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Abstract—This paper is concerned with simulation technologies
for the next generation high-performance computing systems that
will operate at ExaFLOP (exascale). As the scale of computer
simulations grows in terms of participants and simulated entities,
using data filtering schemes to reduce the amount of data commu-
nication becomes increasingly important for exascale simulation
systems. This paper presents a parallel data filtering algorithm,
which divides the workload of filtering process across multiple
processors. It also presents an evaluation on the optimal partition
granularity of the parallel algorithm, which ensures an optimal
use of computational resources in the simulation system.

Index Terms—Exascale Simulation Systems, Interest Manage-
ment, Data Distribution Management

I. INTRODUCTION

In the coming years, we expect to reach a computa-
tional power equivalent to a thousandfold that of the cur-
rent most powerful supercomputer. The next generation high-
performance computing systems will achieve a computational
power equivalent to ExaFLOPS (1018 floating point operations
per second). Computational advances have opened the way for
a growing number of computer simulation applications across
many fields. However, exascale simulations also generate a
substantial amount of data communication within the simula-
tion systems.

The simplest data distribution approach for parallel or
distributed simulations would be to have each host broadcast
the data of each simulated entity (e.g., position of a vehicle)
that it maintains. This might include, however, data that are
not of interest to some receiving hosts. As the scale grows,
providing scalable data distribution through filtering (referred
to as “interest management”) becomes one of the major design
requirements of exascale simulation systems. The basic idea
of interest management is simple: all participants of the
simulation should only receive data that are of interest to
them. This usually involves a process called “interest match-
ing”, which matches the “interest” between data senders and
receivers. This process, however, may introduce considerable
computational overhead. If the cost of interest management
is too high, it would degrade the overall performance of the
simulation. Over the years, numerous interest management
schemes have been proposed, which sought to reduce the
computational overhead and, at the same time, to maintain
the high precision of data filtering. These schemes, however,
are designed for serial processing which is supposed to be run
on a single processor. As exascale simulations are executed on
parallel or distributed systems, deploying the existing schemes

on these systems would be unsuitable, and the performance
cannot be guaranteed.

In our previous work [1], we presented the preliminary
design of a parallel algorithm for interest management, which
is suitable to deploy on multiprocessors. It facilitates workload
sharing by dividing the simulated virtual worlds into a number
of partitions (referred to as “zones”) and distributing the
interest matching process among multiple processors. In this
paper, we present the theoretical background of this algorithm.
We also present a performance evaluation of the algorithm,
which focuses on finding the optimal granularity for the
partitions.

The remainder of this paper is organised as follows. Section
II briefly reviews the background and related work of zone-
based interest management schemes and partition granularity.
Section III presents the details of our parallel interest matching
algorithm. Section IV evaluates the optimal partition granular-
ity for our approach by experimental results. Finally, Section
V concludes this paper and briefly describes our future work.

II. BACKGROUND AND RELATED WORK

This section briefly reviews the related work of zone-based
interest management and granularity of zones.

A. Zone-based Filtering

Zone-based filtering schemes (various other terms have been
used in the literature to describe this generic approach, most
noticeably “cell-based”, “grid-based”, and “region-based”) are
perhaps the most widely used approaches for interest man-
agement. It has been studied extensively in many fields such
as military simulations, commercial games, and academic
simulation systems. Numerous schemes have been proposed
throughout the years, which usually limit the participants’
interactions and communications within a small number of
space subdivisions, or zones. They typically partition the
simulated virtual world into a number of zones with each zone
containing a subset of entities. Participants in the simulation
are connected to these zones in order to receive events and
updates that are generated from them.

The seamless zone-based approach enables participants to
specify an area of interest (AOI), in order to subscribe to
multiple partitions. A typical AOI consists of a radius of zones
where the participant is joining new zones at the leading edge
and leaving old zones at the trailing edge as their avatar moves
around the virtual world.
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The primary advantage of using seamless zones is that
they provide a “seamless” view of the virtual world. In other
words, this approach has a better migration transparency -
the participant would not see a “loading screen” when they
join a new zone. Interest matching, however, is required for
this approach. Whenever the AOI moves, the system needs to
determine which zone(s) it overlaps. If the number of zones
is constant, the computational complexity of the matching
process would be O(m) where m is the number of AOIs.

