INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Control Software Visualization

Federico Mari, Igor Melatti, Ivano Salvo and Enrico Tronci
Department of Computer Science
Sapienza University of Rome
Via Salaria 113, 00198 Rome, ltaly
Email: {mari,melatti,salvo,trongi@di.uniromal.it

Plant Model
(DTLHS)

Abstract—Many software as well digital hardware automatic Specifications

synthesis methods define the set of implementations meeting
the given system specifications with a boolean relationk’
(controller). Such relation, given a system state and an action
u, returns 1 iff taking action w« in state s leads in the system ((step1
goal or at least one step closer to it. In order to determine at Control
hand if K is a “good” controller, e.g., if it covers a wide enough Abstraction
portion of the system state space, or to provide an high level
view of the actions enabled byK, it is useful to picture K in
a 2D or 3D diagram. In this paper, starting from a canonical
representation for K, we propose an algorithm to automatically
generate such a picture, relying on available graphing tools.

Keywords-Control Software Visualization; Embedded Systems;

Model Checking
I. INTRODUCTION AN Control Software

Many Embedded Systemare indeedSoftware Based
Control System¢SBCSs). An SBCS consists of two main
subsystems: theontroller and theplant. Typically, the plant Automatic methods and tools aiming at synthesizing both
is a physical system consisting, for example, of mechanicaiunctions ctrlLaw and ctrIRegion above have been devel-
or electrical devices whereas the controller consistsoni- ~ oped in the last years, e.g., in [2][3][4][5][6][7]. In this
trol software running on a microcontroller. In an endless paper, we will refer to the method described in [7], but
loop, the controller readsensoroutputs from the plant and the approach we describe may be applied to the other ones
sends commands to plaactuatorsin order to guarantee as well. Figure 1 shows the model based control software
that theclosed loop syster(that is, the system consisting Synthesis flow in [7]. A specification consists of a plant
of both plant and controller) meets giveafetyandliveness ~model, given as a Discrete Time Linear Hybrid System
specifications $ystem Level Formal Specificatipns (DTLHS), System Level Formal Specifications that describe

Software generation from models and formal specificafunctional requirements of the closed loop system, and
tions forms the core oModel Based Desigof embedded Implementation Specifications that describe non functiona
software [1]. This approach is particularly interesting fo requirements of the control software, such as the number
SBCSs since in such a case system level (formal) specifief bits used in the quantization process, the required worst
cations are much easier to define than the control softwarease execution time, etc. Given such an input, in step 1 a
behavior itself. suitable finite discrete abstractionofitrol abstraction[7])

The typical control loop skeleton for an SBCS is the H of the DTLHS plant modefH is computed;H depends
following. Measurer of the system state from plapensors on the quantization schema and it is the plant as it can
goes through aanalog-to-digital(AD) conversion, yielding be seen from the control software after AD conversion.
a quantizedvalue &. A function ctrlRegion checks if & Then (step 2), given an abstractigh of the goal states
belongs to the region in which the control software worksG, it is computed a controlle#s that starting from any
correctly. If this is not the case, Rault Detection, Isolation initial abstract state, drive¥{ to G regardless of possible
and Recovery(FDIR) procedure is triggered; otherwise a nondeterminism. Control abstraction properties ensua¢ th
function ctrlLaw computes a command to be sent to K is indeed a (quantized representation of a) controller for
plant actuators after a digital-to-analog (DA) conversion. the original plant#. Finally (step 3), the finite automaton
Basically, the control software design problem for SBCSsK is translated into control software (C code).
consists in designing software implementing functiats In the following, we represent the control software with
ILaw and ctrIRegion a boolean relatiork (controller) taking as input (the:-bits

Implementation
Specification
(quantization schema)

System Level Formal
Specification
(Liveness and Safety)

Finite LTS control
Problem

Symbolic strong
controller synthesis

Most general
Optimal controller

C Code generation
from OBDD
automaton

Figure 1. Control Software Synthesis Flow.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4 15

