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Abstract—In recent years, the automated, efficient and sensitive
monitoring of social networks has become increasingly important
for criminal investigations and crime prevention. Previously, we
have shown that the detection of opinion leaders is of great
interest in forensic applications. In the present study, it is argued
that state of the art opinion leader detection methods have
weaknesses if networks exhibit star-like social graph topology,
whereas these topologies result from the interaction of users with
similar interests. This is typically the case for Facebook pages of
political organizations. In these cases, the underlying topologies
are highly focused on one (or only a few) central actor(s) and lead
to less meaningful results by classic measures of node centrality
commonly used for leader detection. The presents study examines
these aspects closer and exemplifies them with the help of data
collected from the Facebook page of a German political party for
five consecutive months. Furthermore, a quantitative indicator
for describing star-like network topologies is introduced and
discussed. This measure can be of great value in assessing the
applicability of established leader detection methods. Finally, a
modified LeaderRank score is proposed — the CompetenceRank
— which aims to address discussed problems.

Keywords—Forensic; Opinion Leader; Graph Theory.

I. INTRODUCTION

The detection of opinion leader has been discussed exten-
sively in the past few years. Based on the work by Katz [7]
many approaches have been presented. In this paper it will be
shown that in some situations these approaches do not capture
the core of the problem and as a result lead to an inaccurate
assessment of opinion leadership. This section shall give a brief
introduction to the field in which such situations occur as well
as an overview of topology-based approaches and finishes with
the scope and structure of the paper.

A. General Motivation

Analyzing social networks has become an important tool
for investigators, intelligence services and decision makers
of police services. The information gained this way can be
used to solve crimes by searching for digital evidence that
relates to the crime in the real world. Additionally, methods of
predictive policing can help to organize police missions as was
shown in [1]-[3]. The detection of opinion leaders in social
networks is an important task for different reasons. On the one
hand, owners of influential profiles are often also influential in
the offline world. Knowing these people helps to determine
the direction of an investigation or more concretely to target
persons of interest. On the other hand, as was suggested in
previous work [3], it might be of interest to contact these
profiles by means of chatbots to gain access into closed groups
in an effort to gather important information for intelligence
services. Intuitively, opinion leaders, when considered as nodes
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with high structural importance, can be detected with the help
of centrality measures. However, different kinds of influence
in a network have to be distinguished. Nodes can have a
great influence as corresponding actors are able to spread
information fast and widely in a network, or they can have
a great influence because they write something of importance,
which attracts many other users in the network to respond.

B. Leader Detection by means of Network Centrality Measures

In the literature, one can mainly find centrality measures
for the former type of influence. For example, highly active
profiles can be recognized using degree centrality, meaning, the
relative number of outgoing edges of a node. These profiles
are represented by nodes with a high degree centrality which
are especially useful to spread information in a network due
to their high interconnectedness.

In this context, the closeness centrality — the inverse of the
mean of the shortest path of a node to any other node in the
network — is even more effective. It describes the efficiency of
the dissemination of information of a certain node.

Furthermore, the betweenness centrality of a certain node,
which is defined as the number of shortest paths between
two nodes that cross this node, describes the importance of
this node for the dissemination of information in a network.
Therefore, the higher the betweenness centrality of a node,
the greater its importance for the exchange of information in
a network.

Moreover, the eigenvector centrality of a node is defined as
the principle eigenvector of the adjacency matrix of a network.
In contrast to the measures discussed beforehand, PageRank
[4], as one of the best measures of node centrality, does not
only consider the centrality of the node itself, yet also of its
neighboring nodes.

As part of the opinion leader detection research, Leader-
Rank [5] was introduced as a further development of PageRank
in order to find nodes that spread information further and
faster. However, all of these centrality measures consider nodes
that are involved in the dissemination of information mainly
based on their activity. For the purpose of the intended usage,
users who achieve high impact through what they have written
are of much greater interest. Thus, similar to the citation of
papers and books and its impact on the author’s reputation, the
importance of a node has to be higher when it reaches a high
number of references and citations with low activity.

