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Abstract—Ultrasonic image is an imaging technique that is
commonly used for medical diagnostics. Unfortunately, the quality
of ultrasonic images is limited, mainly due to speckle noise.
Speckle noise reduction is one of the most important processes
in enhancing the quality of ultrasonic images. In this paper,
an adaptive noise reduction technique in wavelet domains for
ultrasonic images is studied. First, a logarithmic transformation
is performed on an original ultrasonic image in order to convert a
multiplicative noise to an additive one. Next, Stationary Wavelet
Transform is used to decompose the image resulting from the first
step into four subbands. Then, an adaptive Wiener filter is applied
to all detailed subbands in order to suppress additive noises in
these subbands. Subsequently, the reconstructed image is derived
by performing an inverse Stationary Wavelet Transform on those
resulting subbands and following by an exponential transfor-
mation. The performance of the studied algorithm is evaluated
objectively and subjectively on several ultrasonic images and it is
compared against several well-known methods, such as Median
filter, Wiener filter, Discrete Wavelet Transform based on soft
thresholding, and Discrete Wavelet Transform along with Wiener
filter. The results clearly demonstrate the superior performance
of the studied method in terms of signal to mse ratio (S/mse),
edge preservation (β) values as well as perceptible image quality.

Keywords–Stationary Wavelet Transform; Multiplicative Noise
Reduction; Wiener Filter; Ultrasonic Images.

I. INTRODUCTION

Ultrasound imaging is predominant and plays an important
role in medical diagnosis because it is a noninvasive, nonra-
dioactive, real-time and inexpensive modality [1]. However,
ultrasonic images usually suffer from three component kinds
of noises. The first arises from the electronics of the detection
system. For instance, the signal intensity of the backscattered
ultrasound signals is affected by the operating frequency
of the transducer: the higher the frequency, the greater the
tissue attenuation, which therefore produces a lower signal-to-
noise ratio (SNR). The second source, speckle, corresponds
to coherent wave interference in tissue. It is well known to
be signal-dependent in ultrasound imaging systems. The final
term, clutter, is applied to signals arising from side lobes,
multipath reverberation, and tissue motion that add noise to
the ultrasound images [1].

Over the years, speckle noise suppression has been widely
studied and considered. When filtering random noise from an
image, there are two main issues to be considered: how much
noise has been removed, and how well edges are preserved
without blurring. Traditionally, there are several simple tech-
niques for noise suppression, such as a moving average filter

and Gaussian filter. Being merely low-pass filters, they can
effectively suppress noise, but they fail to preserve many useful
details [2]. For speckle noise reduction techniques, some of
the well-known filters include Lee filter, Kuan filter, median
filter, and homomorphic Wiener filters [3]–[5]. These filters
can effectively suppress speckle noise, but they fail to suffi-
ciently preserve the edges. In the past decade, there has been
considerable interest in using Wavelet transform as a powerful
tool for recovering signal from noisy data. This method is
generally referred to as a wavelet shrinkage technique. In
1995, D. L. Donoho presented a soft threshold method for
denoising in one dimensional signal [6]. S. Chang, B. Yu and
M. Vetterli introduced an adaptive wavelet threshold for image
denoising and compression. They proposed a new shrinkage
method, BaeyShrink [7], which also outperformed Donoho
and Johnstone’s Sureshrink [8]. Furthermore, other authors
proposed probabilistic methods for speckle noise reduction
in the wavelet domain [9]–[12]. Recently, A. K. Gupta and
D. Sain have proposed a speckle reduction technique using a
logarithmic threshold contourlet [13]. The method proposed
by C. Barcelos and L. Vieira used an adaptive edge-controlled
variation function to detect and reduce speckle noise [14].
Another proposed approach uses adaptive block-based singular
value decomposition for speckle noise suppression [15].