Zone-based schemes that adopt uniform partitioning [2], [3],
[4] divide the virtual world into zones that are static, regular,
have a uniform orientation, and have uniform adjacency. The
most common shapes adopted by the existing approaches are
rectangles, hexagons, and triangles.

The majority of nonuniform partitioning schemes employ
hierarchical data structures such as binary space partition-
ing (BSP) trees [5], k-dimensional (k-d) trees [6], [7], and
quadtrees [8], [9] for space partitioning. Unlike uniform
partitioning, individual zones can be chosen freely and may
be modified dynamically during runtime based on whatever
is most convenient from the perspective of designing the
individual zones themselves.

Furthermore, some systems that are compliant to High-
Level Architecture (HLA) [10] also adopt this type of filtering
schemes [11].

B. Granularity

Choosing a proper granularity is one of the major consid-
erations for all zone-based schemes. For a static partitioning
of the virtual world, a significant trade-off must be made. If
the zones are large, each zone would contain a large number
of virtual entities and thus the participants might receive a
large amount of irrelevant data. On the other hand, if the
zones are small, the number of zones as well as the number
of multicast groups would become large, and therefore the
entity movement between zones would be more frequent. This
increases the chance of subscribing to and unsubscribing from
multicast groups as the participants move around the virtual
world, resulting in an increase in management overheads.

The hierarchy structures described in the previous subsec-
tion also suffer from the same problem but in a different
form - a trade off must be made when choosing a proper
granularity of the leaf nodes or a proper height of the hierar-
chy. Researchers such as Van Hook et al. [8] and Steed and
Abou-Haidar [6] tried to maintain a balanced hierarchy by
setting a maximum height or a population threshold. These
are practical solutions, however, one should also consider the
characteristic of the application, and the processing power and
communication speed of the entire simulation system when
choosing the optimal granularity.

A study presented in [11] argued that in a system with fast
CPUs and slow communication network, the optimal zone size
would be rather small. On the other hand, in a simulation sys-
tem with slower CPUs and faster communication the optimal
zone size would be rather large. Moreover, according to Rak
and Van Hook [12], setting the zone size between 2 to 2.5km

provides the optimal results in terms of filtering precision and
multicast group join rates. These results are, however, entirely
dependent on the simulation settings.

In this paper, we perform experimental evaluations on the
optimal partition granularity of our parallel simulation system.
The finding of the experiments is important as it allows the
system to achieve and maintain an optimal use of resources.

III. PARALLEL INTEREST MATCHING ALGORITHM

This section describes a parallel interest matching algorithm
which facilitates parallelism by distributing the workload of
the matching process across multiprocessors. The algorithm
divides the matching process into two phases. In the first phase
it employs a spatial data structure called uniform subdivision
to efficiently decompose the virtual space into a number
of subdivisions. We define as work unit (WU) the interest
matching process within a space subdivision. In the second
phase, WUs are distributed across different processors and are
processed concurrently.

For the sake of consistency, aura is hereafter referred to as
“regions” as per the terminology of HLA.

A. Spatial Decomposition

Uniform subdivision is a common spatial data structure,
which has long been used as a mean of rapid retrieval of geo-
metric information. The idea of using hashing for subdivision
directory was first described in an early article [13] and was
later discussed more generally in [14]. This section presents
the formal definitions of uniform subdivision, which leads to
the discussion in the subsequent sections where they are used
for hash indexing and rapid WU distribution.

Formally, the virtual space SSS can be defined as a multi-
dimensional point set that contains all entities in the virtual
world. Therefore, all update or subscription regions can be
regarded as the subsets of SSS.

Definition 1. Let [SMINd, SMAXd) be the boundary of a
space SSS in d dimension, for d = 1, 2, ..., n.

