
A New Approach To Solve Aircraft Recovery Problem

 
Congcong Wu  

The Scientific Research Academy 

Shanghai Maritime University 

Shanghai 200135, P. R. China 

meilongle@hotmail.com 

Meilong Le 
The Scientific Research Academy 

Shanghai Maritime University 

Shanghai 200135, P. R. China 

lemeilong@126.com

Abstract—When disruptions occur, the airlines have to recover 

from the disrupted schedule. The recovery usually consists of 

aircraft recovery, crew recovery and passengers’ recovery. 

This paper focuses on aircraft recovery. Take the total cost of 

assignment, cancelation and delay as an objective; we present a 

more practical model, in which the maintenance and other 

regulations are considered. Then, we present a so-called 

iterative tree growing with node combination method. By 

aggregating nodes, the possibility of routings is greatly 

simplified. So, it can give out the solution in more reasonable 

time. Finally, we use data from a main Chinese airline to test 

the solution algorithm. The experimental results state that this 

method could be used in aircraft recovery problem. 

 

Keywords-aircraft recovery; airlines optimal recovery ; 

airlines recovery; recovery algorithm 

I. INTRODUCTION 

When disruptions caused by severe weather conditions, 
air traffic control or mechanical failures occur, the airlines 
have to recover from the disrupted schedule. The airlines 
recovery usually consists of aircraft recovery, crew recovery 
and passengers’ recovery. Since the aircraft is viewed as the 
most important scarce resource, the most work on 
operational recovery problems has been reported on the 
aircraft recovery. 

Aircraft recovery problem (ARP) is to determine new 
flight departure times, cancellations and rerouting for 
affected aircrafts including ferrying, diverting, swapping and 
so on. Besides that several decision rules, such as, aircrafts 
balance requirements, maintenance requirements and station 
departure curfew restrictions should also be considered. At 
the end of the recovery period, aircrafts should be positioned 
to resume operations as planned. 

Being different to the aircraft rotation problem in the 
planning stage, the method to solve the ARP should calculate 
the problem in reasonable time, which is very difficult to 
most optimization solvers under most reasonable disruption 
scenarios. How to solve the ARP in reasonable time and 
meet these decision rules has been one of the most important 
keys in airline recovery study. Teodorvic and Gubernic 
(1984) [1] are one of the first to study the aircraft recovery 
problem, using a branch and bound (B&B) algorithm [2] to 
solve the aircraft recovery model (ARM) , but the research 
does not satisfy the constraints of station curfews, 
maintenance requirements and aircrafts balance at the 
recovery period in the modeling. Arguello et al. (1997) [3] 
creates a greedy randomized adaptive search procedure 
(GRASP) to reconstruct aircraft routings, which is a fast 
heuristic based on randomized neighborhood search, but they 
don’t consider the maintenance requirements and crew 

requirements after the aircraft routings altered. Afterwards, 
Bard et al. (2001) [4] develops a time-band optimization 
model to reconstruct cost-effective aircraft routings. The 
disadvantage is that the research excludes the maintenance 
requirements and crew requirements. Thengvall (2003) [5] 
presents a bundle algorithm to solve a multi-commodity 
network model. As in Petersen et al. (2010) [6], they 
integrate all kinds of recovery simultaneously, and employ 
the Bender’s decomposition to decompose the model into a 
master problem (airline schedule recovery) and three sub-
problems (aircraft recovery, crew recovery and passenger 
recovery), using an optimization-based approach to solve the 
situation of hub closure. 

In our paper, modeling is based on flight strings instead 
of flights as well as defining recovery scope, in order to 
solve the model in reasonable time. We assign specific 
aircraft to flight strings while meeting maintenance 
requirements, station departure curfew restrictions and other 
aircraft requirements. As to the solution methodology, firstly, 
we transform our model into time-space network. Then, we 
create a new method (a so-called iterative tree growing with 
node combination method) to solve the network model, 
which is the most important part of our paper. We test our 
intelligent method with data from Chinese airlines. 
Computational results are presented for a daily schedule 
recovery, showing that the proposed approach provides faster 
times to optimality in some cases and always obtains feasible, 
near-optimal solutions for medium-size airlines recovery 
problem much more quickly than can be found using CPLEX. 
In our future study, we should do much more experience to 
test our new method, try it on the large-size airlines recovery 
problem and use it much more widely, for example, in 
integrated recovery combining with crew recovery or 
passenger recovery or all of the three.  

