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Abstract—The energy consumption of data centers has been
increasing rapidly over the past decade. In some cases, data
centers may be physically limited by the amount of power
available for consumption. Both the rising cost and physical
limitations of available power are increasing the need for
energy efficient computing. Data centers must be able to
lower their energy consumption while maintaining a high
level of performance. Minimizing energy consumption while
maximizing performance can be modeled as a bi-objective
optimization problem. In this paper, we develop a method to
create different resource allocations that illustrate the trade-
offs between minimizing energy consumed and minimizing the
makespan of a system. By adapting a popular multi-objective
genetic algorithm we are able to construct Pareto fronts (via
simulation) consisting of Pareto-efficient resource allocations.
We analyze different solutions from within the fronts to further
understand the relationships between energy consumption and
makespan. This information can allow system managers to
make intelligent scheduling decisions based on the energy and
performance needs of their system.

Keywords- bi-objective optimization; energy-aware; makespan;
heterogeneous computing; resource allocation.

I. INTRODUCTION

Over the past decade, the need for energy efficient
computing has become increasingly important. As the per-
formance of high performance computing (HPC) systems,
such as servers and datacenters, have increased, so has the
amount of energy needed to run these systems. According
to the Environmental Protection Agency (EPA) [1], it was
estimated that between the years 2000 and 2006 the amount
of power consumed by HPC systems more than doubled. An
estimated 61 billion kWh was consumed by servers and data
centers in 2006, approximately equal to 1.5% of the total
U.S. electricity consumption for that year. This is equivalent
to the electricity consumption of 5.8 million average U.S.
households, and amounts to $4.5 billion in electricity costs
[1].

In addition to the rising costs of using so much energy,
some data centers are now unable to increase their comput-
ing performance due to physical limitations on the availabil-
ity of energy. A survey conducted in 2008 showed that 31%

of the data centers surveyed identified energy availability as
a key factor limiting new server deployment [2]. Another
example to emphasize this point: Morgan Stanley, a global
financial services firm based in New York, is physically
unable to draw the energy needed to run a new data center
in Manhattan [3].

To battle the rising costs of energy consumption, it is es-
sential for HPC systems to be energy-efficient. This focus on
energy-efficiency must have as little impact to performance
as possible. Unfortunately, the goals of saving energy and
achieving high performance often conflict with each other.
To understand and illustrate the trade-offs between energy
consumption and computing performance, we model this
dilemma as a bi-objective optimization problem. When a
problem has multiple objectives, it is often the case that there
is not just one single optimal solution, but rather a set of
optimal solutions. With our research, we provide a method
for developing a set of “Pareto”optimal solutions that not
only illustrate the trade-offs between energy consumption
and performance for a specific computing system, but also
allows the system manager to select a solution that fits the
system needs and goals.

In this research, we study how different ways of allocat-
ing resources to tasks impact the performance and energy
consumption of a computing system. We are modeling a
data center consisting of a set of heterogeneous machines
that must execute a batch of independent tasks. By hetero-
geneous, we mean that tasks may have different execution
and power consumption characteristics when executed on
different machines. All the tasks in a given batch are known
a priori and are all available for scheduling at the beginning
of the simulation, making this a static resource allocation
problem. We define a resource allocation to be a complete
scheduling of tasks to machines. We perform this research
in a static and offline environment, so that, we can evaluate
the resource allocations and analyze the trade-offs between
the two objectives. The knowledge gained from studies such
as these for a particular system can be used to set the
parameters needed for designing dynamic, online, allocation
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heuristics.
To measure the performance of the system, we examine

the makespan of a batch of tasks for a given resource
allocation. Makespan is the total amount of time it takes
for all the tasks in the batch to finish executing across all
the machines. Energy is measured in the number of joules
consumed by that same batch of tasks for a given resource
allocation. An optimal resource allocation would be one
that minimizes both makespan and energy consumed. By
adapting the Nondominated Sorting Genetic Algorithm II
(NSGA-II) [4] to handle scheduling problems, we are able
to create resource allocations that have different makespan
and energy consumption values. This set of solutions will
then be one basis to analyze the energy and performance
trade-offs of the system.

