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Abstract—This paper describes a clustering optimization 

algorithm for Data Mining, called Ensemble Clustering 

Fuzzification (ECF) means, which combines many different 

clustering results in ensemble, achieved by 𝑵 different runs of a 

chosen algorithm, into a single final clustering configuration. 

Furthermore, ECF is a simple procedure to fuzzify a clustering 

algorithm because each point in the original dataset is assigned 

to each cluster with a degree of membership. Moreover, a novel 

clustering validation index, called Threshold Index (TI), is also 

here defined. The proposed approach is applied to the well-

known 𝒌 -means clustering algorithm by using its Weka 

implementation and an ad-hoc developed software application. 

Two case studies are also here reported; the first one in the 

meteorological domain and the second one concerns the famous 

Iris dataset. All the outcomes are compared with the results of 

the simple 𝒌 -means algorithm against which ECF seems to 

provide more effective and usable final configurations. 

Keywords-Clustering Optimization; Data Mining; Ensemble 

Clustering; Fuzzy Clustering; k-means; Weka. 

I.  INTRODUCTION 

Clustering (or cluster analysis) is an unsupervised 
Machine Learning technique of finding patterns in the data. It 
is widely used [1] for Data Mining tasks, because it can be 
easily applied to understand, explore, prepare, and model data. 
It plays an outstanding role in many applications, such as 
scientific data exploration, information retrieval and text 
mining, web analysis, bioinformatics, and many others. 

In the literature, there are many categories of algorithms 
for clustering: Heuristic-based, Model-based, Density-based 
[2]. Their common goal is to create clusters so that objects in 
the same cluster should be as similar as possible, whereas 
objects in one cluster should be as dissimilar as possible from 
objects in the other clusters. Usually, it is not easy to choose 
the most useful algorithmic approach, the most satisfying 
result, and therefore the most usable configuration. In fact, the 
different models for clustering may produce groupings that 
are very different from one another. Anyone applying a 
clustering algorithm immediately realizes how difficult it is to 
choose the final cluster configuration. We may have different 
results because we choose different algorithms, or different 
parameters of the fixed algorithm. Furthermore, the numerous 
available evaluation metrics often do not facilitate this choice 
because they lead to very discordant results.  

In spite of the availability of a large number of validation 
criteria, the ability to truly test the quality of a final 
configuration remains vague and hard to achieve. Specific 
domain knowledge is not an aid because it is often hard to 
translate it into operating rules, neither the domain expert has 
a real target class for evaluating and comparing the results. So, 
why do not consider all the obtained configurations? That is, 
why do not find a method that summarizes all the results of 
clusterings? Meta-learning ensemble methods may be an 
answer. The idea is that no single model or criterion truly 
captures the optimal clustering, but a cooperation of models 
could provide a more robust solution. Cluster Ensemble, or 
Aggregation Clustering, or Multiview Clustering, aims to find 
a single clustering from multi-source basic clusterings on the 
same group of data objects [3]. However, these ensemble 
methods, such as voting-based clustering [4], consensus 
clustering [5], or clustering aggregation [6] do not assign a 
level of membership to every point in clusters. 

In order to overcome the limits mentioned above, in this 
paper we present a strategy for cluster analysis. As will be 
evident, this simple method can be included within ensemble 
procedures. It is also an a posteriori criterion for optimization 
of the obtained groupings. This procedure takes in input any 
partitioning clustering algorithm for which it is possible to 
initially choose the 𝑘 number of clusters to be determined and 
a seed for the random choice of the initial 𝑘 centroids. 

The 𝑘-means algorithm is one of the clustering algorithms 
that checks all the conditions listed. So, it is considered as a 
reference clustering algorithm. In Weka implementation of 𝑘-
means [7] [8], the name of the algorithm is SimpleKMeans; in 
this version the seed parameter is 𝑠, that is the initialization 
value for the random number generator. Using the same seed 
value will always result in the same initial centroids then. 
Exploiting this seed parameter, many different configurations 
are evaluated and compared, and also used in our meta-
algorithm for ensemble final configuration. 

Finally, a “soft” interpretation of the clustering is 
presented, in order to better explore and understand the 
results, to find possible outliers in the dataset, and to fix the 
best parameters. 

A. Structure of the paper 

In Section II, we present some Cluster Analysis general 
outlines, including main definitions, its scope and its role in 
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Data Mining. Furthermore, some concepts regarding 
Ensemble Clustering, soft and hard clustering are mentioned. 

In Section III, the original 𝑘 -means algorithm is 
synthesized, exposing its pros and cons. 

In Section IV, the Ensemble Clustering Fuzzification 
Means (ECF-means) is presented, including some main 
definitions, validation measures, and clustering validity 
indexes. 

In Section V, the ECF-means SW application is explained. 
In Sections VI and VII, we show how the implemented 

tool has been used in two different applications, underlining 
how it helped us to explore datasets, discover new knowledge 
and to group objects in order to train custom models. 

Finally, in Section VIII, we show our general 
considerations and future works. 

II. CLUSTER ANALYSIS 

Clustering, or Cluster analysis, methods belong to 
intersection of Statistics, Machine Learning, and Pattern 
Recognition. It is a very useful method for discovery pattern 
in large amount of data. It is a technique to group a set of 
objects into subsets or clusters. Usually, objects are described 
by attributes, also called features. It has become one of the 
most widespread unsupervised techniques of Data Mining. It 
has multiple real applications, above all for the simplicity of 
the algorithms and their readings. 