In this paper, an adaptive noise suppression technique
for ultrasonic images is proposed. The studied method is a
preprocessing step for speckle noise reduction, before ap-
plying a feature extraction process [16]. First, a logarithmic
transformation is applied to an original image in order to
convert the multiplicative noise into additive noise. Next,
Stationary Wavelet Transform (SWT) is used to decompose
the transformed image resulted from the first step into four
subbands. SWT is a wavelet transform algorithm that do not
decimated but instead padding the filters with zeros [17].
That is, all the subband images would have the same size
as the original images. Therefore, it has several advantages,
as compared to Discrete Wavelet Transform (DWT). First,
the transformation is translation-invariance. In addition, there
is no information loss in each subband, since there is no
downsampling process, unlike DWT. Then, an adaptive Wiener
filter is applied to all the detailed subbands. An adaptive
Wiener filter is a well-known filtering technique that has been
applied not only to reduce stationary noise in noisy images
but also to suppress blocking artifacts [18]. As a result, a
reconstruct images derived from the studied method would
be smoother, as compared to other filtering techniques, e.g.,
a block-based SVD based approach [15]. Finally, an inverse
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SWT is computed and applied to the exponential transfor-
mation to reconstruct the denoised image. Then, in order to
evaluate the performance of the studied method, the quality
of reconstructed images derived from the studied method is
compared against other existing approaches, such as median
filter, Wiener filter, Discrete Wavelet Transform (DWT), based
on soft thresholding, and DWT coupled with Wiener filter.

The rest of this paper is organized as follows. In Section II,
a studied method for speckle noise reduction is described in
details. Then, the quantitative image quality measurements
and experimental results are given in Section III and IV
respectively. Finally, the conclusion remarks are provided in
Section V.

II. STUDIED METHOD

Similar to homomorphic Wiener filtering, the studied
method could be used to reduce a speckle noise in medical
images, which is done in the SWT domain. The block diagram
of studied method is illustrated in Figure 1. Details are as
follows:

• Take a logarithmic transformation to the original im-
age (f ), which yields image result (g).

• Perform a 2-D SWT on the log transformed image in
order to decompose the transformed image g into four
subbands (LL, LH, HL and HH).

• Perform a 2-D adaptive Wiener filter only in the
detailed subbands (LH, HL and HH), window size of
7x7 is chosen which yields the image result (Ŷ ).

• Apply the inverse 2-D SWT which yields a denoised
image (ĝ).

• Take the exponential transformation of the denoised
image to get the reconstructed image (f̂).

The two main components of this method: 2-D stationary
wavelet transform and adaptive wiener filter, are described
below.

A. 2-D stationary wavelet transform

Unlike the conventional Discrete Wavelet Transformer
(DWT), the two dimensional Stationary Wavelet Transformer
(2-D SWT) is based on the idea of no decimation, which
means the SWT is translation-invariant [19]. It applies the
DWT and omits both down-sampling in the forward and
up-sampling in the inverse transformation. 2-D SWT can
be implemented by first applying the DWT along the rows
of an image, and then applying it on the column of an
image. Therefore, a transformed image is decomposed into
four subbands, which are the same size as the original image.
The LL band contains the approximation coefficients, the LH
band contains the horizontal details, the HL band contains
the vertical details and the HH band contains the diagonal
details. Without translation-invariance, slight shifts in the input
signal will produce variations in the wavelet coefficients that
might introduce artifacts into the noise reduction process. This
property is good for noise removal because the noise is usually
spread over a small number of neighbouring pixels. The 2-D
SWT decomposition scheme is illustrated in Figure 2.

B. Adaptive wiener filter
Two dimensional Wiener filter is a minimum mean-square

error filter [20]. It is a nonlinear spatial filtering that moves a
window or kernel over each pixel in the image, computes and
replaces the central pixel values under the window. It uses a
collection of window sizes to estimate the noise power from the
local image mean (µ) and standard deviation (σ). The output
of 2-D Wiener filter [21] [22] is defined by:

Ŷ (xi, yj) = µ+
σ2 − v2

σ2
× (Y (xi, yj) − µ) (1)

where µ and σ2 represents the local mean and standard
deviation obtained from the noisy image window respectively.
Y is the noisy pixel and Ŷ is the filtered pixel. Also, v
is the noise variance, estimated from the average of all the
local estimated variances in the image. Note that, only an odd
number should be used as the size of the kernel. If the size
is too large, important feature will be lost. On the other hand,
if the size is too small, noise reduction may not yield good
results. In general, a kernel size of 3x3 and 7x7 provides good
results [13].