To summarize, in this paper, we make the following
contributions:

1) Address the concern of energy efficient computing
by modeling the resource allocation problem as a
bi-objective optimization problem between minimiz-
ing energy consumption and maximizing performance
(minimizing makespan).

2) Adapt a well-known multi-objective genetic algorithm
to the domain of data center task scheduling.

3) Show that by using different resource allocations,
one can greatly affect the energy consumption and
performance of a heterogeneous computing system.

4) Construct a set of “Pareto”[5] optimal solutions that
can be used to illustrate the trade-offs between sys-
tem performance and energy consumption, as well as
allowing data center managers to select appropriate
resource allocations to meet the needs of the specific
system.

The remainder of the paper is set up as follows. We dis-
cuss the related work in Section II. Section III will describe
how we define our bi-objective optimization problem using
the NSGA-II. In Section IV, we explain our system model.
Our simulation setup is detailed within Section V. Section VI
contains our simulation results. Finally, Section VII contains
our conclusions and future work for this research.

II. RELATED WORK

In Dongarra et al. [6] and Jeannot et al. [7], a heteroge-
neous task scheduling problem is modeled as a bi-objective
optimization problem between makespan and reliability. This
differs from our research because they are not minimizing
energy consumption.

The study in Abbasi et al. [8] models a resource-
constrained project scheduling problem as a bi-objective
problem between makespan and robustness. Abbasi et al.
solve this problem using a weighted sum simulated anneal-
ing heuristic to generate a single solution. They then adjust
the weights to produce different solutions. This is different

from our work in that we evaluate our two objective func-
tions independently and generate a Pareto front composed
of many different solutions in one run of our algorithm.

A Pareto-ant colony optimization approach is presented in
Pasia et al. [9] to solve the bi-objective flowshop scheduling
problem. Pasia et al. are minimizing makespan and total
tardiness. This differs from our work because they are not
considering minimizing energy nor are they using a genetic
algorithm to create the solutions.

He et al. [10] develop a bi-objective model for job-
shop scheduling to minimize both makespan and energy
consumption. There are a couple of differences from our
work. The first one is that He et al. model a homogeneous
set of machines instead of a heterogeneous set of machines.
Second, the algorithm used in He et al. produces a single
solution while our algorithm produces a set of solutions.

The goal of minimizing makespan with solutions that
are robust against errors in computation time estimates is
investigated in Sugavanam et al. [11]. This differs from our
work in that we do not consider uncertainties in computation
time. Also, Sugavanam et al. are not concerned with energy
consumption.

Resource to task matching in an energy constrained het-
erogeneous computing environment is studied in Kim et al.
[12]. The problem is to create robust resource allocations
that map tasks onto devices limited by battery capacity
(energy constrained) in an ad hoc wireless grid. This dif-
fers from our paper because our machines are not energy
constrained nor are they in an ad hoc wireless environment.
Also the heuristics used in this study only create a single
resource allocation, whereas ours creates a set of solutions.

The work in Apodaca et al. [13] studies static resource al-
location for energy minimization while meeting a makespan
robustness constraint. In contrast to our paper, Apodaca et al.
only find a single solution, and we do not place constraints
on either objective function.

An energy constrained dynamic resource allocation prob-
lem is studied in Young et al. [14]. In this work, the
resource allocation must try to finish as many tasks as it can
while staying within the energy budget of the system. Our
work differs because we are modeling a static environment
and have no constraints on how much energy our resource
allocations can use.

