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Abstract—An alternative is proposed to the use of ra-
tios in financial predictive modelling. Such alternative, the
“log-modulus”, overcomes limitations, which have hitherto
thwarted most of the previous attempts to predict financial
attributes from data. Moreover, the use of log-modulus
opens-up the prospect of performing Knowledge Discovery
in Databases (KDD) of financial reports. Using controlled
experiments, the paper shows that models using log-modulus
are accurate, robust and balanced in cases where ratios fail to
deliver feasible results. The paper also provides a theoretical
basis supporting the observed ability of log-modulus to allow
knowledge discovery of financial statements.

Keywords–Type of Information Mining; Knowledge Discov-
ery in Databases; Predictive Modelling; Financial Reports.

I. INTRODUCTION

Business companies, namely those listed in stock mar-
kets, are required to prepare annual reports reflecting their
financial activity and position at the end of each year. Large
databases containing these reports are routinely scrutinised
by investors, banks, regulators and other parties with the
object of taking decisions regarding individual companies
and industrial sectors. Such scrutiny, and the corresponding
diagnostic, is known as “Financial Analysis”.

Financial Analysis aims to diagnose the financial out-
look of a company. The major source of data for such
diagnostic is the set of financial reports regularly made
public by the company and by other companies in the same
industrial sector. The diagnostic itself consists of identi-
fying and in some cases measuring the state of financial
attributes, such as Manipulation, Going Concern, Solvency,
Profitability and others. The tool used by analysts to assess
such attributes is the “ratio”, a quotient of two monetary
amounts appropriately chosen. After being identified and
measured, financial attributes convey a clear picture of a
company’s future economic prospects and may support the
taking of momentous decisions, such as to buy or not to
buy shares, to lend money and others. Financial attributes,
therefore, are the knowledge set where investing, lending
and other decisions are based.

The paper is about the discovery and assessment of
underlying attributes in databases of financial reports. It
describes a methodology capable of reliably producing,
from such databases, knowledge represented so as to allow
inferencing.

Attempts to perform analytical modelling of finan-
cial attributes have largely failed except in one instance,

bankruptcy prediction [1]. Other, equally vital attributes,
such as the trustworthiness as opposed to fraudulent re-
ports, have resisted attempts to be reliably predicted [2].
Such failure is largely due to difficulties posed by ratios
when used as predictors but, hitherto, no attempt has been
made to find alternatives. The objective of the paper is
to overcome the current stalemate by proposing a type of
predictor, the log-modulus [3], which overcomes ratios’
limitations and is amenable to knowledge discovery. An
effective KDD of financial reports would quicken and
lighten the analysis process, freeing analysts to concentrate
on specific cases thus improving their efficiency.

Section II describes the KDD challenge being tackled;
Section III offers theoretical considerations supporting the
use of log-modulus; Section IV presents results of con-
trolled experiments where log-modulus are compared with
ratios; Section V highlights expected benefits.

II. FINANCIAL ANALYSIS, A KDD CHALLENGE

Financial reports are standardized data-sets prepared
and published by business companies on a regular basis.
They contain, besides non-numerical data, a collection of
monetary amounts with an attached meaning: revenues of
the period, different types of expenses, asset and liability
values at the end of the period and others. Such amounts
are obtained via a process involving the recognition and
aggregation into “accounts”, of similar transactions relating
to the period. The resulting “set of accounts” is made avail-
able to the public together with non-numerical information
in the form of a financial report.

Amongst investors, regulators and banks, an extremely
popular value-added product is the database containing
current and past financial reports of companies listed in one
or several regions. This database typically includes com-
plementary information, such as an extended identification
data, industrial and economic classifications, the rating of
outstanding debts and the market value of shares. Financial
services companies, such as Thomson-Reuters or Standard
& Poor’s respectively sell “Datastream” and “Compustat”
databases, two examples amongst others of such product.
Analysts routinely access financial reports via databases.

Attributes examined by financial analysts are hierarchi-
cally linked: the meaning of one depends on the meaning of
others higher up in a hierarchy (Figure 1). The top attribute,
which allows all the others to be meaningful, is whether
a report is trustworthy or not. If the report is free from
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Figure 1. Uppermost dependencies in the hierarchy of financial attributes.

manipulation then it may be asked whether the company is
a going concern or not. Only in going concerns it makes
sense to assess attributes, such as Liquidity, which also are
at the root of hierarchies.