A. Introduction, Definitions and Scope 

A Clustering algorithm produces a partition on an 
unlabeled data set, such that no cluster is empty, no two 
clusters intersect, and the union of all clusters is the data set 
itself. 

The goal is to create clusters that are coherent internally, 
but substantially different from each other. In a nutshell, 
objects in the same cluster should be as similar as possible, 
whereas objects in one cluster should be as dissimilar as 
possible from objects in the other clusters. 

Similarity between objects that belong to a cluster is 
usually measured by a metrics 𝑑 . Two objects 𝑥  and 𝑦  are 
similar if the value of 𝑑(𝑥, 𝑦) is small; what “small” means 
depends on the context of the problem. 𝑑 is defined by some 
distance measure. Typically, the Euclidean Distance (or 
simply the squared Euclidean Distance) is widely used in 
many applications (it is also used in the ECF-means) for the 
computation of similarities: 𝐸𝐷2(𝑥, 𝑦) = ∑ (𝑛

𝑖=1 𝑥𝑖 − 𝑦𝑖)
2. 

It is important to underline that, also depending on the type 
of data, other many metrics are possible. 

Numerous clustering algorithms are available in the 
literature and there are several points of view for examining 
clustering techniques; a very good landscape of Clustering 
algorithms can be retrieved in [2], and an in-depth and 
complete study of clustering techniques, algorithms and 
applications can be retrieved in [9]. 

B. Ensemble Clustering 

Different clustering approaches or different views of the 
data can lead to different solutions to the clustering problem. 
Indeed, also initial settings of a fixed algorithm may produce 
clusters that are very different from one another. This 

evidence is closely related to the theory of Ensemble 
Clustering (or Multiview Clustering), that studies this issue 
from a broader perspective [3] [10]. Therefore, instead of 
running the risk of picking an unsuitable clustering algorithm, 
a cluster ensemble can be used in order to get a “better” 
clustering configuration. The idea is that no single model or 
criterion truly captures the optimal clustering, but a collective 
of models will provide a more robust final solution. 

Most ensemble models use the following three steps to 
discovery the final clusters configuration: 

1. Generate 𝑁  different clusterings, by using different 
approaches, or different data selection, different 
settings of the same algorithm, or different clusterings 
provided by different runs of the same algorithm. 
These represent the ensemble components.  

2. Combine the results into a single and more robust 
clustering, by using a rule or a set of rules (called 
meta-rule). 

3. Evaluate the ensemble clustering result and compare 
it with the results of the 𝑁 components. 

As already mentioned, the ensemble components can be 
selected in a wide variety of ways. Some strategies for 
building clustering ensemble components follow: 

1. By using different subsets of features. Each clustering 
configuration is found by means of overlapping or 
disjoint subsets of the original features set. 

2. By selecting different subsets of the data, via random 
sampling. 

3. The different components can be selected combining 
a variety of models and algorithms such as 
partitioning, hierarchical or density-based methods, 
random or deterministic algorithms, and so on. 

4. The different components can correspond to different 
settings of the same algorithm. 

5. The different components could be obtained from a 
single algorithm, randomizing the initial choice of the 
clusters centroids. Of course, an example is 𝑘-means; 
thus, the ensemble can be formed as the result of 𝑁 
different runs of the algorithm. 

After the individual components have been obtained, it is 
often a challenge to find a meta-rule able to combine the 
results from these different solutions in order to create a 
unified ensemble clustering. 

C. Hard and Soft Clustering 

Clustering algorithms can also be classified into hard and 
soft algorithms. A hard clustering algorithm leads to a 
partition of crisp sets. In a crisp set, an element is either a 
member of the set or not. On the other hand, a soft clustering 
algorithm leads to fuzzy clusters. Fuzzy sets allow elements 
to be partially in a set. Each element is given a degree of 
membership in a set. 

One of the most famous fuzzy clustering algorithms is 
Fuzzy C-means [11], which allows an object to belong to two 
or more clusters with a membership degree between zero (not 
an element of the set) and one (a member of the set). It has 
been widely used in many real-world application domains 
where well-separated clusters are typically not available. 
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The method presented in this article leads to a fuzzy 
partitioning of the starting dataset, by repeatedly applying the 
results of the 𝑘-means algorithm. 

III. THE 𝑘-MEANS ALGORITHM 

𝑘-means is a simple clustering algorithm whose main goal 
is to find 𝑘  non-overlapping clusters. Each final cluster is 
represented by its centroid that is typically the mean of the 
points in that cluster. 

A. Introduction, scope and procedure 

𝑘 -means is one of the oldest and still widely used 
algorithms for cluster analysis. Without any doubt, it 
represents the archetype of the clustering partitioning 
algorithms. Because of its mathematical simplicity, it is also 
the most studied unsupervised learning technique [12], and 
over the years, many of its variations and extensions have 
been implemented (for High-Dimensional Data, for Data 
Streams, Time Series, for Data with noise, and so on).  

Its basic algorithmic structure is shown in the Figure 1. 

𝒌-means Clustering Algorithm 

Input: S set of instances; 𝑘 number of clusters 
Output: set of 𝑘 clusters with 𝑘 centroids 

1. Randomly initialize 𝑘 cluster centers (centroids) 
2. While termination condition is not satisfied { 
3.           Assign instances to the closest cluster center 
4.          Update cluster centers using the instances assignment 
5.     } 

Figure 1 – 𝑘-means Algorithm. 