In Pineau et al. [15], the authors are trying to minimize
energy consumption while maximizing throughput. Pineau
et al. are modeling a heterogeneous system that executes a
single bag-of-tasks application where each task is the same
size. To solve the problem, Pineau et al. place a constraint on
the throughput objective, and then try to minimize energy
while meeting the throughput constraint. While similar to
our approach, it differs because we are optimizing for
makespan, we model tasks that can differ greatly in size,
and we do not constrain either of our objectives.

Mapping tasks to computing resources is also an issue in
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hardware/software co-design, Teich et al. [16]. This problem
domain differs from ours however, because it typically
considers the hardware design of a single chip. Our work
assumes a given collection of heterogeneous machines.

III. BI-OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHMS

A. Overview

It is common for many real-world problems to contain
multiple goals or objectives. Often, these objectives work
against each other, as optimizing for one objective can
negatively impact another objective. This is the case in our
research, because it is important for HPC systems to be
concerned with both lowering energy consumption as well as
increasing overall system performance. In general, resource
allocations using more energy will allow one to achieve
greater performance, while resource allocations trying to
conserve energy will cause the system to have slower
performance. In Section III-B, we describe how to determine
which solutions should be considered when trying to solve
a bi-objective optimization problem. We then briefly discuss
the genetic algorithm we have adapted to solve our specific
problem in Section III-C.

B. Determining Solutions to a Bi-Objective Optimization
Problem

When multiple objectives are present within a problem,
it is often the case that there does not exist a single global
optimal solution, but rather a set of optimal solutions. There
is no guarantee one can find the exact solutions within this
optimal set, so instead we try to find a set of solutions that
are as close to the optimal set as possible. We will call this
set of solutions the set of Pareto optimal solutions [5]. This
set of Pareto optimal solutions can be used to construct a
Pareto front that illustrates the trade-offs between the two
objectives.

To understand what it means for a solution to be part of
the Pareto optimal set, we illustrate the notion of solution
dominance. Dominance is defined as one solution being
better than another solution in at least one objective, and
better than or equal to in the other objective. To help
explain what it means for one solution to dominate another,
please refer to Figure 1. Figure 1 shows three potential
solutions. The objectives are to minimize energy (along
the x-axis), and to minimize makespan (along the y-axis).
Let us first examine the relationship between solutions A
and B. From the figure we can see that solution B is
dominated by A because A uses less energy and has a
smaller makespan. Likewise, any solution residing within the
upper right (green) shaded region would also be dominated
by A. Next, consider solutions A and C. We cannot claim
either solution dominates the other because A uses less
energy than C, but C has a smaller makespan than A. Thus,
for this example, both A and C are solutions in the Pareto

energy consumed 

makespan A B 

C 

solutions 
that 

dominate A 

solutions that 
are dominated 

by A 

Figure 1. Illustration of solution dominance for three solutions: A, B,
and C. Solution A dominates solution B because A has lower energy
consumption as well as a lower makespan. Neither solution A nor C
dominate each other because A uses less energy, while C has a lower
makespan.

optimal set and form the Pareto front. Finally, solution A
would be dominated by any solution residing within the
lower left (red) shaded area.

C. Nondominated Sorting Genetic Algorithm II Adapted For
Resource Allocation

To solve our bi-objective optimization problem, we chose
to implement a popular genetic algorithm from the literature,
the Nondominated Sorting Genetic Algorithm II (NSGA II)
[4]. We will briefly describe the algorithm and how we have
adapted it for our use.

The NSGA II is a multi-objective genetic algorithm that
uses the idea of solution dominance to create offspring
populations, where for our problem domain a population is a
set of possible resource allocations. For a given population,
the algorithm performs the nondominated sorting algorithm
that ranks the solutions within the population based on how
many solutions dominate a given solution. Any solution that
is not dominated by any other solution is given a rank of
one and is part of the current Pareto optimal set. The basic
algorithm is outlined in Algorithm 1.

To create the child population in step three, we start with
a parent population of size N . From this parent population
N crossover operations are performed to create a child
population of also of size N . The mutation operation is then
performed with a given probability on each chromosome
in the child population. If a chromosome is selected for
mutation, only the mutated version is kept in the population.