Interestingly, Li et al. considered the so-called node spread-
ability as the ground truth for quantifying node importance
in a subsequent study [6]. Node spreadability is based on a
straightforward Susceptible-Infected-Removed (SIR) infection
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model from which the expected number of infected nodes upon
initially infecting the node in question is estimated. However,
this expected number can only be estimated from simulation,
which furthermore is dependent on the parameterization of
the SIR model. In this respect, all centrality measures can be
considered as heuristic approximations of node spreadability.

C. Scope and Structure of the Paper

In this case study, we discuss problems that can arise when
aiming to detect opinion leaders in social networks yielding
highly central topologies similar to star graphs. Examples for
such networks are group pages on Facebook or vk.com where
user interactions and activities are mostly triggered by and
focused on posts made by the page owner. In such cases,
the page owner — a trivial leader in the sense of centrality
measures discussed above — acts as a score aggregator and
can thus lead to distorted scoring, which can eventually be
adverse in the context of opinion leader detection. In this case,
classic centrality measures can be considered inappropriate.
Based on interactions of users of the political Facebook page
“DIE LINKE” tracked for five consecutive months (January -
May 2017), this problem is illustrated. We further introduce the
LeaderRank skewness as a quantitative measure of aggregator-
induced distorted LeaderRank scoring, which in experiments
show to be superior to network entropy with respect to
expressiveness. Finally, a modified LeaderRank score, we refer
to as CompetenceRank, is introduced which is proposed to be
suitable for opinion leader detection in such networks.

The paper is structured as follows: in SectionIl, a brief
literature overview on the topic of opinion leader detection is
given, followed by a summary of the LeaderRank algorithm.
Issues of LeaderRank scoring in star-shaped network topolo-
gies are discussed in SectionIIl, including the deduction and
definition of LeaderRank skewness. In SectionIV, the social
network dataset in question is discussed. The CompetenceRank
is introduced in Section V. We finally give a conclusion as well
as an overview on future work in Section VL.

II. DETECTION OF OPINION LEADERS

Opinion leaders in the context of the intended analysis
of social networks are individuals, who exert a significant
amount of influence on the opinion and sentiment of other
users of the network through their actions or by what they are
communicating. In social sciences the term ’opinion leader’
was introduced before 1957 by Katz and Lazarsfeld’s research
on diffusion theory [7]. Their proposed two-step flow model
retains validity in the digital age, especially in the context of
social media.

Katz etal. assume that information disseminated in the
Social Network is received, strengthened and enriched by
opinion leaders in their social environment. Each individual
is influenced in his opinion by a variety of heterogeneous
opinion leaders. This signifies, that the opinion of an individual
is mostly formed by its social environment. In 1962, Rogers
referenced these ideas and defined opinion leader as follows:

“Opinion leadership is the degree to which an
individual is able to influence informally other indi-
viduals’ attitudes or overt behavior in a desired way
with relative frequency.” [8, p.331]

For the present study, one important question to answer is
what influence means, or rather how to identify an opinion
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leader or how the influencer can be distinguished from those
being influenced. Katz defined the following features [7]:

1)  personification of certain values,
2)  competence,
3)  strategic social location.

One approach to identify opinion-leaders is to extract
and analyze the content of nodes and edges of networks
to mine leadership features. For instance, the sentiment of
communication pieces can be analyzed to detect the influence
of their authors, as shown by Huang et. al., who aim to
detect the most influential comments in a network this way
[9]. Another strategy is to perform topic mining to categorize
content and detect opinion leaders for each topic individually,
as opinion leadership is context-dependent [7] [10]. For this
purpose, Latent Dirichlet Allocation (LDA) [11] can be used,
as seen in the work of [12].