The reminder of the paper is organized as follows. We 
first give in Section II a literature review of the aircraft 
recovery problem. In Section III, we build our aircraft 
recovery model. The solution methodology is described in 
Section IV and two scenarios are presented to test the 
intelligent method. We give our conclusion in Section V. 

II. LITERATURE REVIEW 

When one or more aircrafts are out of service, the airlines 
have to operate the flight schedule with a reduced number of 
planes. Teodorvic and Gubernic (1984) [1] are the pioneers 
to study ARP. The paper tries to minimize total the 
passenger delay by swapping or delaying flights and solved 
exactly by branch and bound. Subsequently, Teodorovic and 
Stojkovic (1990) [7] formulates a heuristic algorithm to solve 
the same problem as Teodorvic and Gubernic (1984) [1]. But, 
in their paper the chief objective is to minimize the total 
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passenger delay with an equal total number of cancelled 
flights. In addition, neither of these models considers flight 
delay and cancelation cost. 

Yan and Yang (1996) [8] are the first to allow for delays 
and cancelations simultaneously. Four systematic strategic 
models are developed by perturbing the BSPM (basic 
schedule perturbation model) and combining various 
scheduling rules. The BSPM is designed to minimize the 
schedule-perturbed period after an incident and to obtain the 
most profitable schedule given the schedule-perturbed period. 
These network models are formulated as pure network flow 
problems or network flow problems with side constraints. 
With real flight data from Taiwan Airlines, the former was 
solved by the network simplex method while the latter was 
solved by Lagrangian relaxation with subgradient methods. 
However, the constraints of aircraft maintenance and crew 
scheduling are overlooked. 

An extension to the network model of Arguello et al. 
(1997) [9] is presented by Thengvall et al. (2000) [10]. The 
authors presents a model in which they penalize in the 
objective function the deviation from the original schedule 
and they allow human planners to specify preferences related 
to the recovery operations.  

Rosenberger et al. (2003) [11] models ARP as a set-
packing problem with a time window and slots restrictions. 
In this model the objective is to minimize the cost of 
assigning routes to aircraft and the cost of cancelling the 
unassigned legs. Being different from Arguello et al. (1997) 
[3] and Bard et al. (2001) [4], their paper assumes an aircraft 
selection heuristic (ASH) for ARO (an optimization model 
for aircraft recovery), which selects a subset of aircraft for 
optimization prior to generating new routes. Compared with 
network model, this model can check maintenance feasibility 
using column generation.  

Eggenberg et al. (2007) [13] introduces an extension of 
the time-space network model to minimize delays, 
cancellations and plane swappings, and make span cost. 

In Massound Bazargan (2010) [14], the paper introduces 
the airline irregular operation in detail and uses the time-
band optimization method to solve the aircraft recovery as an 
example. 

Le et al. (2011) [15] provides an overview recent years’ 
of disruption management of schedule, aircraft, crew, 
passenger and the integrated recovery. 

Something is done in our aircraft recovery model, aiming 
to minimize the aggregate cost comprised of assigning cost 
and recovering cost. We transform the aircraft recovery 
problem as a multi-commodity network with side constraints 
and using a so-called iterative tree growing with node 
combination method to solve the disruption. 

III. THE AIRCRAFT RECOVERY PROBLEM 

A. Sets 

nF                set of all flight legs in recovery scope N 

mandatory

nF    set of mandatory flight legs 

optional

nF      set of optional flight legs that are candidates for 

deletion 

nE                set of fleet types in recovery scope N 

nS                set of flight string s in recovery scope N 

( )nK e         set of aircraft of fleet type in recovery scope N 

( )nH e        set of aircraft of fleet type requiring maintenance 

within T in recovery scope N 

A                 set of airports 

int ( )maA e   set of stations that are capable of performing 

schedule maintenance of aircraft of fleet type e 

kG           set of ground arcs of aircraft k which cross the 

count time 

B. Datas 

k

jy              a ground variable used to count the number of 

aircraft k on the ground j 

eAN         the number of aircrafts in fleet type  

,

k

e sc            cost of assigning aircraft ( )nk K e  to flight 

string s 

ftd
           actual departure time of flight f 

ftd
           actual departure time of flight f 

fta
           actual arrival time of flight f 

fta
           actual arrival time of flight f 

,

k

e fA      ready time of aircraft k
 
to operate flight f 

fCC      cost of canceling flight f 

fCD         cost of 1-min delay of flight f 

fDT      expected trip (block-to-block) time of flight f 

N      recovery scope index 

fT      the scheduled departure time of flight f 

U      minimum connection time 
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k

sr              the number of flight string s is being executed by 

aircraft k cross the count time 

C. Variables 

int

,

1     int   ( ) 

