
Semantic Support for DSL Demonstrator in an Additive Manufacturing
Environment

Fathia Bettahar
 Capgemini Engineering

 Toulouse, France
e-mail : fathia.bettahar@capgemini.com

Abstract— In this work, we describe a Domain-Specific
Language (DSL) demonstrator that controls the interaction
with the user in an additive manufacturing environment. Its
objective is to give appropriate answers to queries asked by a
user. Several modules of the environment are used to bring
theses answers: the DSL grammar, which lets users query the
components of a complicated system without having to learn an
unfamiliar query language; the user interface, which can be
adaptable according to user needs; and the graph database
management system developed to parse the knowledge base. All
the modules share a central ontology describing the additive
manufacturing domain. Our ontology is used both for building
a formal grammar and as knowledge base, providing concept
definitions.

Keywords-Ontology; Domain-Specific Language; Additive
Manufacturing.

I. INTRODUCTION

The development of complex software systems within
multidisciplinary sub-teams raises new software engineering
challenges. It is important to understand complex problems
and to give appropriate solutions. Model-Driven Engineering
(MDE) [1] is the approach proposed to solve these
challenges. It raises the level of abstraction in traditional
programming languages by using models. MDE focuses on
the use of models to understand, analyze, and develop
complex software system. MDE advocates the description of
a system by a set of multiple Domain-Specific Languages
(DSLs) [2].

DSLs, as opposed to General Programing Languages
(GPLs), are designed to describe a program at the adequate
level of abstraction. DSLs narrow the gap between a problem
domain and its implementation. Tools and collaboration of
DSLs are among important research challenges [3] in model-
driving engineering. Particular challenges include tools for
defining and composing domain-specific languages. Usually,
different domain specific languages are used simultaneously
to define the system from several viewpoints, hence the
necessity of semantic interoperability and collaboration
between them.

In this work, we propose an approach based on ontology
able to define DSL and which aims at a semantic
interoperability between DSLs in a complex software system.
The objective of this approach is to foster communication and
collaboration among team members (developers, domain
experts and end-users). This objective can be achieved since

ontologies give a common semantic representation of the
domain modeled, which can be shared by DSLs in Model-
Driven Software Engineering (MDSE).

 In this paper, we propose a method to build a DSL in the
context of the additive manufacturing domain. We define a
Domain Specific Language describing the user Request
(DSLReq) from Additive Manufacturing Ontology (AMO).
The focus of this paper is to present a semantic support DSL
demonstrator in Additive Manufacturing (AM) domain. Thus,
our approach produces a grammar useful to parse an additive
manufacturing knowledge base represented in a semantic
graph.

The rest of the paper is organized as follows: In Section
II, we present the research work related to our approach. In
Section III, we present our grammar, its functionality and
introduce its rules in part B. We also discuss the role of
ontology in our approach in part A. In part C, we give a
scenario example to explain our developed system. The paper
ends with some concluding remarks and some guidelines for
future work.

II. RELATED WORK

To understand the ontology role, we can refer to the
ontology definition of Gruber [4] “explicit specification of
conceptualization”, where conceptualization is “a set of
objects, which an observer thinks exist in the world of interest
and relations between them”. So, ontology O related to a
domain D is a set of the concepts ® and relations ® among
them as in (1).

𝑂஽ = {
஼∈஽

𝐶, 𝑅}


Each ontology concept is defined by some properties and

axioms. This definition makes ontologies very expressive and
powerful means for domain modeling, and they are proposed
as one of the approaches to create Domain Specific
Languages (DSLs).

Many research works use ontologies to support the
development of DSLs. Ontologies help in the initial phase of
DSL development called Domain Analysis Phase [5]. In this
phase, the ontology defines the domain, its terminology, the
concepts, and their dependencies.

In [6], the authors proposed the OntoDSL tool that allows
to use ontologies during the design phase and to guide the
DSL programmer to develop an expressive language.
OntoDSL provides automated reasoning services that can be

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-960-7

IMMM 2022 : The Twelfth International Conference on Advances in Information Mining and Management

practically used by DSL designers and DSL users. In other
works, researchers emphasize the advantages of using
ontologies to support DSLs development. For that reason, [7]
proposes an Onto2Gra framework to automatically generate
the DSL grammar from an ontology. This framework
provides the mapping of concepts into grammar symbols
based on Context Free Grammars (CFG), and the mapping of
relations into grammar productions. These approaches used
ontologies to solve DSL challenges, in particular
interoperability with other languages, because more than one
language must be combined in the modeling of systems.