It is important to note the NSGA II is an elitist algorithm
as it combined the offspring and parent populations in
step six. Elitism means that the algorithm keeps the best
chromosomes from the previous generation in consideration
for the current generation.
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Algorithm 1 NSGA II algorithm
1: create initial population of N chromosomes
2: while termination criterion is not met do
3: create offspring population of size N
4: perform crossover operation
5: perform mutation operation
6: combine offspring and parent populations

into a single meta-population of size 2N
7: sort solutions in meta-population using

nondominated sorting algorithm
8: take all of the rank 1, rank 2, etc. solutions until

we have at least N solutions to be used in the parent
population for the next generation

9: if more than N solutions then
10: take a subset of solutions from the

highest rank number used based on
crowding distance [4]

11: end if
12: end while
13: the final population is the Pareto front used to show the

trade-offs between the two objectives

To further explain how the next parent population is
created in steps eight and nine, assume we have a parent pop-
ulation with 100 chromosomes and a child population with
100 chromosomes for a total of 200 chromosomes. We want
to create a new parent population for the next generation that
only has 100 chromosomes. Let us assume, that after step
seven (where we have ranked the current populations), there
are 60 chromosomes of rank one, 30 chromosomes of rank
two, 20 chromosomes of rank three, and 90 chromosomes
that have a rank higher than three. First, we will place all
the rank one chromosomes into the new population, this will
leave room for 40 more chromosomes. Next, we place all
the rank two chromosomes into the population, leaving room
for ten more chromosomes. Since there are 20 rank three
chromosomes, but only room left in the new population for
ten chromosomes we must select a subset of the rank three
chromosomes to place in the population. These ten solutions
will be based on the crowding distance [4] and we will have
our full 100 chromosome population.

To use the NSGA II, we needed to encode the algo-
rithm so that it could be used to solve resource allocation
problems. This meant we needed to create our own genes,
chromosomes, crossover operator, and mutation operator.
Genes are the basic data structure of the genetic algorithm,
and for our problem each gene represents a task. Within
each gene there is a single integer number representing
the machine on which the task will execute. Chromosomes
represent complete solutions, i.e., resource allocations. Each
chromosome is comprised of T genes, where T is the
number of tasks the system must execute. The ith gene in a

chromosome represents the same task in every chromosome.
Each chromosome is individually evaluated with respect
to makespan and energy consumption, allowing dominance
relationships to be found amongst all the chromosomes
within a population.

To allow chromosomes and populations to evolve from
generation to generation, we implemented the following
crossover and mutation operations. For crossover, two chro-
mosomes are selected randomly from the population. Next,
the indices of two genes within the chromosomes are se-
lected randomly. We then swap the genes between these two
indices from one chromosome to the other. This operation
switches the machines on which the tasks will execute. This
potentially allows chromosomes making good scheduling
decisions to pass on the useful traits to other chromosomes.
For mutation we randomly select a chromosome from the
population and randomly select a gene within that chromo-
some. We then randomly select a machine for that task to
execute on.

IV. SYSTEM MODEL

A. Machines

Our computing system is modeled as a suite of M
heterogeneous machines where each node belongs to a
specific machine type µ. Machines are assumed to be
dedicated, meaning only one task can be executing on the
machine at a time, such as the ISTeC Cray located at
Colorado State University [17]. Once a task starts executing
it runs until it is finished. Machines of the same machine
type are identical to one another. Machine types exhibit
heterogeneous performance (i.e., machine type A may be
faster than machine type B for some tasks, but slower for
others) [18]. Machine types are also heterogeneous with
respect to energy consumption (i.e., machine type A may
use less energy than machine type B for some tasks, but
more energy for others). We implement a heterogeneous
behavior for both performance and energy consumption to
model a computing system that contains a variety of different
resources. Real world systems may be highly heterogeneous
due to having machines of different ages, varying micro-
architectures, subsets of machines that have accelerators, and
the inclusion of special purpose machines. Differences in
machine components such as memory modules, hard disks,
and power supplies also cause systems to be heterogeneous.