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

encoding of) astatex of the plant and (the-bits encoding B. Paper outline

of) a proposedaction to be performed., and returnsrue This paper is organized as follows. Section Ill provides
(i-e.,1) iff the system specifications are met when perform-the packground needed to understand the results of this
ing actionu in statex. In this approach’ is synthesized so paper. Section IV describes our method to generate a picture
that a given ifiitial) plant states regiot (which is given as yjsualizing a controller. Section V provides experimental

part of the system level formal specifications) is guarahtee regylts. Finally, Section VI summarizes and concludes the
to be covered by« That is, for all states: € I, there must paper,

exist at least an action s.t. K (z,) holds. Typically,! is Il. RELATED WORK

set' tp be small in orFier to increase t.he likelihood thdt a Many papers (e.g., see [7][11][12][13]) tackling the prob-
fulfilling the above given property exists. However, the Seliam of synthesizing control software (which looks to quan-
of states covered by, i.e., dom(K) = {z | Ju: K(z,u)} {jzed states) or control laws (which looks at real states) of
may result to be much bigger thah Therefore, once & pypiq systems show pictures of the type we generate in
K is bunt_, it is useful to have a tooI_ to graph!cally dep_|ct this paper (withr — 1, i.e., only one bit for the actions).
dom(K), in order to be able to visualize how big the region e\ to the best of our knowledge there are no papers
dom(K) is, as well as to have a glimpse of which actions yiectiy focusing on the method to generate such pictures,
are turned on byx" on given plant states regions. thus no automatic approach to controllers visualization is
A. Our Main Contributions described. o _

Therefore, to the best of our knowledge this is the first
ime that an algorithm generating a picture of the coverage
of a controller for a DTLHS is presented.

In this paper we present an algorithm that, from an OBDDt
(Ordered Binary Decision Diagranil4]) representation of
a controllerK for a DTLHS modeling an SBCS, effectively
generates a 2D picture (namely, an input file for Gnuplot [8]) I1l. BASIC DEFINITIONS

depicting K. Such picture consists on a cartesian plane To make this paper self-contained, in this section we
where each point corresponds to a state of the startingriefly summarize previous work on automatic generation
DTLHS, and shows as painted with the same color allof control software foDiscrete Time Linear Hybrid System
regions of states for which the saraetions setis defined (DTLHS) from System Level Formal Specifications focusing
on K. The color for a statgr, y) depends on which actions on pasic definitions and mathematical tools that will be
set is enabled bys" in the DTLHS state(z,y), i.e., itis yseful in the sequel.
uniquely determined by(z,y) = {u | K((z,y),u)}. As a Figure 1 shows the control software synthesis flow that
special case, if(z, y) = @ for some(z, y), i.e.,(z,y) isnot e consider here [7]. We model the controlled system (i.e.,
controlled byK, then the color is white. A separated picture the plant) as a DTLHS (Section I1I-D), that is a discrete
showing the relation between a color and the correspondingme hybrid system whose dynamics is modeled disear
actions set is also automatically generated. In this waypredicate(Section I1l-A) over a set of continuous as well as
the state region for which any color is shown depicts thegiscrete variables. The semantics of a DTLHS is given in
coverage ofi’, whilest the regions colors give a glimpse of terms of alLabeled Transition SystenfsTS, Section I1I-C).
which actions are turned on by. Given a plantX modeled as a DTLHS, a set gjoal

In our setting, since we seek for which a software statesG (liveness specificatiojsand aninitial region I,
implementation is possible, a finite number of bits is used tthoth represented as linear predicates, we are interested in
encode both the states and the actions of the Starting DTLH%nd”ﬂlg arestriction X of the behaviounof A such that in
Suppose now thgu| = r, i.e., if r bits are needed in order the closed loop systerll paths starting in a state ihlead
to encode an action of the given DTLHS. Then, there mayo (; after a finite number of steps. Findidg is the DTLHS
be at mose? different actions sets, i.él{c(z,y) | (z,y)iS control problem(Section I1I-D) that is in turn defined as a
a stat¢| = 2* . That is, withr = 5 we needl x 10° colors, syitable LTS control problem (Section I1-C).
which is more than a typical RGB with 8 bits per color may Finally, we are interested in controllers that take their
achieve. Thus, our method may work only uprte- 4. Note decisions by looking afjuantized states.e., the values that

however that this is not a limitation, since typical DTLHSS the control software reads after an AD conversion. This is
do not need more than 3 bits per action. Moreover, for mosthe quantized control problem

systems|{c(z,y) | (z,y) is a statg| << 2%, thus we may _
generate the picture eveniif> 5. A. Predicates