Ontologies have proved themselves in various domains as
a tool for adding semantic to data and for achieving a
desirable level of interoperability [6]. For that reason, we
believe that ontology is the solution of both the interaction
problem between heterogenous components within a
complex computer system and the interaction problem
between DSLs.

 Our approach has the same goals as OntoDSL because it
is a framework in a model-driven approach. Differently from
OntoDSL our approach aims to build a DSL from an ontology
able to parse the knowledge base. The result of our approach
is a grammar describing a user request to get a response from
the ontology and the AM domain without having to learn an
unfamiliar query language.

III. PRINCIPLE

In this work, we present our approach in additive
manufacturing context. The development and industrial
adoption of Additive Manufacturing (AM) technologies
required the development of computer systems able to aid
decision making and the data management in a homogenous
way. Ontologies can answer these requirements because they
have competencies [7] to both exchange data across
applications and automatically reason over knowledge for
decision making.

Besides, additive manufacturing systems manifest a low
degree of interoperability, and this creates an interaction
problem between enterprises or different branches of an
enterprise. Ontologies are valuable tools for solving such
problems [8]. Given that, an ontology builds on classes to
represent materials, products components, process’s
parameters, and process’s parts [9].

Our approach is based on two pillars. The first pillar is a
domain specific language that allows understanding,
validation, and modification of the additive manufacturing
domain. The second pillar is an ontology used both for the
construction of a formal grammar and knowledge base,
providing concept definitions.

For that purpose, we define a framework based on
ontology. This framework is structured around three
interconnected models, as illustrated in Figure 1. AM
ontology defines an additive manufacturing domain, a user
interface, which generates a Cypher query [10] from our DSL
grammar and a semantic graph database based on AM
ontology. We have generated the DSLReq grammar from our
ontology.

 Figure 1. Approach Architecture

In this section, we discuss firstly the ontology building

method. Secondly, we explain the process of DSLReq
generation and the role of ontology in this process.

A. Additive Manufacturing Ontology (AMO)

The methodology of developing an ontology is chosen
according to the complexity of the domain and its
requirements. For the manufacturing domain, the method
MOP (Machine of a Process) [11] is used. MOP aims to reuse
existent ontology to limit the development from scratch.
Upper-level ontology for manufacturing was used as a
reference to evaluate and to improve specific domain
ontology. Thus, this method aims to hold interoperability
among domain users. In order to achieve a high-level of
interoperability, we developed our additive manufacturing
ontology according to the research work in [9].

 [9] proposes first the reuse of upper-level ontology
DOLCE (Descriptive Ontology for Linguistic and Cognitive
Engineering) [12] to facilitate the grouping of classes sharing
common high-level characteristics. Second, it proposes the
extension of the upper-level branch to additive
manufacturing.

The AM ontology includes broad classes and relations,
which can be easily specialized to meet specific modeling
scenarios and requirements: MATERIAL, NON-
QUANTITATIVE VALUE SPACE, OBJECT, PROCESS
and TYPE. OBJECT covers three classes: PYSICAL
OBJECT, ORGANIZATION, and DESCRIPTION.
PYSICAL OBJECT covers various classes, among which
MFGDEVICE, PRODUCT, and FEATURE. MFGDEVICE
is composed of various classes, the most important one being
MFGMACHINE for the conceptualization of manufacturing
machines. AMMACHINE defines an explicit model for
additive manufacturing machines. AMMACHINE has a
relationship with the AMPROCESS class called
MecanismOf. This relationship gives all processes in which
a machine can participate.

Axioms are added to explain that a machine may never be
employed in any manufacturing process, for example, as
defined in (2):

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-960-7

IMMM 2022 : The Twelfth International Conference on Advances in Information Mining and Management


MFGMACHINE ⊑ MFGDEVICE ⊓ ∀mecanismOf.MFGPROCESS
AMMACHINE ⊑ MFGMACHINE ⊓ ∀mecanismOf.AMPROCESS 

Figure 2 illustrates the AMMACHINE concept and its
properties in our AM ontology created with Protégé [13].

Figure 2. AMMachine Class in AMO ontology

The ontology supports the instances of concepts and
relations between them. We use the Protégé plug-in to
populate our ontology.

B. From ontology to DSL grammar

Within our system, grammar advocates the description of
user queries by a set of domain-specific language rules. Each
rule consists of an ontology element: concept, relation, or
attribute. Our approach is to build a DSL grammar able to
generate a Cypher request to parse AMO. For that purpose,
we define the request structure according to the ontology
structure.