Knowledge discovery in databases of financial reports is
the process of assigning each company in the database a set
of logical classes/numerical values pertaining to attributes
forming taxonomies similar to those of Figure 1. The
assignment process is carried out using a corresponding
set of models which, in turn, are built using “supervised
learning” where algorithms learn to recognise classes from
instances where diagnostics are already made; but unsuper-
vised learning is also possible [4]. When completed, such
process greatly facilitates the task of analysts, allowing
them to concentrate on companies and conditions where
algorithms may not be able to produce accurate diagnostics.
If, for most of the attributes, the modelling is unreliable
then knowledge discovery is of little use. Such is the
present situation, where only one of the many attributes
analysts work with is predicted accurately.

Financial analysis of a company is typically based
on the comparison of two monetary amounts taken from
published reports. For instance, when a company’s net
income at the end of a given period is compared with
assets required to generate such income, an indication of
“Profitability” emerges. Pairs of items are often expressed
in the form of a single value, their ratio. Since the size
effect is similar for all items taken from the same company
and period, size cancels out when a ratio is formed. Thus,
ratios may be used to compare companies of different
sizes [5]. Besides their size-removal ability, ratios directly
measure attributes, which are implicit in reported statement
numbers. Profitability, for instance, is identified as a spe-
cific ratio. Thus, the use of ratios has extended to cases
where size-removal is not the major goal. Indeed, ratios are
used because they embody the knowledge, which analysts
possess [6].

Financial analysis is a rewarding albeit burdensome
exercise. In the hands of an experienced analyst, a trust-
worthy financial report reveals the true condition of a
company. Attempts to extract knowledge from such rich
content did not succeed probably due to the very success
of analysts. When trying to build automated, knowledge

Figure 2. Influential cases in a scatter-plot of two ratio components,
where some 3,000 cases are concentrated in a small region.

discovery algorithms applicable to databases, authors tend
to imitate analysts namely in the use of ratios. But in spite
of being the chief tool of analysts, ratios are inadequate to
analytical knowledge discovery for two reasons: first, their
statistical behaviour is atypical; second, they are themselves
knowledge, focused pieces of knowledge, not just data.

Ratios are inadequate firstly because monetary amounts
taken from financial reports, as well as ratios formed from
them, obey a multiplicative law of probabilities, not an
additive law. Ratio components, indeed any figure reported
in a given set of accounts, are accumulations and, as
such, they obey a specific generative mechanism where
distributions are better described by the Lognormal and
other similar functions with long tails (influential cases)
and inherent heteroscedasticity [5]. Where the multiplica-
tive character of financial statement data is ignored, any
subsequent effort to model such data is fruitless, not so
much because Ordinary Least Squares (OLS) or other
assumptions are violated but due to the distorting effect
of influential cases (Figure 2) and heteroscedasticity. And
when predictive performance is the issue, the use of robust
algorithms is not recommended because the cost of such
robustness is lessened performance. Amongst the three
basic types of measurement, Nominal, Ordinal and Scalar,
the latter is the richest in content. When a scale is treated
as an ordered sequence (as is the case of most robust
algorithms), a great deal of content is lost.

In the second place, the use of ratios in knowledge-
discovery entails a contradiction. When a ratio is chosen
instead of other ratios, knowledge is involved. Each ratio
embodies the analyst’s knowledge that, when two monetary
amounts are set against each other, a hidden attribute
is evidenced. Ratios, therefore, convey previously known
knowledge.

Analysts use ratios because they can assess only one
piece of information at a time. They are not able to jointly
deal with collections of distributions, their moments and
variance-covariance matrices as algorithms do. Analysts
need focus, machines don’t. Predictive models can only
lose by mimicking analysts’ requirements of separation
of knowledge in small bits in order to rearrange it in
a recognisable way. As explained in the coming section,
algorithms are able to choose amongst a set of monetary
amounts, those leading to optimal models. In doing so,
algorithms build their own representations in a way similar
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to analysts’ task of selecting, amongst innumerable com-
binations of monetary amounts, the pair which highlights
a desired attribute.