In this study, we considered the implementation of content-
based methods problematic, as texts in social networks mostly
lack correct spelling and formal structure, which impairs such
methods’ performance. Additionally, leaders can be identified
by analyzing the flow of information in a network. By moni-
toring how the interaction of actors evolves over time, one can
identify patterns and individuals of significance within them.
To achieve this, some model of information propagation is
required, such as Markov processes employed by [13] and the
probabilistic models proposed by [14]. These interaction-based
methods consider both topological features and their dynamics
over time.

We utilized methods, which are solely based on a network’s
topology, therefore, consider features, such as node degree,
neighborhood distances and clusters, to identify opinion lead-
ers. One implementation of this is the calculation of node
centrality. The underlying assumption is that the more influ-
ence an individual gains, the more central it is in the network.
Which centrality measure is most suitable is dependent on the
application domain. We judged eigenvector centrality to be
most adequate. One of the most popular algorithms is Google’s
PageRank algorithm [4]. The application of PageRank for the
purposes of opinion leader detection has seen merely moderate
success [15] [16]. With LeaderRank scores, Lii etal. advocate
further development and optimization of this algorithm for
social networks, and have achieved surprisingly good results
[5]. Herein, users are considered as nodes and directed edges
as relationships between opinion leaders and users. All users
are also bidirectionally connected to a ground node, which
ensures connectivity as well as score convergence. In short, the
algorithm is an iterative multiplication of a vector comprised
by per-node scores s;(t) at iteration step ¢ with a weighted
adjacency matrix until convergence is achieved according to
some convergence criteria. Initially, at iteration step ty, all
vertex scores are set to s(0) = 1, except for the ground node
score which is initialized as s,(0) = 0. Equation (1) describes
LeaderRank algorithm as a model of probability flow through
the network, where s;(t) indicates the score of a node ¢ at
iteration step t.

N+1

silt+1) =Y s (0) M
j=1 "7

Depending on whether or not there exists a directed edge
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from node ¢ to node j, the value 1 respectively O is assigned
to a;;. k9" describes the number of outgoing edges of a node.
The final score is obtained as the score of the respective node at
the convergence step t. and the obtained ground node score,
as shown in (2). At t., equilibration of LeaderRank scores
towards a steady state can be observed.

sg(te)
N

The advantage of this algorithm compared to PageRank is that
the convergence is faster and above all that nodes, that spread
information faster and further, can be found. In later work, for
example, by introducing a weighting factor, as in [6] or [17],
susceptibility to noisy data has been further reduced and the
ability to find influential distributors (hubs) of information has
been added.

S; = si(te) + ()

III. ISSUES WITH LEADERRANK

The LeaderRank algorithm can be understood as a re-
version of a discrete model of diffusion. In that sense, the
initialization s;(0) = 1 at ¢y can be interpreted as assigning a
uniform concentration distribution of some virtual compound
which in the processes is re-distributed according to the model.
In that respect, central actors showing the highest activity in
star-like networks can induce score aggregation and migration
towards their central nodes as well as their adjacent nodes,
whereas nodes in the ’peripheral region’ of the network
become inadequately represented by their scores. One can
thus hypothesize that ranked lists obtained from LeaderRank
scores can not be considered meaningful if a given network in
question exhibits star-topological topology.

Furthermore, the LeaderRank emphasizes the strategic so-
cial location of a user, whereas their competence is not con-
sidered. In star-shaped network topologies, high centralities of
only a fraction of nodes leads to a heavily skewed LeaderRank
score distribution.

In this case study, the network under investigation shows an
even more extreme case of star topology in which the owner
of the political Facebook page 'DIE LINKE’ acts solely as
the central actor (for more information see Section IV). In
contrast, one could argue that someone is more important if
any activity generates a high number of responses. Such a case
is regularly given by political networks, which are dominated
by the central node of the page owner. Thus, a straightforward
modification of the LeaderRank score is proposed in Section
V which addresses the imbalance the LeaderRank algorithm
yields in such networks.