The condition of termination of the process is satisfied 
when no point changes clusters. 

B. Pros and Cons  

The algorithm has been very successful thanks to its 
simplicity and also for its linear time complexity 𝑂(𝑘𝑛𝑙) , 
where 𝑛 is the number of objects to be clustered and 𝑙 is the 
number of iterations that the algorithm is performing. 

Like most partitioning clustering algorithms, 𝑘-means has 
some disadvantages: 

1. It is very sensitive to the presence of outliers and 
noise. 

2. The number of clusters need to be specified by the 
user and often it’s not simple to choose it. 

3. It is not able to discover concave-shaped clusters. 
4. Since the initial choice of 𝑘  centroids is random, 

different selections can also lead to very different 
final partitions, especially for large datasets with 
many features. 

The 𝑘-means algorithm always terminates, but it does not 
necessarily find the “best” set of clusters. 

IV. ENSEMBLE CLUSTERING FUZZIFICATION MEANS 

The initial selection of centroids can significantly affect 
the result of the 𝑘-means algorithm. To overcome this, the 
algorithm can be run several times for a fixed value of 𝑘, each 
time with a different choice of the initial 𝑘 centroids. 

In many software implementations of 𝑘 -means, for 
example in its Weka version, it is possible to choose a seed 
parameter (𝑠), useful for the random selection of the first 
initial centroids (𝑠 is the random number seed to be used). 
Using this parameter, it is possible to realize, as will be 
described in the following sections, a procedure able to 
optimize and reinforce the obtained partition. 

A. Introduction and Definitions 

Let 𝑆 ⊆ ℝ𝑚  be a set of points. Let 𝑘  be the desired 
number of clusters to be determined. Changing the seed (𝑠) 
from 0 to 𝑁 − 1 , 𝑁  partitions of 𝑆  can be generate by 
applying the 𝑘-means algorithm. Some of these partitions are 
exactly the same, considering or not the order of groupings. 
Others, however, differ for very few records, and others for 
many. 

In the following 𝑁 × 𝑘 matrix, called Clustering Matrix 𝐶 
of 𝑆, each row is a partition of 𝑘 clusters of 𝑆. 

𝐶 =

(

 

𝐶1,1 𝐶1,2 … 𝐶1,𝑘
𝐶2,1 𝐶2,2 … 𝐶2,𝑘
… … 𝐶𝑖,𝑗 …

𝐶𝑁,1 𝐶𝑁,2 … 𝐶𝑁,𝑘)

  

𝐶𝑖,𝑗 is the 𝑗-th cluster obtained at the 𝑖-th iteration of the 

clustering algorithm, with 𝑖 = 1, … , 𝑁 and 𝑗 = 1,… , 𝑘. 
It is possible associate a new 𝑁 × 𝑘 matrix to 𝐶 , called 

𝑀𝑈 matrix, that is the matrix of the centroids of the clusters: 

𝐶 → 

(

 
 

𝜇(𝐶1,1) 𝜇(𝐶1,2) … 𝜇(𝐶1,𝑘)

𝜇(𝐶2,1) 𝜇(𝐶2,2) … 𝜇(𝐶2,𝑘)

… … 𝜇(𝐶𝑖,𝑗) …

𝜇(𝐶𝑁,1) 𝜇(𝐶𝑁,2) … 𝜇(𝐶𝑁,𝑘))

 
 
= 𝑀𝑈 

𝜇(𝐶𝑖,𝑗) is the arithmetic mean of the 𝑗-th cluster of the 𝑖-th 

iteration of the algorithm, with 𝑖 = 1, … ,𝑁 and 𝑗 = 1,… , 𝑘. 

B. Clusters Sort Algorithm 

The algorithm in Figure 2 is useful for sorting the clusters 
partitions of 𝐶 matrix. This step is essential because 𝑘-means 
can produce different orders of clusters in different runs, even 
if the partitioning results can be the same. 

Please note it is possible that the average of some elements 
of the second row 𝐶2  in Algorithm 1 of Figure 2 has a 
minimum distance from two or more averages of elements of 
the first row 𝐶1 . In this case, the minimum value of the 
minimum values is chosen. 

C. The ECF-means Algorithm 

Let 𝐶  be a Cluster Matrix of 𝑆 , sorted by using the 

Algorithm 1. We define 𝑪𝒋 as floor of 𝑪𝒋: 𝐶𝑗 = ⋂ 𝐶𝑖,𝑗
𝑁
𝑖=1 , with 

𝑗 = 1,… , 𝑘. It is possible that 𝐶𝑗 = ∅ (𝑗 = 1,… , 𝑘). Moreover, 

𝑺 = ⋃ 𝐶𝑗
𝑘
𝑗=1  is defined as the floor of 𝑺. 