SSS ={(x1, x2, ..., xn) | xd ∈ R ∧ SMINd ≤ xd < SMAXd,

for d = 1, 2, ..., n}.

Alternatively, SSS can be expressed as the Cartesian product
of its one-dimensional boundaries.

Definition 2. Let [SMINd, SMAXd) be the boundary of a
space SSS in d dimension, for d = 1, 2, ..., n.

SSS =[SMIN1, SMAX1)× [SMIN2, SMAX2)× ...

× [SMINn, SMAXn)

=

n∏
d=1

[SMINd, SMAXd).

The hashing approach requires decomposing SSS into uniform
subdivisions. Each subdivision represents a slot in the hash
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table, which is labelled by a multidimensional hash table
index.

Definition 3. Let [SMINd, SMAXd) be the boundary of
a space SSS in d dimension. The boundary can be uniformly
divided into Nd sub-boundaries with unit length Ld, such that

Ld =
SMAXd − SMINd

Nd

∀Nd ∈ Z+, ∀Ld ∈ R+, for d = 1, 2, ..., n.

Definition 4. Let [SMINd, SMAXd) be the boundary of a
space in d dimension, for d = 1, 2, ..., n. The boundary is
uniformly divided into Nd sub-boundaries with unit length
Ld. The uniform subdivision ZZZ of SSS is labelled by a multidi-
mensional hash table index (z1, z2, ..., zn), such that

ZZZ(z1, z2, ..., zn)

={(x1, x2, ..., xn) | xd ∈ R ∧ SMINd + zdLd ≤ xd

< SMINd + (zd + 1)Ld, for d = 1, 2, ..., n}

for zd = 0, 1, ..., Nd − 1.

Similar to all axis-aligned point sets, the uniform subdi-
vision can be expressed as the Cartesian product of its one-
dimensional boundaries, which is given in Definition 5.

Definition 5. Let [SMINd, SMAXd) be the boundary of a
space in d dimension, for d = 1, 2, ..., n. The boundary is
uniformly divided into Nd sub-boundaries with unit length
Ld. The uniform subdivision ZZZ of SSS can be defined as

ZZZ(z1, z2, ..., zn)

=[SMIN1 + z1L1, SMIN1 + (z1 + 1)L1)

× [SMIN2 + z2L2, SMIN2 + (z2 + 1)L2)

× ...

× [SMINn + znLn, SMINn + (zn + 1)Ln)

=

n∏
d=1

[SMINd + zdLd, SMINd + (zd + 1)Ld)

for zd = 0, 1, ..., Nd − 1.

Theorem 1. Given a set of all hash table indices

HIHIHI = {(z1, z2, ..., zn) | zd = 0, 1, ..., Nd−1∧d = 1, 2, ..., n}

where Nd is the number of subdivisions of space SSS in d
dimension. Then, SSS can be expressed as the union of all
uniform subdivisions, such that

SSS =
⋃

k∈HIHIHI

ZZZ(k).

Proof: By Definition 2, we derive

SSS =[SMIN1, SMAX1)× [SMIN2, SMAX2)× ...

× [SMINn, SMAXn)

=

N1⋃
z1=0

[SMIN1 + z1L1, SMIN1 + (z1 + 1)L1)

×
N2⋃

z2=0

[SMIN2 + z2L2, SMIN2 + (z2 + 1)L2)

× ...

×
Nn⋃

zn=0

[SMINn + znLn, SMINn + (zn + 1)Ln)

=
⋃

k∈HIHIHI

ZZZ(k).

B. First Phase: Hashing

During the simulation, regions are hashed into the hash
table. The algorithm uses the coordinate of a region’s vertex
as a hash key. Given a key k, a hash value H(k) is computed,
where H() is the hash function. The hash value is an n-
dimensional index, which can be matched with the index
of a space subdivision, and therefore indicating that which
subdivision the vertex lies in. Hence, the regions with hash
key k are stored in slot H(k). The hash function is given in
Definition 6.