         

0  

ma

m s

if an eligible ma enance station m A e

I is visited by flight string s

otherwise

 


 



,

1  var ,        

0 
f s

indicator iable if flight f F in flight string s
a

otherwise


 


,

1   ( )  cov    

0

nk

e s

if aircraft k K e ers flight string s
x

otherwise


 


1     

0
f

if flight f is canceled
z

otherwise


 


1  

    

0

k

k

j

ground arc j G for aircraft k

p crosses the count time

otherwise

 


 



 

D. Mathematical formulation 

, ,

( )

min (1 )[ ]
n n n

n

k k

e s e s f f f f

k K e s S f F

f f

f F

c x CD z td T

CC z

  



  



  


(1) 

Subject to: 

, ,

( )

1,
n n

k

e s f s f n

k K e s S

x a z f F
 

                                 (2)   

, ,

( )

1,
n n

k mandatory

e s f s n

k K e s S

x a f F
 

                               (3) 

, ,

( )

1,
n n

k optional

e s f s n

k K e s S

x a f F
 

                                 (4) 

int

, ,

( )

1, ( )
ma

n

k

m s e s n

s S m A e

I x k K e
 

                                 (5) 

, , , ' ', '

'

'

'

1

,

' { ' | ,

}, ( )

k k

e s f s e s f s

f

n

n f f

last flight of s last flight of s

f n

x a x a

f first flight of s S

f first flight of s S T T

T DT

T Max Delayed allowed k K e

 

 

  

 

  



             (6) 

,

( ) ( )

,
k

n n n

k k k k

s e s j j e n

k K e s S k K e j G

r x p y N e E
   

            (7) 

1, , , , 0, ( ) ,
i i

k k

e s f s e s f s n i nx a x a k K e f s S


             (8) 

, , , , ,

( )

k k

f e f e s f s

n

td A x a f first flight of S

k K e

  


            (9) 

' , , , ' ', '

'

,

' { '

}

k k

f f e s f s e s f s

n

n

f f f

td ta x a x a U

f last flight of string s S

f first flight of string s S

T DT T Max Delayed allowed

 

 

 

  

            (10) 

1
,

i if f ntd ta U f flight of string s S

          (11) 

,f f ntd T f F                                                             (12) 

(1 ),f f f f nta td DT z f F                                   (13) 

, {0,1}k

e sx                                                                        (14) 

{0,1}fz                                                                          (15) 

, 0f ftd ta                                                                      (16) 

The objective (1) tries to minimize the aggregate cost 
comprised of assigning strings (assignment cost) and 
recovering aircrafts (delay cost and cancellation cost) in the 
recovery scope. Either a flight must be contained in exactly 
one string or cancelled, as seen in (2). The cover constraints 
are split into (3) and (4) to distinguish between the 
mandatory and optional leg sets, ensure each aircraft is 
assigned to no more than one string. Maintenance cover 
constraints are seen in (5). This simply ensures a 
maintenance opportunity is built in, and the specific 
maintenance planning can be done post-optimization. 
Constraint (6) ensures that each available aircraft cannot be 
assigned to two different strings in the same time. The count 
constraint (7), make sure that the total number of aircraft in 
the air and on the ground does not exceed the size of fleet 
type e. Constraint (8) defines rotations aircraft usage. All 
flights in a rotation use one aircraft not different ones. By 
using the concept of rotation and defining rotations in the 
model, aircraft balance at each airport is satisfied. 
Constraints (9)–(12) determine the departure time of each 
flight. A flight cannot depart earlier than the ready time of its 
assigned aircraft, as stated in (9). Constraints in (10) ensure 
that when two flight strings are flown by the same aircraft, 
the second string cannot depart earlier than real arrival time 
of first string (because of the minimum connecting time). In 
a flight string, the departure time of a flight cannot be earlier 
than the arrival time of its previous flight, as stated in (11). 

150Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation



Constraints in (12) state that no flight is allowed to depart 
before its scheduled departure time. Constraints in (13) relate 
the departure and arrival times for each flight. Constraints 
(14)–(16) ensure that the x, z are binary variables. 

IV. SOLUTION METHODOLOGY 

Even by limiting the scope of the problem to get 
computational result, to most airlines, the problem is likely 
too large and complex to return a globally optimal solution 
with optimization solver for most reasonable disruption 
scenarios. Thus, we seek the hybrid method, which is 
optimization method with heuristic approach. The heuristic 
we used is so-called iterative tree growing with node-
combination. The time-space graph is used to describe our 
heuristic method. In the graph, the cities and times are 
represented horizontally and vertically respectively. Each 
node represents an airport-departure or airport-arrival event. 
All the arcs denote flights. Except first node (time-earliest 
node) and last node (time-termination node, usually night 
curfew time for departure), we draw all parallel arcs (copy 
arcs) if the arc lies above the node and originates from the 
same node (airport). As the flight arcs are placed in the graph 
iteratively, the tree grows downward. There are three kinds 
of arcs in the graph. One is original flight arcs. The other is 
copy arcs, which is actually opportunity flight arcs due to 
flight cancellation. The third is overfly arcs, which is actually 
delay flight arcs. Most probably, each copy arc generates a 
new node. From this new node, copy arcs and overfly arcs 

can be originated or connected again. It is an iterative 
procedure. By so stretching, the tree grows downward. 

Obviously, there will be more and more nodes and arcs 
as the graph stretches downward. Every route from top to 
down represents a routing. In order to simplify such a 
combinatorial problem, we use circle to replace a dot to 
represent a node. In other words, a node does not represent a 
single airport-departure or airport-arrival event, but a cluster 
of airport-departure or airport-arrival events. All the airport-
departure or airport-arrival dots within the certain time circle 
are aggregated to this node. The delay time is counted from 
departure circle node to arrival circle node, not the difference 
between real departure and arrival time. Under the extreme 
condition, such aggregating method may calculate delay time 
the whole circle diameter difference.  

The test instances used as benchmark problems in this 
study are acquired from real flight schedule of one medium-
size airlines in China. The schedule consists of 170 flights 
served by 5 fleets, 35 aircrafts over a network of 51 airports 
all over the country. 

We choose test instances from the flight schedule. The 
relative data is listed in TABLE I. The computations also use 
the following assumptions: 
 Each station requires a minimum of 40 minutes 

turnaround time; 
 Execute midnight arrival/departure curfew (no arrival 

or departure after midnight is allowed); 
 Each minute of delay on any flight costs the airline $20.

TABLE I THE FLIGHT SCHEDULE AND CANCELATION COST

Fleet 

type 

Flight 

string 

 

Aircraft Flight Pax DStat STD1 AStat STA1 

 

Duration 

Cancelation cost 

737-
800 

S1 1 9131 100 SHA 815 TSN 1005 1:50 $17,490 

9125 72 TSN 1100 SZX 1350 2:50 $15,780 

9126 100 SZX 1450 TSN 1755 3:05 $21,050 

9132 100 TSN 1855 SHA 2040 1:45 $16,980 

737-

800 

S2 2 9380 14 SZX 845 SHA 1050 2:05 $14,120 

9371 14 SHA 1305 SZX 1515 2:10 $14,870 

9372 49 SZX 1610 SHA 1820 2:10 $17,120 

9369 150 SHA 1910 SZX 2115 2:05 $19,870 

737-

800 

S3 3 9304 104 CAN 1130 SHA 1335 2:05 $18,740 

9375 78 SHA 1435 SZX 1645 2:10 $17,290 

9376 78 SZX 1750 SHA 2015 2:25 $18,110 

9303 78 SHA 2100 CAN 2315 2:15 $17,890 

We use two scenarios to test the method.  
Scenario 1—Delay 
The aircraft 2 in airport SZX must be grounded at 8:00 

and is available until 15:00. That is, aircraft 2 is unavailable 
from 8:00 to 15:00. The trivial solution 1 is to cancel flights 
9380 and 9371 which are flown by aircraft 2 during 8:00 to 
15:00. The total cancellation cost is $28,990. The trivial 
solution 2 is to delay flight string 2(9380, 9371, 9372, 9369). 
The ready time of flight 9369 is 23:25. Against the curfew, 
so the flight 9369 should be canceled. The solution got from 
our method is listed in TABLE II. The total cost is $38.270. 