Let 𝑥  be an element of 𝑆; we can count the number of 
clusters of the first column of 𝐶  where 𝑥 is, the number of 
clusters of the second column of 𝐶 where 𝑥 is, and so on. In 
this way, we can associate a new numerical vector to 𝑥, called 
attitude of 𝒙 (𝑎𝑡𝑡(𝑥)): 
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𝑎𝑡𝑡(𝑥) = (𝑎𝑡𝑡1(𝑥), 𝑎𝑡𝑡2(𝑥), … , 𝑎𝑡𝑡𝑘(𝑥)), 

where 𝑎𝑡𝑡𝑗(𝑥) is the number of clusters in the 𝑗-th column of 

𝐶  where 𝑥  is located. 𝑎𝑡𝑡𝑗(𝑥) = 𝑁 ⇔ 𝑥 ∈ 𝐶𝑗  and 

∑ 𝑎𝑡𝑡𝑗(𝑥)
𝑘
𝑗=1 = 𝑁. In this manner, we are defining a function 

𝑎𝑡𝑡𝑗 (𝑗 = 1,… , 𝑘 and 𝐼 = {1,2, … , 𝑁}): 

𝑎𝑡𝑡𝑗: 𝑥 ∈⋃𝐶𝑖,𝑗
𝐼

→ 𝑎𝑡𝑡𝑗(𝑥) = |{𝑖 ∈ 𝐼: 𝑥 ∈ 𝐶𝑖,𝑗}| 

where, as usual, |𝐴| is the number of the elements of the set 𝐴. 

Algorithm 1: Clusters Sort Algorithm 

Input: two different rows of 𝐶:  

𝐶1 = (𝐶1,1, 𝐶1,2, … , 𝐶1,𝑘) and 𝐶2 = (𝐶2,1, 𝐶2,2, … , 𝐶2,𝑘) 
Output: a new order of the second row: 
(𝐶′2,1, 𝐶′2,2, … , 𝐶′2,𝑘) = 𝐶′2  

𝐶1 represents the reference row of the current sorting procedure (e.g., 
obtained by fixing 𝑠 = 0 in the Weka 𝑘-means algorithm). 
1. Calculate the 2 × 𝑘 matrix of clusters centroids: 

𝑀𝑈 = (
𝜇(𝐶1,1), 𝜇(𝐶1,2),… , 𝜇(𝐶1,𝑘)

𝜇(𝐶2,1), 𝜇(𝐶2,2),… , 𝜇(𝐶2,𝑘)
)  

2. Compute the Euclidean Distances (𝐸𝐷) in 𝑀𝑈. The following 𝑘 ×
𝑘 matrix is the ∆ matrix of the 𝐸𝐷s:  

∆= (

𝑑1,1 𝑑1,2 … 𝑑1,𝑘
𝑑2,1 𝑑2,2 … 𝑑2,𝑘
… … … …
𝑑𝑘,1 𝑑𝑘,2 … 𝑑𝑘,𝑘

)  

Where: 

𝑑𝑖,𝑗 = 𝐸𝐷 (𝜇(𝐶1,𝑖), 𝜇(𝐶2,𝑗)), with 𝑖, 𝑗 = 1,… , 𝑘. 

3. Calculate the minimum value of each row of ∆. 
min{𝑑1,1, 𝑑1,2,… , 𝑑1,𝑘} = 𝑑1,𝑗1̅̅̅ = 𝑚𝑖𝑛1  

min{𝑑2,1, 𝑑2,2, … , 𝑑2,𝑘} = 𝑑2,𝑗2̅̅̅ = 𝑚𝑖𝑛2  
………………  
min{𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝑘} = 𝑑𝑘,𝑗𝑘̅̅ ̅ = 𝑚𝑖𝑛𝑘  

4. The second row 𝐶′2 is: 

(𝐶′2,1, 𝐶′2,2, … , 𝐶′2,𝑘) = (𝐶2,𝑗1̅̅̅ , 𝐶2,𝑗2̅̅̅, … , 𝐶2,𝑗𝑘̅̅ ̅)  
Where: 
𝐶′2,1 = 𝐶2,𝑗1̅̅̅  is the cluster (in 𝐶2) that has the centroid with the 
minimum distance from the centroid of the first element of 𝐶1. 
………  
𝐶′2,𝑘 = 𝐶2,𝑗𝑘̅̅ ̅ is the cluster (in 𝐶2) that has the centroid with the 
minimum distance from the centroid of the 𝑘-th element of 𝐶1. 

Figure 2 – Clusters Sort Algorithm. 

Finally, we can define the probability vector of 𝒙, as: 

𝑝(𝑥) = (
𝑎𝑡𝑡1(𝑥)

𝑁
,
𝑎𝑡𝑡2(𝑥)

𝑁
,… ,

𝑎𝑡𝑡𝑘(𝑥)

𝑁
) 

Thanks to the simple mathematical notions of the current 
section, we are able to “soften” the “hard” 𝑘-means algorithm 
and we can have a new Fuzzy Clustering Algorithm. 
According to this approach, each element of the dataset 
belongs to each cluster with a different degree of membership, 
and the sum of these probabilities is equal to one. 

Furthermore, the method can also be interpreted in a 
different way. Indeed, this “fuzzification” procedure can be 

used not only with 𝑘-means algorithm, but also for others 
partitional clustering algorithms for which it is possible to 
choose the number of clusters to be determined. In this way, 
the algorithm is part of the Ensemble algorithms. For these 
reasons, ECF-means is also a meta-algorithm because we 
reach a fuzzy partition of the dataset by using a multiple 
clustering algorithm schema.  