We present experimental results showing effectiveness of We denote withX = [z4,...,2,] a finite sequence of
the proposed algorithm. As an example, in about 1 hour wevariables. Each variable ranges on a known (bounded or
are able to generate the pairs of pictures described above fanbounded) intervaD,, either of the reals or of the integers
a multi-input buck DC/DC converter [9] with = 4 action (discrete variables). We denote withy the set][], .y D..
bit variables. Boolean variables are discrete variables ranging on thB set

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4 16

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

= {0, 1}. Unless otherwise stated, we suppose real variablesontrollers. For more formal definitions of such concepts,

to range onR and integer variables to range @n

A linear expressiorover a list of variablesX is a linear
combination of variables inX with rational coefficients.
A linear constraintover X (or simply aconstrain} is an
expression of the fornL(X) < b, where L(X) is a linear
expression ovetX andb is a rational constant. Finally, a
conjunctive predicatés conjunction of constraints.

B. OBDD Representation for Boolean Functions

We will denote boolean functiong : B®™ — B with
boolean expressions on boolean variables involvinfog-
ical OR), - (logical AND, usually omitted thusy = x - y),
~ (logical complementation) ang (logical XOR). We will

see [7]. For efficient algorithms to compute mgos starting
from suitable (nondeterministic) LTSs, i.e., see [17].

D. Discrete Time Linear Hybrid Systems

In this section we introduce the class of discrete time Hy-
brid Systems that we use as plant models, narbébgrete
Time Linear Hybrid Systen{® TLHSs for short). For a more
complete introduction, see [10].

Definition 1. A Discrete Time Linear Hybrid Systeis a
tuple H = (X, U, Y, N) where: X is a finite sequence of
present statevariables (we denote wittX’ the sequence
of next statevariables obtained by decorating withall
variables inX); U is a finite sequence ahput variables;Y’

also denote vectors of boolean variables in boldface, e.gis a finite sequence duxiliary variables; N (X,U,Y, X’)

x = (x1,...,z,). Moreover, we also denote witfl,,, -, ()

the boolean functionf(z1,...,z;—1,9(x), Tit1,...,2n)

and with 3z; f(x) the boolean functionf|,,—o(x) +

flz,=1(x). A truth assignmentu is a partial map from
a set of boolean variable¥ to B. A minterm of pu is

a total extension ofu, i.e., a total truth assignment

st pu(z) #L— v(z) = p(x) for all z € V. The
value of a minterm (or of a total truth assignment)is

S 2y (xy), beingV = {z1,..., 2, }.

An OBDD with complemented edges
(COBDD [14][15][16]) is a rooted directed acyclic
graph (DAG) with the following properties. Each nodes
labeled either with a boolean variabler(v) (an internal
node) or withl € B (the unique terminal node). Each
internal nodev has exactly two children, labeled with
high(v) (representing the case in whictar(v) is true)
and low(v) (var(v) is false). Moreoverlow(v) may be
complemented, depending on a lalfb(v) being true.

is a conjunctive predicate oveX U U UY U X’ defining
the transition relation (next stat@ of the system. Note
that X,U,Y may contain discrete as well as continuous
variables.

DTLHSs may be used to represent many interesting real-
world plants, such as e.g., the buck DC/DC converter with
multi inputs used in Section V [9].

Given a DTLHSH = (X, U, Y, N), we define LT$H)
= (Dx, Dy, N) where:N : Dy x Dy x Dx — Bis
a function s.t.N(z,u,2') = 3y € Dy N(z,u,y,z'). A
statex for H is a statex for LTS(#). A DTLHS control
problem P (H,I,G) is defined as the LTS control
problem (LTSH), I, G). To accommodate quantization
errors, always present in software based controllers, it is
useful to relax the notion of control solution by tolerating
an (arbitrarily small) errore on the continuous variables.
Accordingly, we look for controllers that drive the plant to
the goalG with an error at most (we call such a controller

Finally, on each path from the root to a terminal node, thea e-solutionto P). Such an error is defined by the given
variables labeling each internal node must follow the samejuantizationfor the DTLHS.

ordering. The semantics of a COBDD internal nadw.r.t.
a flipping bit b, with var(v) = z, is the boolean function

[v,b] := x[high(v), b] + Z[low(v), b @ flip(v)]
C. Most General Optimal Controllers