B. Workload

We assume we have a static collection of T tasks. Each
task t is a member of a given task type. Each task type has
unique performance and energy consumption characteristics
for executing on each of the machine types. To model the
performance of the task types, we assume that the estimated
time to compute (ETC) a task of type τ on a machine
of type µ, ETC(τ ,µ), is given. Entries in the ETC matrix
represent the estimated amount of time a task type takes
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to execute on a given machine type. Research in resource
allocation often assumes the availability of ETC information
(e.g., [19, 20, 21, 22]). We have provided the analysis
framework for system administrators to use ETC information
from data collected on their specific systems. This allows for
systems of varying size and heterogeneity to be analyzed.
For our simulation studies, we have constructed synthetic
ETC values modeling real-world systems, but these values
can also be taken from various sources of historical data
(e.g., [21, 20]).

Similar to the ETC values used for determining compute
times, we also assume we have estimated power consump-
tion (EPC) values that tell us the average power a task type
consumes while executing on a specific machine type. The
EPC values represent the power consumption of a machine
as a whole, not just the CPU. Again, we have constructed
synthetic EPC values for our simulations, but historical
power consumption data could also be used to populate the
matrix.

Finally, to obtain the estimated energy consumed (EEC)
of a task of type τ on a machine µ we take the product of
the execution time and the estimated power consumption, as
shown below.

EEC[τ, µ] = ETC[τ, µ]× EPC[τ, µ] (1)

C. Objective Functions

1) Makespan: One objective we are trying to optimize is
makespan, which is the total amount of time it takes for all
the tasks in the batch to finish executing across all machines.
When optimizing for makespan the goal is to minimize the
makespan. For a given resource allocation, calculating the
makespan of the system requires that we first determine the
finishing time of each machine.

To calculate the finishing time of a machine we let the
set Tm represent all the tasks in T that were allocated to
machine m, where tm ∈ Tm. Let the function Υ(tm) return
the task type that task tm belongs to, and let the function
Ω(m) return the machine type to which machine m belongs.
We then calculate the expected finishing time of machine m
denoted as Fm, with the following equation

Fm =
∑

∀tm∈Tm

ETC(Υ(tm),Ω(m)). (2)

The makespan for a given resource allocation, denoted ρ,
can be found from the machine with the maximum finishing
time, and is given as

ρ = max
∀m∈M

Fm. (3)

2) Energy Consumption: The other objective we will
optimize for is energy consumption. For a given resource
allocation, the total energy consumed is the sum of the
energy consumed by each task to finish executing. Recall
that the amount of energy consumed by a task is dependent

upon the machine on which that task is executing. Therefore,
the total energy consumed for a resource allocation, denoted
E, can be found as

E =
∑

∀tm∈Tm,∀m∈M

EEC[Υ(tm),Ω(m)]. (4)

V. SIMULATION SETUP

A. Simulation Environment Parameters

To construct a Pareto front and illustrate the trade-offs
between makespan and energy consumption, we conducted
numerous simulation trials. For each trial, the number of
tasks to execute was set to 1000, with 50 different task types.
The number of machines used throughout the simulations
was set to 50, with 10 different machine types. The number
of tasks per task type and number of compute nodes per
compute node type were randomly assigned, and could
change from trial to trial.

The ETC values were obtained using the Coefficient of
Variation (COV) method from [18], which allows us to
model a heterogeneous set of machine types and task types.
For our simulations, the mean execution time for the tasks
was 10 seconds, and the variance amongst the tasks was
0.1, while the variance amongst the machines was 0.25.
These parameters allowed us to model a heterogeneous set
of compute nodes.

The EPC values were constructed in a similar manner as
the ETC values. Specifically, the mean power consumption
for the tasks was 200 watts, and the variation amongst tasks
was 0.1, while the variance amongst the machines was 0.2.

