
Digital identity-based multisignature scheme implementation

Francisco Javier Buenasmañanas Domı́guez,
Ascensión Hernández Encinas, Araceli Queiruga Dios

Dept. Applied Mathematics
University of Salamanca

Salamanca, Spain
Email: {u61352, ascen, queirugadios}@usal.es

Luis Hernández Encinas
Dept. of Information Processing and Coding

Applied Physics Institute, CSIC
Madrid, Spain

Email: luis@iec.csic.es

Abstract—Digital signature, as an official signature, have
many applications in information security, including authenti-
cation, data integrity, and non-repudiation. When a private or
public document must be signed by a group of people, we call
it multisignature scheme if all and every single member of the
group signs the document.

An identity-based digital multisignature is a multi signer
digital signature so that the multiple private keys are generated
by a trusted third part from signer’s identities. In this paper,
an efficient Java implementation to a recent identity-based
multisignature scheme based on RSA is proposed.

Keywords-RSA; digital signature; multi-signature scheme;
Java.

I. INTRODUCTION

Adi Shamir [1] introduced a novel type of cryptographic
scheme, based on the identity of the users, which enables any
pair of users to communicate and sign documents securely.
Moreover, it is possible to verify each other’s signatures
without exchanging private or public keys, without keeping
key directories, and without using the services of a third
party. The scheme assumes the existence of trusted Key
Generator Center (KGC), with the role of giving each user
a personalized smart card when he first joins the network.
The card contains the secret key, and programs for message
encryption/decryption and signature generation/verification.
The user chooses any combination of name, social security
number, e-mail or telephone number as his public key.

The scheme is adequate for closed groups of executives
of a multinational company or the branches of a large
bank or members of a sports club since the headquarters
of the corporation can be the KGC that everyone trusts.
This scheme can be the basis for a new type of personal
identification card with which everyone can digitally sign
checks, legal documents, and be electronically identify.

Moreover, a digital multisignature is a digital signature of
a message or document generated by multiple signers with
different private keys [2].

An identity-based digital multisignature, based on
Shamir’s identity-based scheme, is a digital signature of
a message generated by multiple signers that obtains their
private keys from a KGC, and the public keys from their own

identities. Such practical and secure multisignature schemes
were proposed to be applied for mobile communications [3].

In 2008, Harn and Ren [4] proposed an efficient identity-
based RSA multisignature scheme and it seams to be se-
cure against known attacks like forgerability under chosen-
message attack, multi-signer collusion attack and adaptive
chosen-ID attack. Authors propose the scheme with the
most important multisignature properties: the length of the
multisignature was fix and the verification time was also fix,
regardless of the number of signers.

Some flaws on Harn-Ren identity-based RSA multisig-
nature scheme were published a year later [5]. These draw-
backs led to the proposal of a new system two years later. In
fact, in [6] two security loopholes were discovered in Harn-
Ren scheme and a new one was proposed. The resultant
protocol was suitable for wireless communications because
it is not only possessing security but also saving computation
resources and communication bandwidth.

The implementation proposed in this paper supposes an
efficient Java implementation of the improved identity-based
multisignature scheme based on RSA suggested in [6].
This paper is organized as follows. Section II will detail
the RSA cryptosystem and a short overview of existing
identity-based multisignature schemes. Some attempts of
using Matlab to implement these cryptosystems and the
efficient Java implementation will be shown in Section III.
Finally, conclusions and future works will be presented in
Section IV.

II. RELATED WORKS

In this section, we make a brief overview to RSA
cryptosystem as well as Shamir’s identity-based signature
scheme. Harn-Ren’s scheme as well as the improved mul-
tisignature scheme will be reviewed.

A. RSA cryptosystem

RSA cryptosystem [7] consists of three phases: key gen-
eration, encryption and decryption.

1) Key generation for a user U :
a) Select two large prime numbers p, q and computes

n = p · q and ϕ(n) = (p− 1)(q − 1).

42

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

b) Select a positive integer e, 1 < e < ϕ(n), such that
gcd(e, ϕ(n)) = 1.

c) Compute the inverse of e in Z∗
ϕ(n), d, so that e · d ≡

1(mod ϕ(n)).
The public key of U is the pair (n, e) and his private key

is d. For security reasons, the values p, q and ϕ(n) must be
kept secret.