A Labeled Transition Syster(LTS) is a tupleS =
(S, A, T) whereS is a finite set of statesi is a finite set of
actions and7' is the (possibly non-deterministitdansition
relation of S. A controller for an LTS § is a function

In classical control theory the conceptaiantizationhas
been introduced (e.g., see [18]) in order to manage real val-
ued variables. Quantization is the process of approxirgatin
a continuous interval by a set of integer values. Formally, a
quantization functiory for a real intervall = [a, b] is a non-
decreasing function : I — Z s.t.~y(I) is a bounded integer
interval. Finally, aquantizationQ = (A,T") for a DTLHS
encloses quantization functiorisfor all state variables as
well as the bounded (safajimissible regiorA on which the

K : Sx A — B enabling actions in a given state. We denotedesired controller is supposed to work. Namelybounds

with Dom(K) the set of states for which a control action
is enabled. An LTScontrol problemis a triple P = (S,

I, G), whereS is an LTS andl,G C S. A controller K
for S is astrong solutionto P iff it drives eachinitial state

s € I in agoalstatet € GG, notwithstanding nondeterminism
of S. A strong solutionK™ to P is optimaliff it minimizes
path lengths. An optimal strong solutidti* to P is themost
general optimal controllefwe call such solution amgg iff

in each state it enables all actions enabled by other optim&P is a ||T'|| solution K (x,u) to P such thatK (z,u)

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

both state variables (subregichy) on which the controller
has to keep the system and action variables (subregion
on which the controller works.

A control problem admits guantizedsolution if control
decisions can be made by just looking at quantized values.
This enables a software implementation for a controller.

Definition 2. Given a quantizatio®, a Q Quantized Feed-
back Control(QFC) solution to a DTLHS control problem

17

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

K([(x),T(u)), whereK : T'(Ax) x T'(Ay) — B and|['|| B. Algorithm Details
is the size of the largest interval of values that are mapped
to the same quantized value.

For efficient (non-complete) algorithms to compute QFC
solutions to a DTLHS control problem, e.g., see [7].

FunctionVisualizeworks as follows. First of all, in line 2,
state bit variables encoding plant state variables ndE in
(i.e., thosenot to be displayed in the final picture) are
existentialized out fron, thus obtaining COBDD node’

IV. AUTOMATIC VISUALIZATION OF CONTROL and flipping bitd’ such that[v’, '] = Jvy, ..., vefv,b] =

SOFTWARE Jvy, ..., v K = K. As a result, the final picture will show
In this section, we describe (Algorithms 1 and 2) our &ll values for plant state variables i s.t. there exists at

method to automatically generate a 2D picture describind€@St @ value for all plant state variables M\ = that is
a Q QFC solutionk to a DTLHS control problenp = controlled byx. S
(#,1,G) with a given quantizatior® = (4,T). The workflow of the remaining lines is as follows. In

The picture we generate lies on a 2D cartesian planedrder to obtain a better compression, controllers are &fyic
where each axis is labeled with a state variableHofind representEd with COBDDs where action bit variables come
has a range bounded by, Then, a pointz, y) in the picture ~ first in the variables ordering; this is also the case for [7].
is colored depending on which actions set is enabledsby [N order to generate the desired picture, we reverse such

in the DTLHS state(z, y), i.e., on order by placing state bit variables before action bit Jzl&a
(line 4), thus obtaining a new COBDM. Since there always
c(z,y) ={u| K((z,y),u) =1} exists a COBDD representing a given boolean formula, in

If 7 has(+2 state variables, then the actions set we consideth® new COBDDLy' there will be a node” s.t.[v", V'] = K.

is c(z,y) = {u | Idi,...,deK((z,y,dy,... de),u) = 1}. This allows us to perjorm a dt.apth—f.lrst visit (DFS) of the
Note that such a picture is practically useful # has COBDD representing<, by calling (line 5) functionCre-

at least two real variables, which is indeed the case irfteGnuplotBodydescribed in Algorithm 2. Namely, function
most real-world SBCSs. Finally, a second picture showingCreateGnuplotBodyeturns a listM of (u, v, b) triples s.t.
the correspondence between actions sets and colors is algds @ total truth assignment to state bit variables with value

generated. z, and for all plant states in the quantized staté (i.e.,
such thatr € T=1(2)) K enables the set of actionss.t.
A. Input and Output the boolean encoding of satisfies]v, b].
The above is performed by our main functidMsualize In order to achieve this goal, functid@reateGnuplotBody
(described in Algorithm 1), which takes as input: of Algorithm 2 starts a depth-first visit (DFS) of from
e a DTLHS plant modelH = (X, U, Y, N); nodev” with flipping bit . On each path from” to 1,
« a quantizationQ = (A,T") for H; the DFS stops as soon as an action bit variable is found