III. THEORETICAL CONSIDERATIONS

Studies on the statistical characteristics of reported
monetary amounts brought to light two facts. First, in cross-
section the probability density function governing such
amounts is nearly lognormal. Second, amounts taken from
the same set of accounts share most of their variability
as the size effect is prevalent [5]. Thus, variability of
logarithm of account i from set of accounts j, log xij ,
is explained as the size effect sj , which is present in all
accounts from j, plus some residual variability εi:

log xij = µi + sj + εi (1)

µi is an account-specific expectation. Formulations such
as (1), as well as the underlying random mechanism, apply
to accumulations only. Accounts, such as Net Income,
Retained Earnings and others, which can take on both
positive- and negative-signed figures, are a subtraction of
two accumulations. Net Income, for instance, is the sub-
traction of Total Costs from Revenue, two accumulations,
not the direct result of a random mechanism.

Given two accounts i = 1 and i = 2 (Revenue and
Expenses for instance) and the corresponding reported
amounts x1 and x2 from the same set, the logarithm of
the ratio of x2 to x1 is

log
x2

x1
= (µ2 − µ1) + (ε2 − ε1) (2)

It is clear why ratios formed with two accounts from the
same set are effective in conveying information to analysts:
the size effect, sj , cancels out when a ratio is formed. In
(2), the log-ratio has an expected value (µ2 − µ1). The
median ratio exp(µ2−µ1) is a suitable norm against which
comparisons may be made while exp(ε2−ε1) indicates the
deviation from such norm observed in j. Ratios thus reveal
how well j is doing no matter its size. For instance, if the
median of Net Income to Assets ratio is 0.15, any company
with one such ratio above 0.15, no matter small or large,
is doing better than the industry.

In (2), upward or downward deviations from the log
of the industry norm are the result of subtracting two
residuals, each of them size- and account type-free. The
deviation ε2 − ε1 from industry norms/benchmarks plays
the crucial role of conveying to analysts the size-free,
company-specific data they seek. It is clear, however, that
ε2 − ε1 is only part of the size-free, company-specific
information available in x1 and x2. When the ratio is
formed, all variability common to x1 and x2 is removed.
Residuals ε1 and ε2 are uncorrelated and the size-free,
company-specific information contained in x1 and x2 but
not conveyed by ε2 − ε1 is the variable orthogonal to
ε2−ε1, which is ε2+ε1 [7]. Therefore, ε2+ε1 is size-free
information not conveyed by the ratio.

It is thus demonstrated that the exclusive use of ratios
as model predictors curbs the information offered to the
algorithm. Only one dimension of the size-free information,

ε2−ε1, is made available while the other dimension, ε2+ε1,
is ignored.

Given this, it is worth asking whether amounts directly
taken from reports would not do a better job than ratios as
predictors in statistical models. Such possibility is attractive
but raises questions. It is attractive because predictors
obeying (1) behave exceedingly well: distributions are
nearly Normal, relationships are homoscedastic and influ-
ential cases, when present, are true outliers. Indirectly, log-
transformed numbers allow the use of powerful algorithms
which make the most of existing content. In the downside,
one obvious concern is how to deal with accounts, which
can take on both positive- and negative-signed figures.
Logarithms can only deal with positive values.

An equally pressing concern is how to interpret coeffi-
cients of such models. Consider the usual linear relation-
ship where y is explained by a set of predictors x1, x2, . . .

y = a+ b1x1 + b2x2 + · · · (3)

If, instead of x1, x2, . . . log-transformed predictors obeying
(1) are included in (3), such relationship becomes

y = A+ b1ε1 + b2ε2 + · · ·+ (b1 + b2+)sj (4)

where A = a+ b1µ1 + b2µ2 + . . . is a constant value and
residuals ε1, ε2, . . . now play the role of linear predictors.
The term (b1 + b2 + . . .)sj apportions the proportion of
sj (size) variability required by y. Coefficients b1, b2, . . .
are under a constraint: their summation b1 + b2 + . . . must
reflect the extent and sign of size-dependence in y; and
where y is size-independent, b1 + b2 + . . . must be zero
so as to bar information conveyed by sj from entering the
relationship.