Definition 6. Let [SMINd, SMAXd) be the boundary of a
space in d dimension, for d = 1, 2, ..., n. The boundary is
uniformly divided into Nd sub-boundaries with unit length
Ld. The hash function for transforming a key kd into a hash
value is defined as

H : Rn → Zn, H(kd) = b
kd − SMINd

Ld
c

There are two important properties of using a hash table
for spatial decomposition. First, hash table collision means
that regions in the same slot are potentially overlapped with
each other; therefore, further investigation on their overlap
status is required. This process is left to the second phase
of the algorithm. Second, if a region lies in multiple space
subdivisions, it would be hashed into all of them. The algo-
rithm assumes that the size of region is much smaller than a
space subdivision. Therefore, a region would exist in at most
four slots in the two-dimensional space (at most eight slots
in the three-dimensional space). This assumption ensures that
the computational complexity of the hashing process would
be bounded by a constant.

Figure 1 illustrates the basic concept of the spatial hashing
for two-dimensional space. In the figure, region A is hashed
into slot (0,1); region B is hashed into slots (0,0), (0,1), (1,0)
and (1,1); region C is hashed into slots (1,1) and (1,2); region
D is hashed into (1,0), (1,1), (2,0) and (2,1).
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Fig. 1. Hashing for Space Subdivisions

The basic steps to construct a hash table are given in
Algorithm 1. Note that if not all vertices of a region are
hashed into the same slot, then the region exists in multiple
subdivisions.

Algorithm 1: Algorithm for Hash Table Construction
(Region)
Data: SSS: a n-dimensional virtual space
Data: ZZZ: an uniform subdivision of SSS
Data: k: a n-dimensional hash table index
Data: RRR: a region
Data: v: a vertex of RRR
Data: H(): a hash function
Data: HashTable: a hash table

1 begin
2 Decompose SSS into a list of ZZZ;
3 foreach ZZZ do
4 Determine the index k for ZZZ;
5 end
6 foreach k do
7 HashTable.AddSlot(k);
8 end
9 foreach RRR do

10 foreach v of RRR do
11 HashTable.Slot[H(v)].AddRegion(RRR);
12 end
13 end
14 end

The hash table is constructed at the initialisation stage.
During runtime, the position and size of regions may be
frequently modified. Therefore, the algorithm needs to perform
rehashing for the regions at every time-step. The complexity
of this process is O(n + m) where m is the number of
subscription regions and n is the number of update regions.

C. Second Phase: Sorting
After the hashing stage, each slot of the hash table repre-

sents a WU which will be distributed across different proces-
sors. The algorithm then places the WUs on a task queue.

Each processor fetches WUs from the queue and performs
interest matching for the corresponding space subdivisions.
Since only one processor has the authority to manage each
space subdivision, there will be no ambiguous matching result.
As discussed in [15], the task queue approach is desired for
task distribution and provides very good load sharing for
multiprocessors. When a processor finishes processing a WU,
it would fetch another WU from the task queue immediately
unless the queue is empty. Therefore, no processor would
be idle until all WUs are fetched. The worst case happens
only when all regions reside in a single space subdivision. In
this situation, a single processor would be responsible for the
matching of all of them.

The spatial decomposition approach essentially transforms
the large-scale interest matching process into several individual
sub-problems. When a WU is being processed, each processor
carries out a matching process only for the regions within the
WU. The matching process employs a sorting algorithm [1],
which makes use of the concept of dimension reduction and
is theoretically the most efficient serial algorithm for interest
matching.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation on the
optimal partition granularity of the parallel algorithm. Two sets
of experiments were carried out to compare the performance
of two approaches, namely:

1) Discrete interest matching by parallel algorithm (PDIM)
2) Space-time interest matching by parallel algorithm

(PCIM)
PDIM [1] and PCIM [16] are the two parallel algorithms,

which exploit parallelism by distributing the workload across
multiple processors. The PDIM approach is designed for
discrete interest matching approach, which performs interest
matching at discrete time intervals, while the PCIM approach
performs space-time interest matching approach, which per-
form space-time interest matching in order to capture more
events in the simulation. The PCIM approach usually requires
more computational effort than the PDIM approach.