 
 
 
 

 
Scenario 2—Delay and grounded combination  
In this case, we assume that aircraft 1 in airport SHA 

becomes grounded owing to some mechanical failure at 8:00 

and is unavailable for the rest of the day. The obvious 

solution without permitting any rerouting of other aircraft is 

to cancel flights 9131, 9125, 9126 and 9132. These 

cancellations cost the airline a total of $71,300 (the sum of 

all cancellation costs for flight string1). 
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TABLE II TRIVAL OPTION 2 

Aircraft tail Flight Pax DStat STD1 AStat STA1 Option Cancelation cost Delay cost 

1 9131 100 SHA  815 TSN  1005 / / / 

9125 72 TSN 1100 SZX   1350 / / / 

9126 100 SZX  1450 TSN  1755 / / / 

9132 100 TSN 1855 SHA  2120 / / / 

2 9380 14 SZX  1500 SHA  1745 Delay / $7,500 

9371 14 SHA  1745 SZX   2035 Delay / $5,600 

9372 49 SZX   2035 SHA  2325 Delay / $5,300 

9369 150 SHA  1910 SZX  2115 Cancel $19,870 / 

3 9304 104 CAN  1130 SHA  1335 / / / 

9375 78 SHA  1435 SZX 1645 / / / 

9376 78 SZX  1750 SHA  2015 / / / 

9303 78 SHA  2100 CAN  2315 / / / 

Total        $19,870 $18,400 

         
The according graph is drawn in Figure 1. The figure on 

the arc is flight number. The figure besides the node is 
departure or arrival time. The node is marked according to 
vertical time coordinate and horizontal airport coordinate. In 
order to reflect whether two flight legs can be connected, the 
arrival time has been added turnaround time. For example, 
flight 9131 arrives in TSN at 10:05 and connects to flight 
9125 which is available for departure at 10:45. We use 30 
minutes as the diameter of the circle. So, flight 9131 is not 
ready for departure at 10:45 but 11:00. 
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Figure 1 The flights graph 

In the Figure 1, one arc is drawn from node 2 to node 

16, it represents flight 9131. Actually it is a copy arc  

 

representing flight 9131, the delay time is 210 minutes, not 

the actual time minus the schedule time. This is because 

flight 9131 was scheduled to leave SHA at 8:15. If this 

flight occurs in node 2, the departure time is calculated as 

11:30. Considering the nodes are within 30 minutes circle, 

this delay spans from 8:00 to 11:30, a total of 210 minutes.  

Each minute of delay costs the airline $20, so flight 9131 

has a delay cost of $4,200 if it departs from node 2. 

Figure 2 is deduced form Figure 1 based on the method 

mentioned above. 
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Figure 2 The stretch graph 
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TABLE III presents the non-zero delay costs for all flight 
arcs in Figure 2. 

TABLE III  NONE-ZERO DELAYCOSTS 

Flight  Pax Ori.node Dest.node Delay cost($) 

9125 25 19 36 9000 

9125 25 16 32 3600 

9125 25 20 38 10200 

9125 25 17 33 6600 

9126 100 33 27 6600 

9126 100 32 22 3600 

9126 100 30 20 1200 

9126 100 31 21 3000 

9126 100 31 22 3000 

9131 100 4 20 10800 

9131 100 2 16 4200 

9131 100 5 22 12600 

9131 100 3 17 7200 

9131 100 6 23 13200 

9131 100 7 24 13800 

9131 100 8 25 14400 

9131 100 9 26 15000 

9131 100 10 26 15600 

9132 100 20 11 1200 

9132 100 20 36 1200 

9132 100 23 14 3600 

9132 100 22 13 3000 

9369 150 7 37 600 

9369 150 8 37 1200 

9369 150 8 38 1200 

9369 150 9 39 1800 

9369 150 10 38 2400 

9371 14 4 33 4800 

9371 14 5 35 6600 

9371 14 6 35 7200 

9371 14 3 31 1200 

9371 14 7 37 7800 

9371 14 8 38 8400 

9371 14 9 39 9600 

9371 14 10 39 9900 

9372 49 33 12 4800 

9372 49 32 8 1800 

9372 49 33 13 4800 

9372 49 31 7 1200 

9372 49 31 8 1200 

9375 78 4 33 3000 

9375 78 5 35 4800 

9375 78 6 35 5400 

9375 78 7 37 6000 

9375 78 8 38 6600 

9375 78 9 39 7200 

9375 78 10 39 7800 

9376 78 33 13 3000 

9380 14 29 4 7200 

9380 14 33 12 13800 

9380 14 32 8 10800 

9380 14 30 5 8400 

9380 14 33 13 13800 

9380 14 31 7 10200 

9380 14 31 8 10200 

 