2) Encryption process: If user B, wishes to cipher the
message, M , and send it to user A, he carries out the
following operations:

a) He obtains A’s public key: (nA, eA).
b) He represents M as an integer in the range [0, nA−1],

even splitting m into smaller blocks if necessary.
c) The ciphered message is c = MeA(mod nA).
3) Decryption process: To decipher the cryptogram c and

recover the original message, M , user A simply uses his pri-
vate key dA and computes cdA ≡ MeAdA ≡ M(mod nA).

Asymmetric-key cryptosystems allow the sender to digi-
tally sign a message, so that the receiver can check that the
message is authentic and not modified.

Suppose that A, wishes to digitally sign a public docu-
ment, M , and send it to B. The steps are the following.

a) The first step is to apply a hash function to the
document, creating the document digest [8], H(M) =
m, and encrypts it using his private key: r ≡
mdA(mod nA).

b) He ciphers the value r with B’s public key to obtain
the signature s ≡ reB (mod nB).

Once the document and the signature are received by B
from A, he can perform the verification phase as follows:

a) He computes sdB (mod nB) ≡ reBdB (mod nB) ≡ r.
b) He determines reA(mod nA) ≡ mdAeA(mod nA) ≡

m.
c) He deciphers c to obtain M , and checks whether the

hash of M , H(M), matches m. If it does, the signature
is valid.

The security of the encryption and decryption processes,
and the digital signature scheme based on RSA, depend on
the difficulty of solving the factorization problem, which at
present is considered computationally infeasible.

B. Shamir’s identity-based signature scheme

First of all, each signer completes his registration with
KGC, and KGC generates the signer’s secret key using their
own identities. On the other hand, the signature’s public
verification key is the signer’s identification. This scheme
reduces the costs of verifying the public key. The process is
divided into the following phases:

1) KGC keys:
a) KGC picks two large primes p, and q, to compute n

and ϕ(n).
b) Chooses a random public key e, satisfying §II-A

conditions.

2) Signer secret key generation phase:
a) Signer j sends individual information and his identity

ij to KGC for registration.
b) After KGC accepts the user’s identity, KGC uses his

private key d to create a secret key dj ≡ idj (mod n)
from signer’s identity ij . Subsequently, dj will be sent
back to the signer as his secret key.

3) Signing phase: In the process of signing a document or
message digest m, the signer uses his secret key dj and the
public key e of the KGC to produce the signature σ = (t, s).
The signing process is as follows:

Signers choose a random number r to compute t =
remod n. The secret key d is used to compute s =
d · rH(t,m)(mod n). Then, (t, s,m) is transmitted to the
receiver, and σ = (t, s) is the signature of the message.

4) Verification phase: When the receiver receives the
signature σ = (t, s) for the message m from signer ij , the
public key e of the KGC and signer’s identity ij can be used
to verify the validity of the signature:

se ≡ ij · tH(t,M)(mod n).

C. Harn-Ren efficient identity-based RSA multisignature

1) Private key generation phase: In this algorithm, every
signer obtains his private key from the KGC:

a) Every signer sends their individual information to the
KGC for registration.

b) KGC, with his private key d and the message digest of
identity ij , generates the private key dj ≡ idj (mod n)
of ij signer.

2) Signing phase: To generate an identity-based digital
multisignature every ij signer from a group of signers,
i1, i2, . . . , il, follows these steps:

a) Chooses a random integer rj , and with his public key,
e, computes

tj ≡ rj
e(mod n).

b) Broadcasts rj to all signers.
c) After receiving rj , j = 1, 2, . . . , l, each signer com-

putes

t ≡
l∏

j=1

rj(mod n), and sj ≡ dj · rH(t,M)
j (mod n).

d) Broadcast sj to all signers.
e) After every signer has received sj , j = 1, 2, . . . , l from

the others, compute s as

s ≡
l∏

j=1

sj(mod n).

The multisignature of a message m is σ = (t, s). In this
scheme every signer’s signature is the same as Shamir’s
scheme.

43

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

3) Verification Phase: To verify the multisignature σ =
(t, s) made by signers with identities i1, i2, . . . , il of m,

se ≡ (i1 · i2 · · · il) · tH(t,m)(mod n).

If this verification equation is successful, then the infor-
mation has a legitimate signature.

