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Abstract—This paper introduces a general search strategy for 

genetic algorithm, which is called fitness switching. This 

strategy is developed to utilize the infeasible solutions during 

search procedure, and it provides two important benefits. First, 

it helps to find good solutions more effectively, since useful 

infeasible solutions can be exploited. Second, conventional 

feasibility handling strategies such as repair and penalization 

are not needed in fitness switching genetic algorithm, where 

fitness switching strategy is applied. Moreover, this strategy 

can be applied to a wide range of combinatorial optimization 

problems, while repair and penalization procedures are 

typically problem-specific. 
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I.  INTRODUCTION 

Genetic Algorithm (GA), proposed by Holland, is a well-
known meta heuristic search method for solving 
combinatorial optimization problems [1]. Typically, meta 
heuristic search methods provide general search 
methodologies for exploring the search space of given 
problem effectively, and the search methodology of GA is 
usually defined by three genetic operators, selection, 
crossover, and mutation [2]. While the search methodology 
of GA is generally applicable to various problems, the 
genetic operators must be tailored to a specific problem, 
which is sometimes very difficult [3][4]. 

Feasibility is an important factor that can increase the 
complexities of genetic operators in that the infeasible 
solutions are not considered by conventional GAs. There are 
two approaches for handling the solution feasibility. One is 
to use carefully designed genetic operators which does not 
produce infeasible solutions at all, and the other is to apply 
additional procedures such as repair and penalization [5]. 
However, both approaches have two important limitations. 
First, they do not allow the infeasible solutions to be 
included within population, while such solutions can 
sometimes contain some features useful for finding better 
solutions. Second, both approaches are problem-specific, and 
complex genetic operators or additional procedures can be 
required.  

Fitness switching can be used to address such problems, 
although it has been initially developed to solve specific 
combinatorial optimization problem with rare feasible 

solutions [5][6]. In this context, this paper introduces 
generalized form of fitness switching strategy and its 
application examples.  

The remainder of this paper is organized as follows: In 
Section 2, the generalized structure of fitness switching 
strategy is introduced. The application examples of the 
strategy are illustrated in Section 3, and finally, the 
concluding remarks follow in Section 4.  

II. FITNESS SWITCHING GENETIC ALGORITHM 

Fitness switching strategy is characterized by three 
additional procedures, fitness switching, fitness leveling and 
simple local search, which are generally applicable to 
various combinatorial optimization problems [5][6][7]. 

A. Fitness Switching 

Let us assume that desirability of a solution s  can be 

measured by a function ( )X s . For example, total value of a 

solution for knapsack problem and total length of a solution 

for traveling salesman problem can be used as ( )X s . If a 

maximization problem is given, we have to increase the 

value of ( )X s . However, too large ( )X s  is typically 

obtained by infeasible solutions. Consequently, we have to 

decrease the value of ( )X s  if s  is infeasible, and fitness 

switching procedure suggests that  
 

                 
1
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where fitness value of s , ( )fitness s , is computed as 

follows:  
 

           
( ) ,  if  is feasible  

( )
( ) ,  if  is infeasible

fitness s s
fitness s

fitness s s






 


         (2) 

 
Note that (1) indicates that feasible solutions are 

enhanced when their fitness values increase, while infeasible 
ones are enhanced by decreasing their fitness values. Of 
course, fitness switching procedure can be written in additive 

form, for example, ( )fitness s
= ( )X s  and 
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( )fitness s = ( )T X s . However, we have to determine the 

value of additional parameter T  in this case.  
The fitness switching procedure proposed in this paper is 

applied to evaluation phase of standard GA (SGA) [8]. For 
details on the original version of FSWGA based on SGA, see 
Fig. 3 in [5].  

B. Fitness Leveling 

It is straightforward that the fitness of a feasible solution 
should be larger than the fitness of an infeasible one. This is 

satisfied if ( ) 0fitness s  . However, too large difference 

between ( )fitness s  and ( )fitness s  is not desirable in that 

it can cause too high selection pressure.  
Fitness leveling procedure is used to maintain appropriate 

selection pressure by adjusting ( )fitness s  as follows: 
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F  and I  denote the sets of feasible and infeasible 

solutions within population, respectively. Moreover, factor 
L  ( 1 ) defines the relative desirability of feasible solutions, 
while factor α  ( 0 1  ) is used to guarantee that 

'( ) '( )fitness s fitness s  . Consequently, 

1 '( )fitness s L   and 0 '( ) 1fitness s  , if and only if 

( ) 0fitness s  . 

Note that fitness leveling procedure is not needed if 
current population consists of only feasible solutions or only 
infeasible ones, and this procedure can be incorporated into 
evaluation or selection phase of SGA. 

C. Simple Local Search 

Fitness Switching GA (FSWGA) allows infeasible 
solutions to be included within population. However, they 
are not suitable for solving given problems, inherently. In 
this context, the infeasible solutions can be slightly modified 
by applying simple local search procedure in hopes that they 
would be converted into better solutions, not necessarily 
feasible. 