III. QUANTITATIVE QUALITY MEASURES

To quantify the achieved noise reduction ability perfor-
mance, there are two main issues to be considered, which
are how much noise has been removed, and how well edges
are preserved without blurring. In the past decade, there have
been many quantitative quality measurements proposed. In
this research study, three image quality measurements: Mean
Square Error (MSE), Signal to MSE ratio (S/mse), and edge
preservation (β) are computed using original and reconstructed
image data [23] [24].

A. Mean Square Error (MSE)

MSE =
1

mn

m,n∑
i,j=1

(Ŝi,j − Si,j)
2 (2)

Where n and m are image dimension. Ŝ and S are referred
to reconstructed and original images, respectively. The higher
MSE value denotes the lower image quality.

B. Signal to MSE ratio(S/mse)
To evaluate speckle noise reduction, a Signal to MSE ratio

(S/mse) is used, instead of the standard signal to noise ration.
It is defined as below:

S

MSE
= 10 log10

1
mn

∑m,n
i,j=1(S2

i,j)

MSE
(3)

The lower S/mse means the lower image quality.

C. Edge preservation (β)
To consider the performance of edge preservation, a pa-

rameter β based on a correlated operation between original
and reconstructed images is used and given by:

β =
Γ(∆s− ∆̄s,∆ŝ− ∆̄ŝ)√

Γ(∆s− ∆̄s,∆s− ∆̄s)Γ(∆ŝ− ∆̄ŝ,∆ŝ− ∆̄ŝ)
(4)

where ∆̄s and ∆̄ŝ) are the mean values in the region of
interest(ROI) si,j and ŝi,j respectively. Also, ∆s and ∆ŝ rep-
resent the high pass filtered operation of s and ŝ, respectively,
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Figure 1. Block diagram for speckle noise reduction in SWT domain [16].

Figure 2. 2-D Stationary Wavelet Transform Decomposition Scheme.

obtained from a 3x3 pixel standard approximation of Laplacian
operator where:

Γ(s1, s2) =

m,n∑
i,j=1

s1(i,j)s2(i,j) (5)

Here, the larger value of β means the better feature preserva-
tion ability of the reconstructed image.

IV. EXPERIMENTS

In this part of the experiment, to validate the performance
of the studied method, various cholecystitis ultrasonic images
are used, as shown in Figure 3. The image size is 256x256.
A number of experiments were conducted and compared with
other traditional methods, which were 2-D median filter (7x7),
2-D adaptive Wiener filter (7x7), DWT with soft thresholding,
and DWT along with Wiener filter. The experiments reported
in this section have been tested using MATLAB 10.0 - R2010b
(64 bit). All the wavelet-based techniques used Daubechies 4
wavelet basis, with one level of DWT and SWT decomposition.
In fact, noise is generally spread over in detailed subbands, due
to the components of highpass wavelet filters. Therefore, the

TABLE I. EXPERIMENTAL RESULTS OBTAINED BY VARIOUS NOISE
REDUCTION TECHNIQUES AT NOISE VARIANCE OF 0.08.