Algorithm 2: ECF-means (Fuzzification of 𝒌-means) 

Input: 𝑆 ⊆ ℝ𝑚 ; number 𝑘  of clusters to be determined; 
membership threshold 𝑡  (0≤ 𝑡 ≤ 1); number 𝑁  of 𝑘 -means 
iterations 
Output: set of 𝑘 clusters of level 𝑡; probability vector of each 
element 𝑥 of 𝑆 

1. Apply the 𝑘-means algorithm to 𝑆, fixing the random seed 𝑠 = 0, 
obtaining the clusters 𝐶0,1, … , 𝐶0,𝑘 (𝐶(0)-configuration) 

2. foreach 𝑠 = 1,… , 𝑁 − 1 
3. Apply the 𝑘-means algorithm to 𝑆, obtaining the clusters 

𝐶′𝑠,1, … , 𝐶′𝑠,𝑘 (𝐶′(𝑠)-configuration) 
4. Apply the Clusters Sort Algorithm to 𝐶′(𝑠), considering 

𝐶(0)  as reference, obtaining the clusters 𝐶𝑠,1, … , 𝐶𝑠,𝑘 
(𝐶(𝑠)-configuration) 

5. end 
6. foreach  𝑗 = 1,… , 𝑘 
7. foreach 𝑥 ∈ 𝑆 
8. Calculate 𝑝𝑗(𝑥) = 𝑎𝑡𝑡𝑗(𝑥)/𝑁 
9. Fix the cluster 𝐶𝑗

𝑡 = {𝑥 ∈ 𝑆| 𝑝𝑗(𝑥) ≥ 𝑡} 

10. end 
11. end 

Figure 3 – ECF-means Algorithm. 

The membership threshold 𝑡 in the Algorithm 2 (Figure 3) 
is fixed by the user and it is very useful to change the “level” 

to clusters final configuration. If 𝑡 = 1 , then 𝐶𝑗
1 = {𝑥 ∈

𝑆|𝑝𝑗(𝑥) = 1} = 𝐶𝑗 . Additionally, 𝑆 = ⋃ 𝐶𝑗
1𝑘

𝑗=1 . If 𝑡 = 0 , 

then 𝐶𝑗
0 = {𝑥 ∈ 𝑆|𝑝𝑗(𝑥) ≥ 0} and ⋃ 𝐶𝑗

0𝑘
𝑗=1 = 𝐶𝑗

0 = 𝑆. 

Let 𝑝(𝑥)  be the probability vector of 𝑥  and let 𝑀 =
max 𝑎𝑡𝑡(𝑥) = max{𝑎𝑡𝑡1(𝑥), 𝑎𝑡𝑡2(𝑥), … , 𝑎𝑡𝑡𝑘(𝑥)}  be the 
maximum of 𝑎𝑡𝑡(𝑥), if this exists. We can define the position 
of 𝑀 in 𝑎𝑡𝑡(𝑥) as 𝑃𝑀𝐴(𝑥), if this exists. 

An element 𝑥 ∈ 𝑆  is an 𝒐 -rank fuzzy outlier of 𝑺  if 
𝑝𝑗(𝑥) − 𝑝𝑙(𝑥) ≤ 𝑜, where 𝑝𝑗(𝑥) and 𝑝𝑙(𝑥) are the first two 

highest value components of 𝑝(𝑥). Note that, in this contest, 
the word “outlier” takes on a different meaning than its 
scientific usual use; but the definition of 𝑜-rank fuzzy outlier 
helps us to treat these points as special points, that need to be 
observed more closely, because they belong at least to two 
different clusters. 

D. Validation Measures for Fuzzy Clustering 

Clustering validation has long been recognized as one of 
the critical issues essential to success of clustering 
applications [9]. 

Let 𝑈 = (𝑢𝑙𝑖) (1 ≤ 𝑙 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛)  be the 
membership’s matrix of a fuzzy partition of a dataset 𝑆 with 
𝑛 records, and 𝑘 is the number of clusters. 

The first validity index for fuzzy clustering is the Partition 
Coefficient Index (𝑃𝐶)  [13]. 𝑃𝐶  is based on 𝑈  and it is 

defined as: 𝑃𝐶 =
1

𝑛
∑ ∑ 𝑢𝑙𝑖

2𝑛
𝑖=1

𝑘
𝑙=1 . 
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𝑃𝐶 ∈ [1 𝑘⁄ , 1] . Furthermore, a 𝑃𝐶  value close to 1 𝑘⁄  
indicates that clustering is “very fuzzy”; the value 1 𝑘⁄  is 
obtained when 𝑢𝑙𝑖 = 1 𝑘⁄  , for each 𝑙, 𝑖. 

Another index is the Partition Entropy Coefficient (𝑃𝐸): 

𝑃𝐸 = −
1

𝑛
∑ ∑ 𝑢𝑙𝑖𝑙𝑜𝑔𝑎(𝑢𝑙𝑖)

𝑛
𝑖=1

𝑘
𝑙=1 . 

𝑃𝐸 ∈ [0, 𝑙𝑜𝑔𝑎𝑘]. Furthermore, a low 𝑃𝐸 value indicates 
that clustering is “not very fuzzy”. 𝑃𝐸  values close to the 
upper limit indicate an absence of any clustering structure 
within the dataset or the inability of the algorithm to extract it. 