In the following paragraph a quantitative measure of Lead-
erRank distribution skewness is proposed, which could aid
to ensure proper applicability of the LeaderRank algorithm
for any given network. This measure is further compared to
the classic measure of network entropy. Tests on simulated
data show the LeaderRank skewness to be superior to network
entropy with respect to topological changes.

A. Definition of LeaderRank Distribution Skewness

Let LR = {lry,...,Ir;,...,Ir N} be the LeaderRank values
of all nodes. Further, Ir and sdpr denote the arithmetic
mean and standard deviation of LR. Based on the z-scaled
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LeaderRank values (3), the skewness v of the LeaderRank
distribution is calculated as shown in (4).

z(lr;)) = —— 3)

“

1 3
VLR = |N Xi:z(h“i)

As discussed above, score distribution skewness is correlated
with network topology. Yet, normalization of computed skew-
ness is required in order to make predications about the
topology and whether a star-like topology is present. Thus
upper and lower bounds, v,,;, and V4., are needed. In this
paragraph, derivation of both bounds are given.

Trivially, v converges to the lower bound — the theoretical
minimum (v = 0) — in almost regular graphs. Such graphs are
regular graphs with one edge being removed. With [NV being
sufficiently large, the supposition that Ir; ~ Ir; of any pair of
randomly selected vertices v; and v; holds true and a limit of
limgg, ,—0v = 0 can be assumed. In regular graphs however
all LeaderRank scores are equal by definition, resulting to
sdr,r = 0 and v being undefined in this case.

In contrast, v is equal to the theoretical maximum if the
network graph exhibits a strictly star-shaped topology. Let Ir,
be the value of the LeaderRank of the central vertex of such
a network. The LeaderRank values of any randomly selected
pair of vertices v; and v; with v;,v; # v, are then not
distinguishable, i.e., Ir; = Ir;, according to the LeaderRank’s
definition. Furthermore, the total LeaderRank generally sums
up to N, LRyp; = 31, Ir; = N (which leads to Ir = 1 for
every graph). Given the central node Ir., each lr; can thus be
calculated as shown in (5).

N —lr,
lr; = —— 5
T N1 Q)
If Ir. is known, the set of LeaderRank values
{lre,lrg, dry, . dry} and the resulting vy, can be

derived. For star graphs of any size IV, a linear correlation
exists between lr. and N (Ir. = 0.20N + 0.66, R = 1.0,
data not shown). The upper skewness bound v,,,, can thus
be readily computed. Subsequently, for any irregular network
graph LeaderRank skewness can be calculated and normalized
subsequently using a min-max normalization as denoted in
(6), whereas v,,,;, can be assumed as 0 as discussed above.
b VT Vmin Y ©)

Vmaxz — Vmin Vmax

B. Detection of star topology

LeaderRank skewness © can be utilized to indicate adverse
leader ranking by means of LeaderRank scores. In this section,
we compare v to the classic measure of network entropy
(denoted as H in the following text). In order to allow direct
comparison to ¥ as well as to entropies computed from other
graphs, H is required to be normalized analogously to 7 . In
this subsection, we give a brief overview on how normalization
can be conducted.

Let A be the adjacency matrix of a network with N
vertices, where each element a;; := 1, if there exists a directed
edge e;; between adjacent vertices v; and v;. Each element of
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the principal diagonal a;; is defined as a;; := deg(v;) and thus
corresponds to the degree — the sum of the incoming and outgo-
ing links — of vertex v;. The trace of A is defined as the sum of
all elements of the principal diagonal: tr(A) = Zfil a;;. The
formalism for graph entropy used by Passerini and Severini
S(p) = —tr(plogy p) [18] is based on the von Neumann

entropy and can be adapted as follows:

S(p) = —tr(plog, p)

N
== pilogy pi
i=1
—— (33 10g k23 (7)
i:zl tr(A) 2 tr(A)
N
— Z deg(vl) 1 deg(vl)
T N 82 N ’
=1 %" deg(v;) deg(v;)
j=1 j=1

The matrix entropy describes the distribution of incoming and
outgoing links in a graph. In a randomly generated graph
one expects deg(v;) ~ deg(v;). In this case the matrix
entropy H approaches its maximum H,,,,. Graph entropy
is thus only at a maximum if G is a regular graph where
deg(v;) = deg(v;) = D. Because p; = D/DN = 1/N in a
regular graph, one has H as shown in (8).