Harn-Ren’s multisignature scheme does not protect the
signer’s signature secret key from being exposed [6]. Anyone
is able to obtain the signer’s secret key dj using broadcast
data (rj , sj) and signature (m,σ). Moreover, if e is a small
value, an attacker is able to obtain the signer’s secret key d
through the public information (e,m, s) .

D. The improved authentication scheme
To avoid the two mentioned loopholes in Harn-Ren mul-

tisignature scheme, a new one was proposed in [6], where
the KGC keys phase and signer secret key generation phase
is the same as the original scheme in §II-C.

1) Signing phase: As before, if the group of signers
i1, i2, . . . , il want to jointly sign the document m, each
signer j performs the same steps mentioned in §II-C, except
that now the values sj are defined as:

sj ≡ dtj · r
H(t,M)
j (mod n).

2) Verification phase: When the receiver receives mul-
tisignature message (m,σ) , the public key e of the KGC and
the identities of all the signers i1, i2, . . . , il can be used to
verify the validity of the signature. The verification formula
is as follows:

se ≡ (i1 · i2 · · · il)t · tH(t,m)(mod n).

If verification is successful, then the information has a
legitimate signature. Otherwise, it is an illegal signature.

III. IMPLEMENTATION AND PROCEDURES

We have developed the Harn-Ren improved multisigna-
ture scheme. We have started with Matlab, with the use
of functions and toolboxes to encrypt, decrypt and sign
messages with RSA cryptosystem, with real parameters, and
we changed to Java to code a more efficient programm.

A. Matlab and big integers
To implement RSA cryptosystem we need to find big

integers, at least 1024 or 2048 bits keys, to be sure that RSA
is secure against known attacks. Trying to work with Matlab,
we found a toolbox, vpi, to compute variable precision
arithmetic operations.

First of all we started the cryptosystem implementation
trying to encrypt and decrypt a short message to check
Matlab possibilities. We took parameters p and q with length
of about 155 digits. In this case, the calculation of public and
private key is fast, and also the calculation of the encrypted
message, but to get the plain text is very slow, because the
modular power with Matlab is not enough efficient. This was
the reason to change to Java language.

B. Java implementation

We have developed a Java a digital identity mul-
tisignature application. Although Java is object oriented,
being a simple and algorithmic implementation, we
have divided the program into two classes, inside the
multisignatures_identities package. The first
class is called Identities, this class contains the em-
bodiment of the signature and verification. The second class
name is Hash, and performs a hash function from a string
and returns the string’s digest.
Identity class is composed by the following attributes:
1) RSA parameters: p, q, n, fi, d, e.
2) Number of participants: num
3) Each participant has: Identity (i_j), Private key

(d_j), and other data used in the multisignature
(r_j, t_j, s_j).

4) The values of the multisignature: s, t.
Identity class contains the methods that carry out the

following actions:
1) Calculation of RSA parameters:

a) calculate_module: returns the module n
when p, q are known.

b) calculate_fi_euler: returns fi when p,
q are known.

c) calculate_d: returns private key d, when
public key and fi are known.

2) Calculation of identities and private keys:
a) calculate_identities_and_private

_keys: with the number of participants num, the
private key d, and the modulus n, the identities
i_j and private keys for each signer d_j can
be calculated.

3) Other estimates:
a) calculate_first_step: with the number

of participants num, the public key e and the
modulus n, values t_j and r_j can be obtained.

b) calculate_third_step: calculate the
value t with some of the previously calculated
parameters.

c) calculate_s: obtains the value s with some
of the previously calculated parameters.

4) Some views on screen:
a) initial_parameters_view: to show the

following parameters: p, q, n, fi, d, e.
b) identities_and_private_keys_view:

to show the following parameters for each
participant: i_j, d_j.

c) first_step_values_view: to show t_j,
r_j parameters for each participant.

d) third_step_values_view: to show t,
s_j parameters for each participant.

5) Signature verification:

44

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

a) signature_verification: verifies the re-
turned signature with a boolean value: true if the
signature is verified or false if not.

Hash class is composed by a serie of attributes:
1) md: is typeMessageDigest, where the hash func-

tion is of type SHA-1.
2) buffer: is an array of bytes, which contains the

string to calculate the hash.
3) digest: byte that includes the string for conversion.
4) hast: the string which will store the hash value.
Hash class includes the following methods:
1) Hash: is the constructor method.
2) getHash: will calculate the hash for a string.
To develop the proposed multisignature scheme, we have

used two classes: BigInteger and BigDecimal. These
classes’ types have advantages over the types primitive.
When big numbers are needed in Java, the best option is
to use these classes. In fact, their storage limit is the same
limit as the Java virtual machine memory limit.

