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Abstract—The Versatile Video Coding (VVC) standard is shown 
to significantly outperform the High Efficiency Video Coding 
(HEVC), the previous compression standard image/video codecs. 
More complex structures and advanced prediction techniques 
are behind this improved performance, leading to reduced 
visual artifacts.  Deep learning-based image restoration 
algorithms have been proposed and are increasingly used for 
further reducing VVC generated artifacts. In this paper, we 
propose a Swin Transformer based image restoration model for 
VVC compression artifacts reduction that employs a self-
attention mechanism to explore both global and local features to 
better understand the relation between existing and missing 
information. Performance evaluations showed that our 
proposed method outperforms existing state-of-the-art 
approaches yielding 0.884 dB quality improvement or 15.95% 
bitrate savings.  

Keywords-image restoration; VVC; vision transformer; multi 
scale window; artifacts reduction. 

I.  INTRODUCTION 
Digital image and video compression standards played an 

important role in the rise of digital communications and 
entertainment technologies and are still of enormous 
importance in the emerging worlds of social media, Virtual 
Reality (VR) and metaverse. Lossy image compression 
approaches utilize the characteristics of the human visual 
system and its varying sensitivity to certain frequencies, 
brightness, contrast, and colors to achieve a high compression 
while guaranteeing acceptable visual image quality. The 
intrinsic characteristics of lossy image compression have 
increased the efficiency of sharing and viewing ultra-high 
resolution personal images, while inevitably introducing some 
undesired artifacts. The Versatile Video Coding (VVC) [1] is 
the latest generation of international coding standards jointly 
developed by the ITU-T Video Coding Experts Group 
(VCEG) and the ISO/IEC Moving Picture Experts Group 
(MPEG), and which achieves about a 50% bitrate reduction 
over its predecessor the High Efficiency Video Coding 
(HEVC) [2]. This improved performance is due to a series of 
new coding improvements, such as the Quad-Tree with nested 
Multi-type Tree (QTMT) structure of Coding Unit (CU) 
partition, Wide-Angle Intra Prediction (WAIP) and Matrix-
based Intra Prediction (MIP).  

Lately, with the evolution of convolutional neural 
networks, Convolutional Neural Networks (CNNs) based 
image restoration algorithms have been widely proposed for 
enhancing the quality of images compressed by VVC. Li et al. 

[3] proposed a convolutional neural network based filter 
which leverages auxiliary information to enhance image 
quality. Lu et al. [4] combined convolutional layers with 
multi-scale spatial priors to effectively reduce VVC caused 
artifacts. Bonnineau et al. [5] proposed multitask learning to 
perform both VVC quality enhancement and super-resolution. 
Different from the previous approaches that employ multiple 
neural networks, this method uses an optimized single shared 
network to achieve both tasks. 

Lately, the Vision Transformer (ViT) network architecture 
has demonstrated improved performance on a variety of 
computer vision tasks such as image classification [6], 
semantic segmentation [7] and object detection [8]. 
Particularly, Swin Transformer proposed a shifted window 
scheme that limits the self-attention computation to non-
overlapping local windows to improve computational 
efficiency [9]. SwinIR [10], an image restoration algorithm 
based on Swin Transformer, was developed for image 
denoising, image super-resolution, and achieved state of the 
art [10]. The same network was used for reducing visual 
artifacts of Joint Photographic Experts Group (JPEG) 
compressed images and showed to achieve improved 
performance compared to other existing approaches.  
However, VVC employs a complex and sophisticated 
partitioning structure and other advanced features that lead to 
better compression performance and better image quality 
which is much more difficult to improve.  

In this paper, we propose a Swin Transformer based image 
restoration model for reducing VVC compression artifacts. In 
our approach we propose a 16x16 pixels attention window 
which is shown to best capture the local features in 
images/frames compressed by the VVC complex tree 
structure coding unit architecture. Performance evaluations 
have shown that our proposed network outperforms existing 
state-of-the-art approaches, yielding 0.884 dB quality 
improvement or 15.95% bitrate savings. 

The rest of the paper is structured as follows. Section II 
describes our proposed network. Section III presents the 
experimental results and discussion. Finally, Section IV 
concludes the paper.  