H=H, 4. =— Z pilogs pi = logy N ®)

In contrast, the minimum matrix entropy H,,;, is observable
in networks showing star topology. The trace ¢r(A) of such
a graph corresponds to 2N — 2 and the degree of its central
vertex is deg(v.) = N — 1. Consequently, the entropy of the
central vertex H. is calculated as shown in (9).
N -1 N -1 1
2N —2 2N —2 2
The degree of any other vertex is deg(v;) = 1. Hence, the
entropy of a graph constituted as a star is calculated as follows:

1 1
—05 _ 1
'+;; IN —2 B29N 9

H. =

1
log, =-3 log, 0.5. 9

] (10)
= 0.5+ 5 logy(2N ~ 2)

1

Normalized network entropy can be finally computed accord-
ing to (11):

ﬁ:—ﬂ—ﬁﬂiﬂﬁemu (11)

H maxr H min

In order to illustrate expressiveness of H and © with respect to
the underlying network topology, a straightforward experiment
was carried out in which synthetic networks exhibiting star
topologies were continuously mutated over time, resulting in
almost regular graphs after numerous generations. This simu-
lated process thus yields a continuous change of the network
topology for each graph. H and © were accordingly computed
for every generation and tracked. The time series of both
measures are shown in Figure 1. More precisely, simulations of
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Figure 1. Simulation {esults of networks with various sizes [N, whereas the
red line represents H, the blue line © and vertical bars indicate standard
deviations.

topological change were conducted by starting with star graphs
of fixed sizes (N = 16, 32,64, 128,256 and 512 vertices). In
every generation, edges between every pair of vertices were
randomly added and respectively removed. For each graph size,
six runs were conducted in an effort to estimate variance.

As shown in Figure 1, both measures converged after 100
generations. All entropy trajectories show fast convergence
compared to © trajectories, with the convergence time de-
creasing with increasing IN. Although 7 yield larger variances
(especially for N < 32), its slower convergence and qual-
itatively similar trajectories for all graph sizes N illustrates
greater sensitivity to topological changes. In that respect matrix
entropy loses significance with increasing graph size.

IV. DATASET

For this study, the structure of the Facebook page of the
German party “DIE LINKE” was analyzed because it is a
typical star-like topology with the page owner as a central
node. This central node often has the highest activity, meaning
the most in- and out-links. The communication on the page was
explored over a period of five months, from January 2017 up
until May 2017, whereas all posts, comments and replies were
taken into account (see Table I).
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TABLE 1. SUMMARY OF THE DATA INCLUDING NORMALIZED
ENTROPY AND SKEWNESS OF THE CONSIDERED NETWORKS.

month actors  posts comments replies H VLR
January 2,878 26 2,955 3471  0.19 098
February 2,146 33 2,196 2,062 024 098
March 3,196 40 3,501 3245 017 097
April 2,432 26 2,558 3295 022 098
May 4,765 31 4,130 5,674 0.10 0.98
Epinions 75,879  n/a n/a n/a 0.65 0.07

During initial analysis of the dataset, it was observed
that 12,031 individuals were active during the five months.
However, as shown in Figure 2, only 104 of these individuals
were active in every single month. In general, it can be stated
that users showed rather sparse and sporadic activity, with only
a minority being recurrent users.

ﬁ continuous actors: n = 104

January 2017: n = 2,878
l [’ February 2017: n = 2,146
| [ March 2017: n=3,196
; / April 2017: n =2,432

Figure 2. Sunburst chart of actor activity consisting of one radial segment
for each user, whereas a user’s segment in a time layer is left out if said
user was observed to be inactive in that time period.