« a subseE C X of plant state variables sf=| = 2; at nodez (i.e., var(z) is part of plant action variable&
variables in= are those to be shown in the axes of theencoding) with flipping bitc. While exploring such a path,
final 2D picture; the corresponding truth assignmemtis maintained, i.e.,

o a Q QFC solutionK to a control problem involving if the then edge of a nodev has been traversed, then
H. By Definition 2, K is based on a controllek p(var(w)) = 1 (lines 5-6); if the else edge has been
that only looks at integer (quantized) values. Thus, bytraversed, themu(var(w)) = 0 (lines 7-9). Moreover, if
considering the boolean encoding of such values (as ik complemented edge is traversed, the flipping tbiis
is usual in Model Checking Applications)y, and by flipped (line 8). Once, in line 1, a node is found s.t.
abuse of notatior{, can be represented as a COBDD var(z) is an action bit variable, or directly is encountered
p, a nodev of p and a flipping bith s.t. Jv, 0] = K. (meaning that all actions are enabled &yfor the quantized

The output of Visualize is a Gnuplot [8] source files States corresponding to values of mintermg:pfthe to-be-

pair (P, () describing the picture® to be generated and returned listM is updated (lines 2-3) by adding all minterms
the color legendC. Note however thatVisualize may of the currentu together with the paitz, b).

be easily adjusted to work with any other graphing tool, Once functionCreateGnuplotBodynhas finished, the re-
provided that it generates pictures from textual desai®i turned listA/ may be directly translated in a Gnuplot fife

In Algorithm 1, we represenf’ as a list of rectangles in as follows. For each tripléu, v, b) in M, the value of u is
the plant state space (restricted to variableE)jnTo each translated in a rectangle having as bounds thoseo{ %),
rectangle, we associate the RGB code of the correspondinge., of the cartesian product of the intervals that are radpp
color to be displayed. Analogously, is a list of colored to & (line 10). The RGB color of such a rectangle may be
rectangles with height equal to the height of the picture:determined starting from the address (a C language pointer)
on thex axis the actions set corresponding to each colore®f (v, b). However, this has the following drawbacks: i) the
rectangle is shown. Gnupilot file for the picture may be too big; ii) different runs

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4 18

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

of function Visualize (e.g., with different quantizations, and Algorithm 2 Visualizing a controller: Gnuplot body.
thus different boolean encoding, for plant state varigblesRequire: COBDD p, node v, booleanb, first action bit
may result in different colors for equal actions sets, which variable a, truth assignmenj, (assignment, COBDD
may make difficult an effective comparison between differ- node, flipping bit) triples sef/

ent experiments. In order to counteractf), is compacted, Ensure: CreateGnuplotBody, v, b, a, 1, M):

by collapsing contiguous quantized states with the samel: if (v =1 A =b) V (v # 1 A var(v) > a) then

action sets (functiorCompactRectangularRegiois line 7 2: for all mintermsv of x do

of Algorithm 1). To avoid ii), we first generate all possible 3: M + M U (v,v,b)

22" colors (line 8, using an approach similar to [19]) and 4: else ifv # 1 then

we use a lexicographical ordering on action sets to pick one5: p(var(v)) < 1

of such colors. Finally, the Gnuplot fil€'" maintaining the 6: M < CreateGnuplotBody, high(v), b, a, 1, M)
correspondence between colors and action sets is generatetd p(var(v)) - 0

in lines 11-12, where SatAll returns all satisfying minterm 8: if flip(v) then b < —b

of the given COBDD (boolean function). 9: M <+ CreateGnuplotBody, low(v), b, a, u, M)

10: return M

Algorithm 1 Visualizing a controller.
Require: DTLHS H, quantizationQ, state variables sét