Unlike fitness switching and fitness leveling, this 
procedure is optional and problem-specific. This procedure is 
incorporated into evaluation phase of SGA. 

III. APPLICATION EXAMPLES 

FSWGA has been applied to Maze-type shortest path 
problem and 0-1 knapsack problem, and the details of fitness 
switching strategy for those problems are summarized in 
Table 1.  

Table 1 indicates that ( )fitness s  can be defined flexibly, 

as long as it is inversely proportional to ( )fitness s . 

Moreover, no repair and penalization procedure are needed, 
and FSWGA has successfully solved given problem in both 
cases. For example, Fig. 2 shows the experiment result of 
FSWGA for maze-type shortest path problem with a maze-
type network as shown in Fig. 1, where node 1 and node 27 
are source node and destination node, respectively, and 
lengths of all edges are assumed to be 1 [5]. Then, it is 
straightforward that the optimal path from node 1 to node 27 
is <1, 9, 11, 15, 26, 27> with length 5, while there are some 
competitive local optima such as <1, 9, 11, 15, 16, 26, 27> 
and <1, 2, 9, 11, 15, 26, 27> with length 6. Moreover, the 
network contains a number of dead-ends such as node 6, 8, 
and 10, etc. and we have many infeasible paths that fail to 
arrive at the destination node, such as <1, 2, 4, 6> and <1, 3, 
5, 8>. 

Nevertheless, FSWGA found the optimal solution 
successfully as shown in Fig. 2, where the search procedure 
of FSWGA for combinatorial optimization problems with 
rare feasible solutions consists of three periods. In initial 
period, there is no feasible solution in population, since it is 
not easy to find any feasible ones from scratch. During initial 
period, FSWGA aims to find longer paths in hopes that some 
feasible paths that arrives at the destination node would be 
found. 

TABLE I. APPLICATION OF FITNESS SWITCHING STRATEGY. 

Target 

problem 

Maze-type Shortest Path 

Problem [5][6] 

0-1 Knapsack Problem 

[7] 

Problem 

type 

Rare feasible solutions Many feasible solutions 

Objective 
To find the shortest 

feasible path from source 

node to destination node 

To find a set of items with 

maximum total value, 

satisfying pre-specified 
total weight limit 

Feasible 

solution 

A path from source node 

to destination node 

A set of items with total 

weight does not exceed 
pre-specified upper limit 

Infeasible 

solution 

A path from source node 

to a non-destination node 

A set of items that total 

weight exceeds pre-
specified upper limit 

( )X s  Length of path s 
Total value of a set of 

some items s 

( )fitness s  sum of all edges' lengths

length of path

 
Total value 

( )fitness s  length of path

sum of all edges' lengths

 
(1) 1/ total value  

(2) 1/ total weight  

(3) 1/ total (value weight)  

Simple 

local search 

Randomly modify the last 

move 

Exclude a randomly 

chosen item 
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Figure 1. Example of a maze-type network [5]. 

 

 
Figure 2. Experiment result of FSWGA for maze-type shortest path problem 

[5]. 

 
The second period begins when any feasible path is 

found, and FSWGA focuses on finding shorter feasible paths 
in this period. Finally, the optimal solution, the shortest 
feasible path is identified and maintained during the last 
period. Note that conventional GAs for classical shortest 
path problems have failed to find the optimal solution for the 
maze-type network shown in Fig. 1. On the contrary, Fig. 3 
shows the experiment result of FSWGA for classical 0-1 
knapsack problem with 50 items [7], which has many 
feasible solutions. In other words, it is easy to generate a 
number of feasible solutions that contain few items, and the 
graph in Fig. 3 represents the change in maximum total value, 
total value of the best feasible solution within current 
population. In this case, we can see that the initial population 
also has a number of feasible solutions and the maximum 
total value continuously increases until the optimal solution 
is found.  

 

 
Figure 3. Experiment result of FSWGA for 0-1 knapsack problem [7]. 

 
The maze-type shortest path problem and 0-1 knapsack 

problem are quite different from each other for two reasons: 
(i) maze-type shortest path problem is inherently a sort of 
sequencing problem, but 0-1 knapsack problem is not. (ii) 
maze-type shortest path problem has rare feasible solutions, 
while 0-1 knapsack problem typically has many feasible 
solutions. Nevertheless, both problems have been 
successfully addressed by applying the fitness switching 
strategy, and we can conclude that the strategy can be widely 
applied to various combinatorial optimization problems. 

IV. CONCLUSIONS 

FSWGA utilizes infeasible solutions during search 
procedure, and it can be easily implemented. The fitness 
switching strategy is easy to implement and widely 
applicable in that it is applied to fitness values and solutions 
are not modified, and parameters are relatively intuitive. In 
this context, it will help to explore the search spaces of 
various combinatorial optimization problems efficiently.  

Although the fitness switching strategy has been applied 
only to two types of combinatorial optimization problems, 
maze-type shortest path problem with rare feasible solutions 
and 0-1 knapsack problem with many feasible solutions, yet, 
the author plans to apply the strategy to various problems 
with complex constraints, in order to demonstrate its 
applicability.  
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