Images Methods Mask S/MSE β

Cholecystitis

Median filter 7x7 15.7360 0.1333
2-D Wiener filter 7x7 16.1618 0.2575

DWT with
– 16.4526 0.2457

(a) soft thresholding
DWT and Wiener filter 7x7 16.6765 0.2999
SWT and Wiener filter 7x7 17.2609 0.4224

Cholecystitis

Median filter 7x7 12.3104 0.1451
2-D Wiener filter 7x7 12.3741 0.2412

DWT with
– 113.1566 0.2388

(b) soft thresholding
DWT and Wiener filter 7x7 13.5087 0.2923
SWT and Wiener filter 7x7 14.6532 0.4480

Cholecystitis

Median filter 7x7 16.4115 0.1157
2-D Wiener filter 7x7 16.8007 0.3557

DWT with
– 17.0805 0.2670

(c) soft thresholding
DWT and Wiener filter 7x7 17.3977 0.3237
SWT and Wiener filter 7x7 17.8405 0.4297

2-D adaptive Wiener filter is applied only in detailed subbands.
To quantify the achieved performance in terms of the ability of
speckle noise reduction and edge preservation, three original
cholecystitis ultrasonic images, as illustrated in Figure 3, are
used. These images are first corrupted with noise at variance
of 0.08 where the noisy images are depicted in Figure 4(a).
Then, different speckle noise reduction techniques are applied
on these noisy images. Then, the quality of reconstructed
images are evaluated using S/mse and β. The numerical
results, presented in Table I, show that the proposed approach
outperforms other methods in terms of S/mse and β.

To visually compare with all other methods, the compara-
tives of various results are shown in Figure 4. As for the results,
Figure 4(b) and Figure 4(c) are operated by a fixed window
size 7x7 in spatial domain. The reconstructed images are overly
smoothed and have artifacts around the object. On the other
hand, the combination of Wiener filter and SWT outperforms
DWT with soft thresholding and DWT along with Wiener filter,
as shown in Figure 4(d), 4(e) and 4(f). It is seen that the studied
method can efficiently reduce noise in the homogeneous area
and simultaneously preserve the edges feature thereby resulting
in a better reconstructed image in terms of visual perception.

Next, in order to evaluate performance of studied method
more extensively, the realistic noisy liver and kidney ultrasonic
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(a) (b) (c)

Figure 3. Cholecystitis ultrasound images.

(a) (b) (c)

(d) (e) (f)

Figure 4. Results of various speckle reduction methods: (a) noisy cholecystitis ultrasound image, (b) denoised image using 2-D median filter, (c) denoised
image using 2-D Wiener filter, (d) denoised image using DWT with soft thresholding, (e) denoised image using DWT and Wiener filter, and (f) denoised

image using SWT and Wiener filter.

images are also used. The original images and resulting images
of different speckle noise reduction techniques are shown in
Figure 5 and Figure 6 respectively. The results demonstrate that
SWT along with Wiener filter outperforms other methods since
it can effectively reduce speckle noises and simultaneously
preserve edge features as well as important details of the
ultrasonic images.

V. CONCLUSION AND FUTURE WORK

In this research, the main aim is to study and compare
the different methods of speckle noise suppression in ultra-
sonic images. The studied method uses SWT to transform a
logarithmic image and then applies an adaptive Wiener filter
in each detailed subband. The advantage of multi-resolution
analysis using SWT for speckle noise reduction is that it

can reduce noise while preserving the feature structure of
the reconstructed image. From the preliminary results, the
combination of the SWT and adaptive Wiener filter has bet-
ter quantitative and qualitative performances, compared with
existing methods. Future work, the use of different types of
mother wavelets and other types of wavelet transform, such
as Wavelet Packet Transform, will be investigated in order to
get the best result. Moreover, subjective assessment has to be
performed by ultrasonographers in order to visually ensure the
reconstructed image quality. Consequently, the best technique
could be developed and be implemented in hardware.
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(a)

(b) (c) (d)

Figure 5. Results of various speckle reduction methods: (a) noisy liver ultrasound image, (b) denoised image using DWT with soft thresholding, (c) denoised
image using DWT and Wiener filter, and (d) denoised image using SWT and Wiener filter.

(a)

(b) (c) (d)

Figure 6. Results of various speckle reduction methods: (a) noisy kidney ultrasound image, (b) denoised image using DWT with soft thresholding, (c) denoised
image using DWT and Wiener filter, and (d) denoised image using SWT and Wiener filter.
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