 

TABLE IV RECOVERY SOLUTION FOR SCENARIO 1 

Aircraft tail Flight Pax Dstat Ori.node Astat Dest.node Option Cancelation cost Delay cost 

1 9131 100 SHA 1 TSN 15 /   

9125 72 TSN 15 SZX 29   /   

9380 14 SZX 29 SHA 4 Delay  $7,200 

9375 78 SHA 4 SZX 33 Delay  $3,000 

9376 78 SZX 33 SHA 13 Delay  $3,000 

2 9126 100 SZX 30 TSN 19 Delay   $600 

9132 100 TSN 19 SHA 10 /   

9303 78 SHA 10 CAN 39 Delay  0 

3 9304 104 CAN 40 SHA 3 /   

9371 14 SHA 3 SZX 31 Delay  $1,200 

9372 49 SZX 31 SHA 7 Delay  $1,200 

9369 150 SHA 7 SZX 37 Delay  $600 

Total         $16,800 

 
Through a series of aircraft rerouting and cancellations 

in an effort to minimize the total cost to the airlines, the total 
cost of the solution is $16,800, less than the above two trivial 
options. In contrast with the method of branch and bound 
(B&B), using an intelligent algorithm we can quickly obtain 
feasible, near-optimal solutions faster times in some case 
study than using CPLEX (Thinkpad X201S). Through the 
computation results we can see our model has quite a good 
effect on aircraft recovery optimization. The total passenger 
delay is 40825 minutes. The total cost for this actual flight 
schedule is $16,800, which is similar to the solution got from 
our method.  

 
 

 
Using the so-called iterative tree growing with node 

combination method as scenario1，we can get the recovery 

solution for scenario2. 
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TABLE V RECOVERY SOLUTION FOR SCENARIO 2 

Aircraft Flight Pax DStat Ori.node AStat Dest.node Option Cancelation cost Delay cost 

1 9126 100 SZX   29 TSN  19 Cancel $21,050 / 

9132 100 TSN   19 SHA  10 Cancel $16,980 / 

9371 14 SHA  2 SZX  30 Cancel $14,870 / 

2 9380 14 SZX  28 SHA  2 / / / 

9131 100 SHA  2 TSN  16 Delay / $4,200 

9125 72 TSN   16 SZX   32 Delay / $3,600 

9372 49 SZX  32 SHA  8 Delay / $1,800 

9369 150 SHA  8 SZX  38 Delay / $1,200 

3 9304 104 CAN   40 SHA  3 / / / 

9375 78 SHA  3 SZX  31 / / / 

9376 78 SZX  31 SHA   9 / / / 

9303 78 SHA  9 CAN   41 / / / 

Total        $52,900  $10,800  

 
The total cost for scenario 2 by our method is $63,700, 

smaller than the trivial solution of $71,300 resulting from 
canceling all flights operated by aircraft 1. The total cost for 
this actual flight schedule is $63,400, which is similar to the 
solution got from our method. In this scenario we can see the 
aircraft is one of the most important resources in airlines 
recovery. The shortage of aircraft resources limited the 
degree of airlines recovery. 

V.    CONCLUSION 

The paper presents a more practical formulation for 
airline optimal recovery. In order to get the solution in a 
reasonable time, a new approach to solve the problem is 
studied. The computational results state the method could be 
used in airline recovery. On average, for medium-size airline 
recovery, the algorithm finds a feasible solution twice as fast 
as an exact algorithm, obtaining a high-quality feasible 
solution in half the time is an important improvement for our 
application. Often in our method, having several near-
optimal solutions provide decision makers much more 
flexibility.  

Airlines recovery is a more complex and large-scale 
problem. Not only should aircrafts be considered, but crew 
and passengers should be considered, too. In the future, a 
more comprehensive recovery model should be studied. 
Meanwhile, a more systematic evaluation of the method 
should be carried out. 
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