II. PROPOSED METHOD 
We propose a Swin Transformer based image restoration 

network for VVC compression artifacts reduction, which 
follows the architectural design outlined in [10]. Figure 1 
shows the overall architecture, which consists of three main 
modules. The shallow feature extraction module uses a 3x3 

1Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-072-8

IMMM 2023 : The Thirteenth International Conference on Advances in Information Mining and Management



convolutional layer to obtain the shallow features of the input 
image, which are then fed directly into the deep feature 
extraction module. The deep feature extraction model consists 
of 6 residual Swin Transformer blocks (RSTB) and a 3x3 
convolutional layer. Each RSTB layer has six Swin 
Transformer Layers (STL), which involve normalization and 
a self-attention module that may focus on what is important in 
a local area. Self-attention is computed only within local 
windows that are arranged to divide the image evenly in a non-
overlapping manner. Small size windows tend to extract local 
detailed information, while larger windows focus more on 
high level conceptual information. We evaluated different 
window sized for our task of removing VVC compression 
artifacts to determine the size that yields the best results.  It is 
worth mentioning that for the case of improving JPEG 
compression artifacts, the best self-attention window size was 
shown to be equal to 7x7 pixels [10]. When the size of the 
window was increased to 8x8 pixels, a size that equals the size 
of the blocks used in JPEG, the performance dropped 
significantly. However, our analysis (details presented in the 
following section) showed that larger sizes are more effective 
for the case of VVC compressed images. In fact, size 16x16 
yielded the best visual results. The reason for this may be that 
unlike JPEG that uses only 8x8 blocks, VVC uses a much 
more complex tree structure unit architecture with multiple 
and larger sizes, resulting in block boundaries very different 
than those of JPEG (which are always 8x8).  It worth 
mentioning here that during the first stage, W-MSA (Window 
Multi-head Self-Attention) finds the relationship between 
pixels in the original image distribution, while the second 
stage, SW-MSA (Shift Window MSA) calculates the 
relationship of pixels when they are shifted. The Quality 

Enhancement module involves only a 3x3 convolutional layer 
to fuse the shallow and deep features together. Finally, the 
input image is added to the fused information of the quality 
enhancement layer to form the output reconstructed image. 

In our model, we use the Charbonnier loss function [11] to 
improve the performance of our network: 

ℒ = #||𝐼!"# − 𝐼"#||$ + 𝜀$	,                        (1) 

where 𝐼!"# is the restored image generated by our model, 𝐼"# 
is the corresponding ground-truth image, and  𝜀 is a constant 
that is empirically set to 10-3. 

III. EXPERIMENTAL STUDIES 

A. Datasets 
For training the image restoration model, we built our 

training dataset using a total of 8194 images from the DIV2K 
[12], Flickr2K [13] and WED [14] datasets. First, all the RGB 
images were converted to YUV 420 format. Then, we encoded 
these images using VVC's latest software VTM 18.2, at four 
different Quantization Parameters (QPs), 22, 27, 32 and 37. 
For our encoding, we followed the "encoder_intra_vvc" 
configuration recommended by the JVET General Test 
Conditions, where the "CUTsize" is set to 128 and the 
"InputChomaFormat" to 420. For each image, we ended up 
having four compressed images with different visual quality, 
one for each QP which were decompressed and converted to 
the RGB format.  Finally, we generated four training datasets, 
each consisting of images with similar visual quality, i.e., each 
dataset corresponded to one QP. The original uncompressed 
images were used as the target images for the training phase.  

 
  (a) Residual Swin Transformer Block (RSTB)        (b) Swin Transformer Layer (STL)           

Figure 1. The architecture of the proposed deep learning model for reducing visual artifacts of VVC compressed frames.  
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B. Model Training 
We trained a total of 12 different restoration models. For 

each dataset (or each quality level QP), we trained 3 models, 
one with attention window 4x4, one with attention window 
8x8 and one with window 16x16.  Training was done on a 
compute cluster with 2 Intel Silver 4216 Cascade Lake CPUs, 
2 NVIDIA V100 Volta GPUs and 32G of memory. The Adam 
optimizer was used with an initial learning rate of 2e-4, and a 
batch size of 4.  

C. Performance Evaluation 
We evaluated the performance of our models on two 

public test datasets, the set5 that consists of images with 
resolution varying from 288x288 to 512x512 and LIVE1 with 
two resolutions, 768x512 and 512x768 pixels. All the test data 
were compressed using the VTM 18.2 software at four QPs 
(22, 27, 32 and 37), with the same configuration parameters 
used for preparing our training datasets.   Table I shows the 
objective performance of VVC and that of all our models in 
terms of PSNR. For each QP, we have a different model while 
the columns show the combination of our models using 3 
different attention windows. First, we observe that for both 
datasets, Set5 and LIVE1, the models using attention window 
of 16x16 outperform those using 4x4 and 8x8 windows. 