To convert the ontology into a grammar, we define a set
of translation rules. The rules are defined in a hierarchical
structure. Get is the super rule that connects all rules. It is
composed of three sub-rules: Type, Where and Return.
Firstly, the Type rule is the result of rule translation to map
concepts and relations into the grammar. Secondly, the
Where rule defines constraints of cardinality like RDFS range
and RDFS domain within the grammar. Finally, the Return
rule translates ontology instances corresponding to the
request result (Figure 3).

Figure 3. From ontology to DSL

Each rule is related to an element in the ontology. So, the
grammar is composed of three elements related to the
ontology: Node, Relation and Property. The grammar
always starts by Type rule. The request takes as its input the
elements in the Type rule, operates on them as specified in the
Where and Return rules, and then produces the RDF triple
researched by the user. The grammar structure is presented in
rule (3):



𝐺𝑒𝑡:
{Get}ᇱGetᇱ൫type = (Type)൯(′Whereᇱ(clauses+=

Clause) ∗)? (retours = (Return))

The Type rule defines the input type of the request. An
input may be a concept, a relation, or a property of the AM
ontology. For that reason, the Type rule contains a Node
element corresponding to an ontology concept. It also
contains a Relation rule. The Relation rule is composed of the
ontology relation and a range of relation called destNode. The
Type rule is presented in (4), where C, C’ are ontology
concepts and Rel is the relation between them:


𝐶 𝑟𝑒𝑙 𝐶′ ⟹ 𝑇𝑦𝑝𝑒 :
{type}(firstNode = Node)(relations + = RelationTo)) ∗
RelationTo:
(relation = Rel)(destNode = Node)
Rel:
{Rel}(name = ID)?ᇱ :ᇱ (relationName = ID|ᇱAllᇱ)
 Node:
{Node}(name = ID)? ′: ′(className = ID|ᇱAll′)

The Where rule defines constraints about an ontology

element. The constraint is defined by an operator and its
value. A constraint about an attribute is called data property
in OWL [14]. We use a second rule in our grammar to define
this constraint. Considering C, a concept of AM ontology and
p its data type property. We define a restriction on p as
follows (5):


𝑝 𝐷𝑜𝑚𝑎𝑖𝑛 𝐶 𝑎𝑛𝑑 𝑝 h𝑎𝑠 𝑣𝑎𝑙𝑢𝑒 ⟹ 𝐶𝑙𝑎𝑢𝑠𝑒:
(property = ID)ᇱof ᇱ(node = [Node])
(operator = Operator)(value = Value)

The Return rule lists the result of the query. The query

result is defined in the Return rule, as seen in (6). A function
is a facultative element, which presents any logic and
mathematic functions that we can apply to a property. Our
rule returns instances from the ontology according to type and
constraints defined in the mentioned grammar rules in (4) and
(5).


𝑅𝑒𝑡𝑢𝑟𝑛:
{Return}ᇱReturnᇱ(properties+= Property) +
Property:

(function = Function)? propertyNam = IDᇱof ᇱnode
= [Node]

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-960-7

IMMM 2022 : The Twelfth International Conference on Advances in Information Mining and Management

The elements defined in our DSL grammar are instances
of EObject of Eclipse Modeling Framework (EMF) [15]
Ecore models. To implement our DSL grammar, we use the
Xtext [16] tool of the EMF ecosystem.

C. Scenario example

In this scenario example, we explain our system by
considering the following user story: we seek the process list
where the hatching in micrometer equals to 35. This list aims
to classify processes in categories.

To answer this user story, there are four steps:
1. The user can write a simple query without having to

learn a Cypher language like in (7). In our interface,
we define queries templates with our DSLReq,
which can help the user to autocomplete the request.

𝑮𝒆𝒕 𝑛: 𝐴𝑀𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑟: 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑂𝑓 𝑚: 𝐴𝑀𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑾𝒉𝒆𝒓𝒆 ℎ𝑎𝑠𝐻𝑎𝑡𝑐𝑖𝑛𝑔𝐼𝑛𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑟 𝑜𝑓 𝑚 = 35

𝑹𝒆𝒕𝒖𝒓𝒏 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑚 

2. The query must have a syntactic and semantic
validation. Our DSL validator generates an error if
the term given by the user is not in the AM ontology.