The main disadvantage of 𝑃𝐶 and 𝑃𝐸 is their monotonic 
evolution tendency with respect to 𝑘 . To avoid this, a 
modification of the 𝑃𝐶  index can reduce the monotonic 

tendency and was defined by: 𝑀𝑃𝐶 = 1 − 
𝑘

𝑘 − 1
 (1 –  𝑃𝐶) , 

where 0 ≤ 𝑀𝑃𝐶 ≤ 1. 
Finally, let we define a novel validity index, that we call 

the Threshold Index 𝑇𝐼, by the following formula: 

𝑇𝐼 =
|𝑆|

|𝑆|
 

V. ECF-MEANS TOOL 

With the purpose of testing the ECF-means algorithm, a 
software application has been designed and developed. It has 

been carried on using a Client/Server architectural pattern, 
where the Server part consists of the algorithm and other 
support utilities, while the Client part is made by a browser-
based application, responsible of the ECF-means result 
visualization. 

A. Software Implementation 

The ECF-means web application is built up of two main 
modules: the first one wraps the ECF-means Algorithm, that 
has been implemented in Java programming language, and it 
makes use of the Weka 𝑘-means algorithm (SimpleKMeans) 
[7] [14] as clustering algorithm implementation. 

The second module consists of the web application client 
part, that has been implemented by using JavaScript libraries, 
such as D3.js, as visualization library, and jQuery for Ajax 
asynchronous data communication and Document Object 
Model (DOM) manipulation tasks. 

B. GUI & Data Visualization 

The implemented tool provides a user-friendly GUI, by 
which it is very easy to load datasets, fix the ECF-means 
parameters, and understand the algorithm results visually. 

The GUI can be divided into three functional blocks, as 
highlighted by red numbered circle in Figure 4. 

 

Figure 4 – Software GUI and Clustering Visualization. 
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Through the first functional block, user can upload a 
dataset from a local file system, in csv or arff formats; after 
that he can specify the number of clusters 𝑘 (default is set to 
two), the initial seed number (default 0), and the number of 
iterations 𝑁 to perform (default 100). Lastly, a set of buttons 
allow the following operations: 

1. Run: runs the ECF-means algorithm and displays the 
results (clustering graphical visualization and 
validation measures output). 

2. Save Results: saves results to an output csv file. 

The second block is where clustering visualization takes 
shape: dataset points are displayed as circle with the color of 
the belonging cluster (resulting from the highest value of the 
probability membership vector) and with an opacity due to the 
degree of membership to the same cluster (stronger opacity 
means higher membership). If the attributes of the dataset are 
two, Voronoi lines (computed considering initial seed) are 
also displayed. In the top of the block, some input controls are 
used to affect data visualization. In particular, two combo 
boxes are used to allow the choosing of dataset’s attributes 
that has to be displayed. Below this, a slider allows to set the 
degree of membership above which a point is displayed 
(Membership Threshold 𝑡). 

Instead, rightmost input fields, in order from top to 
bottom, control, respectively:  

1. The displayed of the Initial Seed Centroid and Mean 
Seed Centroid points (as a bold colored X). 

2. The Outlier Threshold, that controls the 𝑜-rank fuzzy 
outliers, with the meaning that, if a data point has a 
difference between the two highest values of its 
probability membership vector less than this value, 
the point is displayed as a grey squared. 

Lastly, in the third box the validation measures are 
displayed, as described in IV.D, such as 𝑃𝐶, 𝑃𝐸, 𝑀𝑃𝐶, and 
𝑇𝐼. In addition, Sum of Squared Errors (SSE) and Silhouette 
(S) measures have also been included; they are calculated 
considering Initial Seed (IS) and Mean Seed (MS), where MS 
is the mean value of the measure over all the 𝑁  iterations, 
which lead to the definition of IS-SSE, MS-SSE, IS-S, and 
MS-S. 

C. Output Results 

The ECF application exports results in csv format, where 
each row of the output file represents a point 𝑥 of the dataset. 
The application appends ECF-means algorithm results as 
additional columns to the attributes columns of the point 𝑥.  

TABLE I.  COLUMN NAMES MEANING 

Column Names Description 
ISCDistance𝑖, with 
𝑖 = 1,… , 𝑘 

Vector of Euclidean Distances between point 𝑥 and 
Initial Seed Centroids 

ISCMembership 
Cluster membership derived from the position of 
the smallest value in ISCDistance vector 

MSCDistance𝑖 , 
with 𝑖 = 1,… , 𝑘 

Vector of Euclidean Distances between point 𝑥 and 
Mean Seed Centroids 

MSCMembership 
 

Cluster membership derived from the position of 
the smallest value in MSCDistance vector 

Membership𝑖, 
with 𝑖 = 1,… , 𝑘 

Probability vector of point 𝑥, 𝑝(𝑥) 

ECFMembership Cluster membership derived from the 𝑃𝑀𝐴(𝑥) 

Table I shows these additional column names meaning, 
where Mean Seed Centroid (MSC) is the arithmetic mean 
value of all computed centroids in 𝑁 iterations. 

VI. CASE STUDY IN METEOROLOGICAL DOMAIN 

In order to test the ECF-means algorithm and the 
validation measures, an historical dataset made up of 9200 
meteorological observations has been collected. Data have 
been retrieved from ECMWF MARS Archive [15] containing 
the surface Synoptic observations (SYNOP) provided by 4 
geographical sites: Charles De Gaulle (CDG) airport in Paris 
and Grazzanise, Milan, and Pantelleria airports in Italy. 

TABLE II.  LIST OF METEOROLOGICAL VARIABLES (FEATURES) 

# Name # Name 

1 Pressure 6 cloud cover 

2 three-hour pressure change 7 height of base of cloud 

3 wind direction 8 Dewpoint 

4 wind speed 9 Drybulb 

5 Visibility 10 SITE 

SYNOP observations are recorded every hour and the list 
of the meteorological variables [16] used for applying the 
ECF-means algorithm is reported in Table II. Each airport site 
has got 2300 records and the SITE attribute has 4 values. 