A. Implementation and Experimental Set-ups

The two algorithms were implemented in C++. Message
communication was constructed based on Open MPI protocols,
such as MPI Bcast(), MPI Send(), and MPI Recv();
all processes were synchronised by the MPI Barrier() call,
which is a simple lock-step synchronisation protocol. The
experiments were executed on the eScience Cluster at the
Midland e-Science Centre. Each worker node has an Intel
Xeon 3GHz 4-core processor with 2GB main memory. A
Myrinet backplane is used to give 2+2Gbps programmable
interconnection between the worker nodes.

The following set-up was used for the experiments.
• Entity Distribution: The entities are distributed randomly

across the virtual space.
• Entity Movement: All entities move in a random direction

and undergo linear translational motion.
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• Entity Speed: The speed factor (SF) represents the aver-
age speed of the entities in proportion to its region length.

• Number of Dimensions: All simulations were performed
in three-dimensional space.

• Number of Regions An update region and a subscription
region were associated with each moving entity.

• Execution Time Measurement: Average execution time of
the matching algorithms was measured over 10,000 time-
steps.

• Number of WUs: The number of WUs is dependent
on the granularity of spatial decomposition, which was
assigned statically. The optimal granularity value was
determined through experiments, which are presented in
Section IV-B.

• Number of Nodes: All experiments of the parallel algo-
rithms were run on 10 nodes.

B. Granularity of Spatial Decomposition

The spatial decomposition approach described in Section
III-A requires an optimal granularity to achieve an optimal use
of resources. This is similar to the virtual world partitioning
problem as we have discussed in Section II-B. In this section,
we present the results of a set of experiments that we have
conducted to determine the optimal granularity of partitioning.

Since uniform subdivisions are employed for the parallel al-
gorithm, the granularity of spatial decomposition is dependent
on the number of sub-boundaries per dimension (denoted by
Nd in Definition 3). We take N1 = N2 = N3, which implies
that each subdivision is a cube in shape. We measured the
execution time of PDIM and PCIM, with Nd extending from
2 to 10. The number of entities was set to 20000 and the SF
was set to 20.

Fig. 2. Comparing the Execution Time of Parallel Interest Matching
Approaches (Number of Sub-Boundaries varies)

The results are given in Figure 2. As we can see in the
graph, there is some significant runtime overhead when Nd is
equal to 2 (i.e., the number of WUs is equal to 8). This is due
to the fact that the number of WUs is less than the number
of nodes, which implies four physical cores would be idle at
each time step of simulation, resulting in a poor utilisation of
computational resources. However, if a large Nd is chosen,

the size of job queue becomes large and thus overhead would
be introduced due to the increase in the frequency of job
queue access. According to results shown in Figure 2, we can
conclude that, for the current experimental set-up, the optimal
value of Nd for both PDIM and PCIM is 5.

V. CONCLUSIONS AND FUTURE WORK

The interest management schemes enhance the scalability
of the exascale simulation systems by filtering irrelevant
data communication on the network. Over the years, many
efficient filtering algorithms were proposed to speed up the
interest matching process. However, they were designed for
serial processing which is supposed to be run on a single
processor. As the problem size grows, using these algorithms
does not satisfy the scalability requirement of exascale sim-
ulations since the single processor may eventually become a
bottleneck. In our previous work [1], we have presented the
preliminary design of a parallel interest matching algorithm
which is suitable to deploy on a multiprocessor computer. This
algorithm partitions the simulated virtual world and distributes
the interest management process across multiple processors. In
this paper, we presented the detailed theoretical background
of the parallel algorithm. We also presented an experimental
evaluation on the optimal partition granularity of the proposed
algorithm. Using the optimal granularity in future experiments
would be the most efficient way to achieve and maintain an
optimal use of resources in the simulation system.

Our future work will concentrate on evaluating the runtime
efficiency of the parallel algorithm. We will test and compare
its performance under different entity behaviors, number of
nodes, and occupation density.
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