Table |
S.t. |E\ =2, COBDD P nodewv, booleanb KPSPERFORMANCE(CPUTIMES ARE IN SECONDS.
Ensure: VisualizdH, =, p, v, b):
1: let vy,..., v, be the state bit variables encoding plant 7 CPU(®) CPU@G) |P| || |E|

variables in= 1 9.15e+00 3.25e+02 6.17e+03 2.46e+01 5.19e+03
/ / / /
2: let o', be s.t.[v", V'] = Jv, ..., v, 0] 2 1.00e+01 147e+03 1.29e+04 2.91e+01 1.09e+04
3 letwy, ..., wr,wry1,..., Wy be the current bit vari- 3 1.06e+01 2.43e+03 1.67e+04 2.91e+01 1.39e+04
4

ables ordering irnp, being r (resp.n) the number of 1.10e+01 3.58e+03 2.02e+04 3.16e+01 1.68e+04
action (state) bits variables

4: modify the ordering iNw,41,..., Wptr, W1,..., Wy by H;, where quantizatiorQ is s.t.n = |z| = 20 and
call p’ the resulting COBDD and” the node ofp’ s.t. r; = |u| = i. K; is an intermediate output of the QKS
", 0], = [v, V], tool described in [7]. For eacp;, we run KPS so as to

5. M «+CreateGnuplotBody/',v", V', w1, L, @) computeVisualizdH;, Q, X, p;, v;, b;) (see Algorithm 1).

6: for all i € [|a|] do All our experiments have been carried out on a 3.0 GHz Intel

7. M +CompactRectangularRegidig, i) hyperthreaded Quad Core Linux PC with 8 GB of RAM.

8: < DifferentColorsRGR2*") 2) KPS Performancein this section we will show the

o: for all triples (., v,b) € M do performance (in terms of computation time and output size)

10: using Q, append toP the rectangle corresponding to of the algorithms discussed in Section V. Table | show our

p With color Xjexordetu,b) experimental results. Theth row in Table | corresponds to

11: for all (v,b) s.t.3(p,v,b) € M do experiments running KPS so as to compSnthesizél;,

12: append toC' a rectangle of colotexordetv,p) With Q. X, p:. v;, b;). Columns in Table I have the following

label SatAll(p’, v, b) meaning. Column- shows the number of action variables

13: retun (P, C) |u| (note that|xz| = 20 on all our experiments). Col-

umn CPU(P) shows the computation time of KPS, i.e., of
V. EXPERIMENTAL RESULTS function Visualize of Algorithm 1 (in seconds). Columns

We implemented our picture generation algorithm inl®|, [/| and|E| show the size in KB of, respectively, the
C programming language, using the CUDD package fosource Gnuplot file for the 2D picture (i.e., the outguiof
OBDD based computations and BLIF files to represent inpufunction Visualize of Algorithm 1), the JPEG file generated
OBDDs. We name the resulting tool KPBantroller Picture Py Gnuplot fromP (i.e., with compression), and the EPS file
Synthesizdr KPS is part of a more general tool named 9enerated by Gnuplot fron# (i.e., without compression).
QKS (Quantized feedback Kontrol Synthesifg}). In this Finally, Column CPU(G) shows the computation time of
section we present our experiments that aim at evaluatinfphuplot (in seconds) to generate the JPEG and the EPS
effectiveness of KPS. files (computation time and size for file are negligible).

1) Experimental SettingsWe present experimental re- From Table | we can see that, in slightly more than 10
sults obtained by using KPS on given COBDPS . .., pa seconds we are able to generate the Gnuplot file for the
and DTLHSsH,,...,Hy s.t. for alli € [4] p; represents multi-input buck withr = 4 action variables. Then, Gnuplot
the mgo K;(x,u) for a buck DC/DC converter withi needs about one hour to synthesize the actual picture i(eithe
inputs (see [9] for a description of this system) modeledin JPEG or in EPS).

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4 19

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

The proposed approach currently generates a 2D picture,

. | which forces to focus on just two plant state variables. Thus
a natural possible future research direction is to invastig
5 1 how to generate a 3D picture. Finally, a 3D bar picture may

also be used if there are more than 2 state variables in the
input DTLHS plant, in order to show for each quantized

2 3 value of the variables to be shown (i.e., those=ijn the
, percentage of coverage w.r.t. variables not to be shown (i.e
not in).
1 AcknowledgmentsWe are grateful to our anonymous
referees for their helpful comments. Our work has been
°r partially supported by: MIUR project DM24283 (TRAMP)

. .
-4 -3 -2 1 0 1 2 3 4
iL

Figure 2. KPS+Gnuplot generated pictuie) (for K.