A. 𝑘-means Application 

By changing 𝑘 value (number of clusters) from 2 to 7 and 
fixing the seed 𝑠 = 0 , the 𝑘 -means algorithm has the 
silhouette measures of the Table III. These outcomes have 
been calculated by using the ECF-means application fixing 
Initial Seed Number = 0 and Iterations = 1. Considering this 
measure, the best clustering partition is obtained by selecting 
𝑘 = 3.  

Fixing 𝑘 = 3  and considering SITE attribute as Class 
attribute, Classes to Clusters (contingency table) is showed in 
Table IV. CDG and Milan have been inserted into the same 
cluster (Cluster 0) by the algorithm (4 sites in 3 clusters): it 
seems that the two sites have a lot in common! Thus, we try 
to merge these two sets, obtaining a new set called 
CDG+MIL.  

TABLE III.  𝑘-MEANS RESULTS 

𝒌 Silhouette 𝒌 Silhouette 
2 0.34 5 0.38 

3 0.49 6 0.36 

4 0.37 7 0.31 

TABLE IV.  CLASSES TO CLUSTERS 

0 1 2 Assigned to cluster 
1593 410 297 CDG  Cluster 0 

499 1260 541 Grazzanise  Cluster 1 

1313 692 295 Milan  Cluster 0 

387 589 1324 Pantelleria  Cluster 2 

41% 32% 27%  

The incorrectly clustered instances are 3710 and represent 
40.32% of the original dataset. 𝑘 -means does not provide 
homogeneous clusters with respect to SITE attribute. From an 
intuitive point of view, the 3 sites (Grazzanise, Pantelleria and 
CDG+MIL) have an ambiguous meteorological nature and the 
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3710 unclustered instances are on the border between two or 
more sites. In other words, the datasets have overlapping 
areas, with “similar” meteorological conditions, and perhaps 
the sites are not so different, and they are not well-separated 
from each other. 

If we expected the 3 sites to be able to determine (or 
clearly separate) even the 3 clusters, we are now disappointed. 
And nobody knows if this disappointment is due to 𝑘-means 
algorithm or to the fact that the sites are not completely 
different from each other from a weather (and consequently 
statistical) point of view.  

B. ECF-means Application 

The ECF-means algorithm tries to overcome the problem 
in which the 𝑘-means algorithm falls in this meteorological 
case study, and as we will see in next section, in part it 
succeeds, if only because it provides much more information 
on datasets, clusters, and on clustering results, thanks to which 
the data analyst can make more informed and useful choices. 

An Ensemble combination of many runs of 𝑘-means by 
using ECF-means application showed other results and better 
performances than the single run of the previous section. 

By fixing 𝑘 = 3, the ECF-means algorithm provides the 
results of the Table V that shows how the metrics stabilize as 
the number 𝐼 of iterations increases. 

TABLE V.  ECF-MEANS METRICS 

I MPC TI I MPC TI 
2 0.98703 0.98054 150 0.97716 0.9762 

5 0.9917 0.98054 200 0.97975 0.9762 

10 0.99066 0.97828 250 0.98138 0.58293 

25 0.98657 0.97828 300 0.98269 0.58293 

50 0.9877 0.97828 350 0.98339 0.58293 

75 0.97428 0.9762 400 0.98083 0.58293 

100 0.97612 0.9762 500 0.98131 0.58293 

TABLE VI.  CLASSES TO CLUSTERS 

0 1 2 Assigned to cluster # of Records 
2494 232 69 CDG+Milan  Cluster0 2795 

67 1183 141 Grazzanise  Cluster1 1391 

53 142 982 Pantelleria  Cluster2 1177 

49% 29% 22%  tot. 5363 

By selecting 𝐼 = 350, ECF-means has the highest value 
of 𝑀𝑃𝐶 (= 0.98339)  and the lowest value of 𝑇𝐼 (=
0.58293). Thanks to the ECF-means application, we are able 
to select the floor 𝑆 of whole dataset. It has got 5363 records 

that have the distributions in Table VI. The incorrectly 
clustered instances are 704 and represent 13.12% of 𝑆. 

C. Experimental Results 

The results obtained lead to a clear improvement of the 
clustering: the clusters seem much more separate, if the 
contingency matrices are calculated starting from the floor set. 
ECF-means manages to break down the percentage of 
instances that are incorrectly clustered from 40.32% to 
13.12%.  

The elements belonging to 𝑆  never fluctuate from one 

cluster to another (considering the 350 iterations) and 
constitute approximately 58.3% of the initial dataset. The 

elements of 𝑆 − 𝑆 , on the other hand, have a more fuzzy 

nature and we found that 1369 points (about 15% of the initial 
dataset) have an Outlier Threshold (difference between the 
two highest values of his probability membership vector), less 
than 0.2.  

These very fuzzy points can belong to more than one 
cluster and probably to more than one airport site (to 
overlapping areas). 

VII. CASE STUDY 2: THE IRIS DATASET 

The famous Iris dataset is a multivariate dataset that 
contains 3 classes of 50 instances each, where each class refers 
to a species of iris plant (Iris-setosa, Iris-virginica, and Iris-
versicolor). Four features were measured from each sample: 
the length and the width of the sepals and petals, in 
centimeters. The use of this dataset is very common in 
classification and clustering tasks, where numerous results 
have been obtained.  