Figure 3 shows a comparison of two different network
topologies. Each network represents the interaction of the
users, in particular their communication, in a social network.
The labels of the nodes of the users were anonymized using
enumeration except of the central node in Figure 3a. This figure
depicts the network of the Facebook page “DIE LINKE” from
January 2017 as a graph in which the size of each node
corresponds to the out-degree (number of out-links). As can be
seen, the network is dominated by the central node of the page
owner and thus is close to a star-shaped topology. In contrast,
Figure 3b shows a part of the Epinions social network [19].
Due to the size of the network, it was necessary to limit the
depiction by applying k-core > 80, showing only the most
active nodes. This network tends to be more decentralized, in
other words, there is no node which dominates all others in
terms of its degree.

Table I shows the normalized entropy and LeaderRank
skewness of the “DIE LINKE” network, separately calculated
for each month. It can be clearly seen, that obtained H values
fluctuate over time, whereas LeaderRank skewness Dpp re-
mains stable. For comparison, the Epinions social network [19]
shows a considerably less skewed LeaderRank distribution,
whereas normalized network entropy H is thus less expressive,
as theoretically discussed in Section III.
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V. COMPETENCERANK

To address the issues discussed in Section III, we present
a competence-adjusted variant of the LeaderRank which down
ranks nodes with a high amount of out-links in comparison to
their in-links. The competence-adjusted LeaderRank, referred
to as CompetenceRank, of a particular topic-specific opinion
leader CR(L;) can be calculated as shown in (12).

LR(L:)
kot

1+ k;m . LRtotal

total

CR(L;) = (12)

The CompetenceRank of a certain opinion-leader is calcu-
lated by dividing its original LeaderRank score LR; by a
fraction of cumulative sum of LeaderRank scores (which is
equal to the number of users) defined by the node’s share
of network activity, and k°“’ being the number of outgoing
links. By definition, LR;,:,; — the sum of LeaderRank scores
of all nodes in the social network graph — is equal to the
number of nodes N. When considering regular graphs, one
observes LeaderRank distribution skewness 7 = 0 as well as
k7"t = kg** = D for any pair of randomly chosen nodes v;
and v;. Thus, k% = ND. From this, the expression above
can be conveniently rewritten as

CR(L;) = LR(L:) :%LR(L,»). (13)

1+ 2N
We finally define the CompetenceRank based on the assump-
tion that LR(L;) = CR,; in regular graphs, which is thus
simply achieved by multiplying the expression in (13) by 2.
Henceforth,

LR(L:)
1+ N

total

CR(L;) =2- (14)

In turn one can interpret the cumulative discrepancy
va |CR(L;) — LR(L;)| as a function of network regularity.

VI. CONCLUSION AND FUTURE WORK

The analysis of social networks, and in particular the
finding of influential and opinion-influencing profiles, is of
great interest in forensic research for a variety of reasons.
In the present study, it was shown that the usual centrality-
based approaches, and in particular the LeaderRank, produce
erronous results in star-like networks, such as Facebook pages
of parties. Furthermore, LeaderRank skewness was presented
as an appropriate measure to quantify the degree of distortion
of a network or in other words its proximity to a star-
shaped topology. Finally, the CompetenceRank was introduced
as a measure that provided better results that the popular
LeaderRank for the data used in the study.

In following studies, it would be interesting to analyze the
observed phenomena in more fine-grained times pans as well
as over a longer period of time. Additionally, it is necessary
to take more and different network topologies into account.
Furthermore, it was noticed that the texts in the data used
were surprisingly well written. This provides an opportunity
to conduct further textual analyses especially to answer the
question whether there is a correlation between topics and
opinion leaders and if so, how both develop over time.
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(a) The network of the facebook page “DIE LINKE” of January 2017.
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(b) Part of the Epinions social network [19] (filtered by k-core > 80).

Figure 3. Comparison of two different network topologies.
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