3. The system generates a Cypher query by using the
Query generator (Figure 4).

Figure 4. Cypher query

4. The system connects to the knowledge base and

parses the ontology by using this request. Finally, it
gives the AMProcess list appropriate to answer the
user query.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a query demonstrator able to
give appropriate results for user requests by using a DSL
grammar. All modules of our system shared a central
ontology describing the additive manufacturing domain.

 This ontology is used for building and validation of a
DSL request. It is also used to support queries for retrieving
that knowledge. However, an additive manufacturing
environment requires knowledge contributions from different
stakeholders, so it is necessary for software engineering to
interact with other engineering disciplines. For that reason,
the presented approach needs to be complemented by a set of
multiple Domain-Specific Languages. Each DSL will relate
to an engineering discipline and will be in interaction with the
other DSLs. To achieve these results, the ontology will
provide interoperability between the DSLs in our system.

REFERENCES

[1] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini,
“Collaborative Model-Driven Software Engineering: A
Classification Framework and a Research Map,” IEEE Trans.
Software Eng., vol. 44, no. 12, pp. 1146–1175, Dec. 2018, doi:
10.1109/TSE.2017.2755039.

[2] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R.
Heldal, “Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem?” in Model-Driven Engineering
Languages and Systems, vol. 8107, A. Moreira, B. Schätz, J.
Gray, A. Vallecillo, and P. Clarke, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–17. doi: 10.1007/978-
3-642-41533-3_1.

[3] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio,
“Grand challenges in model-driven engineering: an analysis of
the state of the research,” Software and Syst Model, vol. 19, no.
1, pp. 5–13, Jan. 2020, doi: 10.1007/s10270-019-00773-6.

[4] T. R. Gruber, “Toward principles for the design of ontologies
used for knowledge sharing,” International Journal of Human-
Computer Studies, vol. 43, no. 5–6, pp. 907–928, Nov. 1995,
doi: 10.1006/ijhc.1995.1081.

[5] R. Tairas, M. Mernik, and J. Gray, “Using Ontologies in the
Domain Analysis of Domain-Specific Languages,” in Models in
Software Engineering, vol. 5421, M. R. V. Chaudron, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 332–
342. doi: 10.1007/978-3-642-01648-6_35.

[6] K. Michal, Š. Michal, and B. Zdeněk, “Interoperability through
ontologies,” IFAC Proceedings Volumes, vol. 45, no. 7, pp.
196–200, 2012, doi: 10.3182/20120523-3-CZ-3015.00039.

[7] M. von Rosing and J.A. Zachman Sr., “The Need for a Role
Ontology,” IJCSSA, vol. 5, no. 1, pp. 1–24, Jan. 2017, doi:
10.4018/IJCSSA.2017010101.

[8] M. Mohd Ali, R. Rai, N. Otte, and B. Smith, “A product life
cycle ontology for additive manufacturing,” Computers in
Industry, vol. 105, pp. 191–203, Dec. 2018, doi:
10.1016/j.compind.2018.12.007.

[9] E. Sanfilippo, F. Belkadi, and A. Bernard, “Ontology-based
knowledge representation for additive manufacturing,”
Computers in Industry, vol. 109, pp. 182–194, Aug. 2019, doi:
10.1016/j.compind.2019.03.006.

[10] “Cypher Query Language - Developer Guides.”
https://neo4j.com/developer/cypher/ (accessed Mar. 10, 2022).

[11] L. Ramos, R. Gil, D. Anastasiou, and M. J. Martin-Bautista,
“Towards a Machine of a Process (MOP) ontology to facilitate
e-commerce of industrial machinery,” Computers in Industry,
vol. 65, no. 1, pp. 108–115, 2014.

[12] S. Borgo et al., “DOLCE: A descriptive ontology for linguistic
and cognitive engineering1,” Applied Ontology, pp. 1–25, Nov.
2021, doi: 10.3233/AO-210259.

[13] “Protégé” https://protege.stanford.edu/ (accessed Mar. 01,
2022).

[14] “OWL - Semantic Web Standards.” https://www.w3.org/OWL/
(accessed Feb. 17, 2022).

[15] R. Gronback, “Eclipse Modeling Project | The Eclipse
Foundation.” https://www.eclipse.org/modeling/emf/ (accessed
Mar. 23, 2022).

[16] “Xtext - Language Engineering Made Easy!”
https://www.eclipse.org/Xtext/ (accessed Feb. 21, 2022).

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-960-7

IMMM 2022 : The Twelfth International Conference on Advances in Information Mining and Management