The data set only contains two clusters with rather obvious 
separation: one of the clusters contains Iris setosa, while the 
other cluster contains both Iris virginica and Iris versicolor. 
This makes the dataset a good example for the ECF-means 
algorithm. 

TABLE VII.  2-MEANS RESULTS 

Index Value Index Value 
MPC 1.00 SSE 12.14 

PE 0.00 TI 1.00 

Moreover, fixing 𝑘 = 2, the ensemble effect due to the 
random choice of the two initial centroids via 𝑠  parameter 
seems to vanish, because all the iterations always lead to the 
same result; therefore the clustering validity indexes are (for 
each 𝐼) showed in Table VII.  

A. ECF-means Application 

Fixing 𝑘 = 3 , more interesting results are obtained by 
applying the ECF-means algorithm. The initial configuration 
(𝑠 = 0 and 𝐼 = 1) has the contingency matrix of the Table 
VIII. The incorrectly clustered instances are 18 and represent 
the 12% of the original Iris dataset. 

TABLE VIII.  CLASSES TO CLUSTERS (𝑠 = 0 AND 𝐼 = 1) 

0 1 2 Assigned to cluster 
0 0 50 Iris-setosa Cluster 2 

40 10 0 Iris-versicolor  Cluster 0 

8 42 0 Iris-virginica  Cluster 1 

32% 35% 33%  

TABLE IX.  ECF-MEANS VALIDITY INDEXES 

Case I TI 
1 2-31 0.91333 

2 32-1500 0.50000 

TABLE X.  CLASSES TO CLUSTERS (𝐼 = 31) 

0 1 2 Assigned to cluster 
0 0 50 Iris-setosa Cluster 2 

47 3 0 Iris-versicolor  Cluster 0 

14 36 0 Iris-virginica  Cluster 1 

41% 26% 33%  
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TABLE XI.  CLASSES TO CLUSTERS (𝐼 = 31 AND 𝑆) 

0 1 2 Assigned to cluster 
0 0 50 Iris-setosa Cluster 2 

40 3 0 Iris-versicolor  Cluster 0 

8 36 0 Iris-virginica  Cluster 1 

35% 28% 37%  

By changing the 𝐼 parameter, mainly the 𝑇𝐼  index takes 
two values, as reported in Table IX. Considering case number 
1, EFC-means provides the results of the Table X. The 
incorrectly clustered instances are 17 and represent the 
11.33% of the original Iris dataset. Thanks to the ECF-means 
application, we are able to select the floor 𝑆  of whole Iris 

dataset 𝑆. 𝑆 has got 137 elements that have the distributions in 

Table XI. 𝑆  has got 11 incorrected clustered instances that 

represent the 8% of 𝑆. In conclusion, if 𝑡 = 1, then |𝐶0
1| =

48, |𝐶1
1| = 39, and |𝐶2

1| = 50. 

B. Experimental Results 

Thanks to the obtained results, we can easily understand 
how the algorithm is able to optimize the partitioning of the 
data space with respect to the class that expresses the floral 
typology. The algorithm is able to find this partitioning in one 
fell swoop. By applying the simple 𝑘-means we may not be 
able to get the same partition. However, the most interesting 
result is that the algorithm is able to preserve the cluster with 
Iris-setosa label and to find the floating elements that are at 
the limits of the floral types. These “disturbing” elements can 
be analyzed separately in order to understand if they are, from 
some point of view, outliers or records that have undergone 
measurement errors. 

Moreover, analyzing the floor of 𝑆, only a small fraction 
of Iris-virginica is mixed with Iris-versicolor and only the 
cluster 0 is modified by the procedure. Also in this case, the 
13 elements of 𝑆 − 𝑆 can be analyzed separately in order to 

understand their fuzzy nature. These 13 elements have 
𝑎𝑡𝑡(𝑥) = (21, 10, 0) and 𝑝(𝑥) = (0.68, 0.32, 0). Then they 
are 0.36-rank fuzzy outliers of 𝑆  (𝑝0(𝑥) − 𝑝1(𝑥) ≤ 0.36 ). 
Furthermore, 7 elements of 𝑆 − 𝑆 have Iris-versicolor label 

whilst 6 elements have Iris-virginica label, and all of them 
have the same maximum degree of membership that is equal 
to 0.68. 

VIII. CONCLUSION AND FUTURE WORKS 

In this work, we have presented an algorithm for Ensemble 
or Aggregation clustering that has, as a simple consequence, 
the fuzzy reinterpretation of the obtained groupings. We have 
applied the developed procedure to two different case studies 
by using a simple software application, which made us 
understand how this approach helps to explore the dataset, to 
optimize the results and to assign a degree of membership to 
each element of the original dataset. 

We have had that all the most exciting results can be 
obtained by the active interaction with the software tool 

interface, thanks to which, by scrolling the sliders, changing 
parameters, and visualizing groupings, numerous properties 
of the dataset can be discovered. In future works, we are going 
to evaluate our method on other several data sets, for example 
Datasets from UCI ML Repository. 

For the current application, we have chosen the simple 𝑘-
means as the reference clustering algorithm. Furthermore, we 
can consider other algorithms in substitution or in addition to 
it, and this will surely be the next improvement of the tool. 
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