For each trial, the genetic algorithm consisted of 100 chro-
mosomes. In the initial population, we used 98 randomly
generated chromosomes, and two chromosomes generated
using two heuristics based on approaches taken from litera-
ture, as discussed below.

B. Seeding Heuristics

The goal of the seeding heuristics are to provide the ge-
netic algorithm with initial solutions that try to optimize the
objectives. These seeds can help guide the genetic algorithm
towards better solutions faster than an all-random initial
population. We chose to implement two greedy heuristics,
min energy and min-min completion time, based on concepts
found in [23, 24, 25]. The execution times of the greedy
heuristics are negligible compared to the NSGA II. Utilizing
these seeds in the initial population does not negatively affect
the computation time of the NSGA II.

1) Min Energy: Min energy is a single stage greedy
heuristic that maps tasks to machines to minimize energy
consumption. The heuristic selects a task from the batch
and places that task on to the machine that has the smallest
energy consumption. For this heuristic, the order in which
tasks are mapped to machines does not matter. This heuristic
creates a solution that will have the minimum possible
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Figure 2. Pareto fronts showing the trade-offs between energy consumption and makespan. Shows the evolution of the solutions through number of
iterations completed

energy consumption. For a solution to be more efficient,
it must have a smaller makespan.

2) Min-Min Completion Time: Min-min completion time
is a two-stage greedy heuristic that maps tasks to machines
to minimize the makespan of the system. During each
iteration of the heuristic, one task gets mapped to the
machine that provides the minimum completion time. One
iteration consists of two stages. In the first stage, every
unmapped task finds the machine that minimizes completion
time. In the second stage, the heuristic selects the task and
machine pair from the first stage that has the smallest overall
completion time and assigns that task to that machine. This
continues until there are no more tasks to map. There
is no guarantee that the solution created by this heuristic
represents the absolute lowest makespan of the system, so
better solutions can potentially improve in both makespan
and energy consumption.

VI. RESULTS

Throughout this section, we will only be discussing the
results from one simulation trial. We have confirmed that
the findings and trends for this trial hold for the other trials
we ran. In Figure 2, we show the evolution of the solutions
through the number of NSGA-II iterations completed. It is
important to note for genetic algorithms, as we increase the
number of iterations, the genetic algorithm will in general
find new and better solutions; some solutions may remain a
member of the Pareto front as we increase the iterations.
Each point in Figure 2 represents a complete resource
allocation. The set of points corresponding to a given number
of iterations form the Pareto front. These points are obtained
from the genetic algorithm running through that number of
iterations. We see that as the genetic algorithm runs for

more iterations, the Pareto fronts are converging towards
the lower-left corner. This makes sense because we are
minimizing makespan as well as energy consumption. We
can also see that for this size problem there is very little
improvement to the Pareto front after 30,000 iterations. The
size of the problem as well as using the two seeds help the
solutions converge in a relatively short number of iterations.
Also, observe that both of the seeds provide good starting
solutions for the genetic algorithm to evolve from relative
to the rest of the initial population.

Although it is useful to see how the solutions evolve over
time, the most important information to take away from
Figure 2 are the trade-offs between makespan and energy
consumed. Figure 3 shows a blown-up plot of the final Pareto
front from Figure 2. There are a number of points we can
learn from the final Pareto front shown in Figure 3. One
such point is circled in red. We can see that around this
point there is a definite and visible “knee” in the front. To
the left of the knee, small increases in energy consumption
result in large decreases in makespan. To the right of the
knee we see the opposite, small decreases in makespan result
in large increases in energy. Given the information provided
in this Pareto front, it is then up to the system manager to
select which region of the curve to operate in based on the
individual system needs.