Second, we observe that for both datasets, our model trained 
using frames compressed at QP=22 and using attention 
window 16x16 outperform the models trained with QPs = 27, 
32 and 37. More specifically, the improvement in visual 
quality in terms of PSNR is 5.81% and 5.16% for the Set5 and 
LIVE1, respectively.  

Figure 2 shows the original uncompressed image, the 
image compressed using VVC at QP=32 and the image 
reconstructed by our model (16x16 window and QP=32). The 
reason for using QP=32 is that the visual quality of images 
compressed at QP=22 is very high (PSNR of VVC = 36.14 
dB). We observe from the zoomed in portion of the image 
(bottom left side) that our model improved the visual quality 
of the image resulting from VVC. 

We also compare the performance of our method against 
the Bonnineau’s state-of-the-art approach presented in [5]. 
Figure 3 shows the rate distortion plots for the Set5 dataset of 
our model trained with 16x16 window and all QPs, 
Bonnineau’s model and original VVC encoder.  

Table II shows the Bjøntegaard Delta rate (BD-rate) and 
Peak Signal Noise Ratio (BD-PSNR) using the piecewise 
cubic fitting from the above results for our model and the 
Bonnineau’s relative to VVC. We observe that our approach 
outperforms Bonnineau’s approach [5] by 15.95% on BD-
Rate and 0.884 dB on BD-PSNR. 

          
          (a) Original Image                                   (b) VVC at QP = 32                                            (c) Ours ( win =16) at QP = 32 

Figure 2. Visual compression (a) original image, (b) VVC (QP = 32), and (c) Ours ( win = 16, QP = 32).  

 

 

TABLE I. PSNR (DB) COPMPARISON OF OUR METHODS AGAINST VVC COMPRESSION ON SET5 AND LIVE1 BENCHMARK DATASETS 

  Methods 

Dataset Quality VVC 
PSNR 

Ours (win = 4) 
PSNR (∆%) 

Ours (win = 8) 
PSNR (∆%) 

Ours (win = 16) 
PSNR (∆%) 

Set5 

QP = 22 36.14 38.05 (+5.28%) 38.22 (+5.76%) 38.24 (+5.81%) 

QP = 27 33.86 35.13 (+3.75%) 35.27 (+4.16%) 35.32 (+4.31%) 

QP = 32 31.52 32.27 (+2.38%) 32.55 (+3.27%) 32.66 (+3.62%) 

QP = 37 29.51 29.95 (+1.49%) 30.31 (+2.71%) 30.35 (+2.85%) 

LIVE1 

QP = 22 37.04 38.78 (+4.69%) 38.93 (+5.10%) 38.95 (+5.16%) 

QP = 27 34.70 35.73 (+2.96%) 35.95 (+3.60%) 35.99 (+3.72%) 

QP = 32 32.06 32.74 (+2.12%) 32.92 (+2.68%) 32.97 (+2.84%) 

QP = 37 29.46 29.81 (+1.18%) 30.02 (+1.90%) 30.06 (+2.04%) 

Figure 1.   
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Table III shows the Bjøntegaard Delta rate (BD-rate) using 
the piecewise cubic fitting from the above results for our 
model relative to VVC on the LIVE1 dataset. We observe that 
our approach improves the visual quality of the VVC 
compressed images by 1.129 dB or saving the bitrate by 
20.35%.  

IV. CONCLUSION AND FUTURE WORK 
In this paper, we propose a Swin Transformer based image 

restoration model for VVC compression artifacts reduction 
that employs a self-attention mechanism to explore both 
global and local features to better understand the relation 
between existing and missing information. Compared to other 
models, our model with a window size of 16x16 is shown to 
best capture local features in images/frames compressed by 
the VVC complex tree-structured coding unit architecture and 
achieve state-of-the-art performance for all four different QPs 
on two benchmark datasets. Performance evaluations showed 
that our proposed model achieves an average of 27.44% and 
20.35% BD-Rate reduction over the original VVC standard on 
two benchmark datasets. 
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TABLE II. BD-RATE AND BD-PSNR COMPARISION FOR OUR MODEL AND 
BONNINEAU MODEL RELATIVE TO VVC ON SET5 

Dataset Metrics Bonnineau [5] Ours (win = 16) 

Set5 
BD-Rate (%) -11.48% -27.44% 

BD-PSNR (dB) 0.458 1.342 

 

 

  
(a)                                                                                                      (b) 

Figure 3. Rate distortion plots for (a) Set5 dataset of our model trained with 16x16 window and all QPs, Bonnineau’s model and original VVC encoder, 
and (b) LIVE1 dataset for our model and VVC. 
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