(1]
(2]
(3]
(4]
(5]
(6]
[7]

) =) 0901 (0) 0

uuuuu

KPS+Gnuplot generated picturg) (for Ko.

©00) 0.1

Figure 3.

3) KPS Evaluation: In Figures 2 and 3 we show the
pictures generated by the KPS—Gnuplot chain&gr. First
of all, from Figure 3 we note that only actions sets out of
22° = 16 are indeed enabled ii. Moreover, from Figure 2
we may immediately see thaf indeed covers nearly all the
admissible region of the buck converter. Finally, combgnin
the two figures, we may see that the actions {et, 1)}
(i.e.,us = 1 andu; may be eitherl or 0) is the most used
one.

(8]
9]

(10]

(11]

(12]

VI. CONCLUSIONS [13]

In this paper, we addressed the problem of visualizing a
controller K for a DTLHS modeling an embedded system
(plant). To this aim, we presented an algorithm and a toolt4!
KPS implementing it, which, from an OBDD representation[15]
of K, effectively generates a 2D picture depictiAg Such
picture consists on a cartesian plane where each point
corresponds to a state of the starting DTLHS, and color$16]
with the same color all regions of states for which the sam(—fﬂ]
actions set is defined ol. A separated picture showing the
relation between a color and the corresponding actions sgig]
is also automatically generated. In this way, the stateoregi
for which any color is shown depicts the coverage Fof
whilest the regions colors give a glimpse of which actions
are turned on by on given plant states regions. We have
shown feasibility of our proposed approach by presenting20]
experimental results on using it to visualize the controlle
for a multi-input buck DC-DC converter.

(19]

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

and by the EC FP7 project GA218815 (ULISSE).

REFERENCES

T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” ifFM’06, LNCS 4085.

T. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems3TTT 1(1), pp. 110-122, 1997.
G. Frehse, “Phaver: algorithmic verification of hybrid systems
past hytech,STTT 10(3), pp. 263-279, 2008.

H. Wong-Toi, “The synthesis of controllers for linear hybrid
automata,” inCDC’97, pp. 4607-4612.

C. Tomlin, J. Lygeros, and S. Sastry, “Computing controllers
for nonlinear hybrid systems,” ilSCC'99 LNCS 1569.

M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for
embedded controller synthesis,” @AV’10, LNCS 6174.

F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV’'10, LNCS 6174.

“Gnuplot: http://www.gnuplot.info/,” accessed: Jul 31, 2012.
F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model based
synthesis of embedded control software,”"HMSOFT 12

F. Mari, I. Melatti, I. Salvo, E. Tronci. Quantized feedback
control software synthesis from system level formal specifi-
cations.CoRR abs/1107.5638v1, 2011.

A. Girard, “Synthesis using approximately bisimilar abstrac-
tions: time-optimal control problems,” i€DC’10.

M. J. Mazo and P. Tabuada, “Symbolic approximate time-
optimal control,”Systems & Control Letter$0(4), pp. 256—
263, 2011.

A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar
symbolic models for incrementally stable switched systems,”
IEEE Trans. on Aut. Contr55(1), pp. 116-126, 2010.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” DAC’90.

S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision
diagram with attributed edges for efficient boolean function
manipulation,” inDAC’90, pp. 52-57.

F. Mari, I. Melatti, |. Salvo, and E. Tronci, “From boolean
relations to control software,” iIlCSEA'11

A. Cimatti, M. Roveri, and P. Traverso, “Strong planning in
non-deterministic domains via model checking,”AtPS’98

M. Fu and L. Xie, “The sector bound approach to quantized
feedback control,JEEE Trans. on Automatic Controb0(11),

pp. 1698-1711, 2005.

“How to generate random colors programmatically:
http://martin.ankerl.com/2009/12/09/how-to-create-random-
colors-programmatically/,” accessed: Jul 31, 2012.

F. Mari, I. Melatti, 1. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV’'10, LNCS 6174.

20