To further understand how solutions in the Pareto front
differ from one another, we analyzed the individual finishing
times and energy consumptions for the 50 machines at five
points along the final Pareto front. The five points were the
two endpoints of the front, the middle point, and the two
points between the middle point and each endpoint, as shown
in Figure 4 and Figure 5. The results for machine finishing
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Figure 4. Finishing time of the 50 machines in descending order of finishing time for five solutions from the Pareto front. The y-axis contains different
ranges of machine finishing times from plot to plot (to show each plot in greater detail). Subfigure “a” is the same as Figure 3 and has different axis labels
from the other subplots. Each subplot b-f has a different ordering of the machines along the x-axis.
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Figure 5. Energy consumption of the 50 machines in descending order of energy consumed for five solutions from the Pareto front. The y-axis contains
different ranges of machine energy consumption from plot to plot (to show each plot in greater detail). Subfigure “a” is the same as Figure 3 and has
different axis labels from the other subplots.Each subplot b-f has a different ordering of the machines along the x-axis.
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Figure 3. The final Pareto front after 100,000 iterations showing the trade-
offs between energy consumed and makespan.

times are shown in Figure 4, while the results for machine
energy consumption are shown in Figure 5.

First, we consider Figure 4, which focuses on the finishing
times of each machine. Each of the five subplots (b-f) in
the figure represents a solution from the Pareto front. On
the x-axis of the plots we have the machines sorted by
finishing time in descending order, this ordering is different
from subplot to subplot. On the y-axis we have the actual
finishing time of each machine. Note that each figure (b-
f) has different values along the y-axis. In Figure 4.f, we
have the solution that provides the lowest makespan. As we
can see, the finishing times for all the machines are evenly
balanced; this allows the makespan to be small since no one
machine is doing a lot more work than the others. As we
move left along the Pareto front selected points in Figure 4.a
(minimizing energy) we see that the solutions become more
and more unbalanced with respect to machine finishing times
going from Figure 4.f to Figure 4.e to Figure 4.d, etc. This is
because each task type has an affinity for a specific machine
type that minimizes that task type’s energy consumption.

If we now consider the plots of machine energy con-
sumption in Figure 5 which focus on energy consumption,
we see similar trends as before, but in reverse order. This
time the machines are ordered in descending order based on
energy consumption. Figures 5.b and 5.c are more balanced
in terms of energy consumption amongst the machines. This
is because this area of the Pareto front focuses on trying to
minimize energy and thus makespan is compromised; as we
saw in the corresponding makespan plots from Figure 4. By
similar reasoning, this is why Figure 5.f is unbalanced. In
this region of the Pareto front, makespan is being optimized
so tasks are going to have to run on machines that use more
energy to lower system makespan.

With the information provided by the Pareto fronts as
well as the plots showing the completion time and energy

consumption of individual machines, a system manager will
be able to analyze the trade-offs between energy consump-
tion and makespan. The system manager can then make a
scheduling decision based on the needs of the computing
system.

VII. CONCLUSION AND FUTURE WORK

As high performance computing systems continue to
become more powerful, the energy required to power these
systems also increases. In this paper we have developed a
bi-objective optimization model that can be used to illustrate
the trade-offs between the makespan and energy consump-
tion of a system. Having adapted the nondominated sorting
genetic algorithm for use within our domain, we successfully
ran simulations that provided us well defined Pareto fronts.
We then analyzed five different solutions from the final
Pareto front and discussed the differences in their makespan
and energy consumption. Given this information a system
administrator would be able to pick a specific resource
allocation from the Pareto front that meets the energy and
performance needs of the system.

There are many possible directions for future work. We
would like to enhance our energy consumption model by
considering machines that utilize dynamic voltage and fre-
quency scaling techniques to save more energy. We do not
currently consider communications within our environment,
but the analysis framework we present here could be ex-
tended to do this. We would like to try and increase the
execution rate and performance of the genetic algorithm
by trying numerous parallel techniques. To more accurately
model real-world systems, we would like to use probability
density functions to model both task execution times and
task energy consumption characteristics.
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