The BigDecimal class is only used to generate random
numbers with the random() method of the Math library.
The BigInteger class was more useful to the program
because of some of the methods provided by this class. The
methods that were interesting for us were:

1) multiply(BigInteger val): it returns the
multiplication of this BigInteger with the input
parameter.

2) subtract(BigInteger val): it returns the sub-
traction of this BigInteger with the input value.

3) mod(BigInteger m): it returns the value of
BigInteger module m, with m the input value.

4) modInverse(BigInteger m): it returns the in-
verse of this BigInteger module m.

5) modPow(BigInteger exponent,
BigInteger m): it returns the pow of this
BigInteger with exponent m.

6) compareTo(BigInteger val): it compares
BigInteger with the parameter passed in the
method and return 0 if they are equal.

C. Benefits from this developments

We have calculated the CPU time to perform an identity
based multisignature and the time to verify the multisigna-
ture with the proposed Java implementation. We have used
a System class method called currentTimeMillis().
This method returns the current time in milliseconds. The
needed average time to multisign a document by 10 signers
is 88.3ms, and 1.3ms to verify. If we take 100 signers, the
time to multisign the same document is 636ms and 3.2ms
to verify.

These are two benefits related to the development:
1) The time to sign and verify a document is slow.

2) The possibilities offered by java environment are good.
The source code detailed in section §III-B could be
added to a java card applet to get a secure environment
that allows different people to multising documents.

IV. CONCLUSION AND FUTURE WORK

As we presented, some identity-based identification and
signature schemes have been implemented using Java, as can
be shown in [9], but there is no implementation related to
an identity-based multisignature scheme based on RSA. We
studied the possibilities of a software like Matlab, but we
recognize that it does not work properly with big integers,
that are needed to encrypt, decrypt and sign messages with
RSA, and to multisign messages or documents with some
users, the calculations are more slowly that the case of single
RSA.

We have chosen the Java programming language because
of its efficiency and because we are developing some Java
Card applets that enable to digital sign documents.

ACKNOWLEDGMENT

This work has been supported by Fundación Memoria D.
Samuel Solórzano Barruso under the project FS/7-2010.

REFERENCES

[1] A. Shamir, “Identity-based cryptosystems and signature
schemes”, Advances in Cryptology (Crypto’84), vol. 196,
1984, pp. 47–53.

[2] R. Durán Dı́az, F. Hernández Álvarez, L. Hernández Encinas,
and A. Queiruga Dios, “A review of multisignatures based
on RSA”, Proceedings of The 4th International Information
Security & Cryptology Conference (ISCTURKEY’10), 38–44.
Ankara (Turkey), May 2010.

[3] Y.F. Chang, P.C. Chen, and T.H. Chen, “A Verifiable Identity-
based RSA Multisignature Scheme for Mobile Communica-
tions,” Journal of Computers, vol. 20, 3, 2009, pp. 3–8.

[4] L. Harn and J. Ren, “Efficient identity-based RSA multi-
signatures”, Computers & Security, vol. 27, 2008, pp. 12–15.

[5] Y.F. Chang, Y.C. Lai, and M.Y. Chen, “Further Remarks on
Identity-based RSA Multisignature,” PRoc. Fifth International
Conference on Intelligent Information Hiding and Multimedia
Signal Processing, 2009, doi:10.1109/IIH-MSP.2009.137.

[6] F.Y. Yang, J.H. Lo, and C.M. Liao, “Improvement of an
Efficient ID-Based RSA Multisignature,” International Confer-
ence on Complex, Intelligent and Software Intensive Systems
(CISIS), 2010, pp. 822–826.

[7] R.L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems”,
Commun. ACM, vol. 21, 1978, pp. 120–126.

[8] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
applied cryptography, CRC Press, Boca Raton, FL, 1997.

[9] S.Y Tan, S.H. Heng, B.M. Goi, and J.J. Chin and S. Moon,
“Java Implementation for Identity-Based Identification,” Inter-
national Journal of Cryptology Research, vol. 1, 1, 2009, pp.
21–32.

45

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-161-8

