engineering (CSE), 2015 IEEE 18th International Conference on,
C. Plessl, D. El Baz, G. Cong, J. M. P. Cardoso, L. Veiga, and T. Rauber,
Eds. Piscataway: IEEE, Oct 2015, pp. 347-350.

[7]1 J. Schuchart, M. Gerndt, P. G. Kjeldsberg, M. Lysaght, D. Hordk,
L. Riha, A. Gocht, M. Sourouri, M. Kumaraswamy, A. Chowdhury,
M. Jahre, K. Diethelm, O. Bouizi, U. S. Mian, J. KruZik, R. Sojka,
M. Beseda, V. Kannan, Z. Bendifallah, D. Hackenberg, and W. E.
Nagel, “The READEX formalism for automatic tuning for energy
efficiency,” Computing, vol. 99, no. 8, pp. 727-745, 2017. [Online].
Available: https://doi.org/10.1007/s00607-016-0532-7

[8] IT4Innovations. MERIC library. URL: https://code.it4i.cz/vys0053/meric
[accessed: 2018-06-25].

[9]1 O. Vysocky, M. Beseda, L. Riha, J. Zapletal, V. Nikl, M. Lysaght, and
V. Kannan, “Evaluation of the HPC applications dynamic behavior in
terms of energy consumption,” in Proceedings of the Fifth International
Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering, pp. 1-19, paper 3, 2017. doi:10.4203/ccp.111.3.

[10] IT4Innovations. READEX RADAR library.
https://code.it4i.cz/bes0030/readex-radar [accessed: 2018-06-25].

[11] Technische Universitat Dresden. System Taurus. URL: https://doc.zih.tu-
dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus ~ [accessed:
2018-06-25].

[12] IT4Innovations National Supercomputing Centre, IT4I. Salomon su-
percomputer. URL: https://docs.it4i.cz/salomon/introduction/ [accessed:
2018-06-25].

[13] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, “A
step towards energy efficient computing: Redesigning a hydrodynamic
application on cpu-gpu,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, May 2014, pp. 972-981.

[14] Mont-Blanc project. Mont-Blanc project mini-clusters.
http://montblanc-project.eu/prototypes [accessed: 2018-06-25].

[15] Barcelona Supercomputing Center. Power Monitoring on mini-clusters.
URL: https://wiki.hca.bsc.es/dokuwiki/wiki/prototype/power_monitor
[accessed: 2018-06-25].

[16] E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, “Software
and dvfs tuning for performance and energy-efficiency on intel knl
processors,” Journal of Low Power Electronics and Applications, vol. 8,
no. 2, pp. 1-11, 2018. [Online]. Available: http://www.mdpi.com/2079-
9268/8/2/18

[17] R. Schoene. x86_adapt. Techniche Universitat Dresden. URL:
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/X86Adapt
[accessed: 2018-06-25].

URL:

URL:

30