Suppose, for instance, that y is indeed size-independent.
Moreover, y is being predicted by two accounts only, x1

and x2. In this case b2 = −b1 = b and (4) becomes y =
a+ b(µ2 − µ1) + (ε2 − ε1) or

y = a+ b log
x2

x1
(5)

In other words, a ratio is automatically formed so that
size is removed from the relationship modelling y. Given
the variety of companies’ sizes found in cross-section
relationships, the predictive power of sj on y is, in most
practical cases, small or non-existent. In such type of
models b1+b2+ . . . coefficients will indicate, not so much
the strength and sign of the relationship between the ε and
y but the amount of size-related variability, which is being
allocated to a given predictor in order to counterbalance
size-related variability from other predictors so that y is
modelled by size-independent or nearly size-independent
variability. When building an optimal model, the modelling
algorithm assigns the role of denominator to some predic-
tors (negative-signed coefficients) and that of numerator
to others. Logarithmic representations similar to financial
ratios are thus formed. In this way, financial attributes are
modelled without the intervention of the analyst. This is a
notable trait of the methodology.

The second concern, how to deal with accounts, which
can take on both positive- and negative-signed amounts,
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Figure 3. The x-axis represents x and the y-axis represents the log-
modulus of x.

may be solved by using the “log-modulus” [3] or other
similar transformation. Given variable x, the log-modulus
consists of using

sgnx log(|x|+ 1) (6)

instead of x (Figure 3). In this way, accumulations or
subtractions of accumulations, no matter their sign, become
statistically well-behaved.

The coming section shows that models using the log-
modulus as predictors no longer need the support of
analysts (who, when selecting appropriate ratios, apportion
substantial knowledge into the model) and perform better
than those using ratios. Internal representations tend to
assume the form of ratios in log-space because instances
used in the learning of the algorithm greatly differ in size
while the attribute to be predicted is indeed predictable.
Models thus tend to self-organize themselves into size-
independent linear combinations of predictors, efficient in
predicting classes of the attribute.

Another advantage of the log-modulus transformation
is that it considerably reduces the frequency of missing
values in random samples. Besides reducing the power of
samples, missing values in predictors are a source of bias to
models because the probability that a reported number be
missing often is correlated to the attribute being predicted.
For instance, it is frequent to find amounts of zero in
dividends and other accounts. When ratios are formed
with such values in the denominator, as is the case of the
ratio “Changes in Dividends relative to Previous Year”, a
missing case is created. Moreover, such missing case is
correlated with the paying or not of dividends, an important
predictor of Earnings’ increases.

The log-modulus transformation solves this problem.
Changes in relation to the previous period, for instance,
are expressed in log-modulus as

δ log x = log xt−1 − log xt (7)

where t and t− 1 express subsequent time periods and the
operator log refers to (6). Since the log-modulus transfor-
mation is continuous and monotonic, changes expressed as
in (7) do not generate new missing values.

Incidentally, unlikely ratios, such changes are never
ambiguous: assumed values cannot have two meanings.
This is not the case with ratios where negative-valued

numerators and denominators lead to the same ratio sign
as positive-valued numerators and denominators.

IV. CONTROLLED EXPERIMENTS

This section compares the predictive performance of
ratios with that of log-modulus-transformed amounts taken
from financial reports. Class proportions, period, industry,
company size, the algorithm used and other characteris-
tics, are similar for the two models being compared so
as to equalise their influence on performance. The only
differing characteristic is the type of predictor used. The
modelling algorithm used throughout is the Binary Logistic
Regression from the SPSS package.

Three experiments are performed respectively on the
prediction of

1) bankruptcy, [8][1]
2) fraud [9][10][2]
3) and Earnings [11][12]

As depicted in Figure 1, bankruptcy and fraud are two
basic attributes of financial analysis, directly influencing
the way all other attributes are interpreted. As for Earnings,
it is a good example of an attribute occupying a place
further down in the hierarchy. Of the three, only bankruptcy
prediction is reliable; in spite of the large research effort
devoted to improving fraud detection, until today results
are below the feasibility level, at 75% out-of-sample cor-
rect classification and highly unbalanced. All the previous
literature, namely papers cited above, use ratios.

The first experiment replicates Altman’s bankruptcy
predicting model [8]. A total of 2,997 cases of US
bankruptcy filings is drawn from the UCLA-LoPucki
Bankruptcy Research Database [13]. Bankruptcies but the
first in each company are discarded as well as cases about
which detailed financial figures are not available. Two
random samples of nearly 900 different cases each are
drawn from the remaining (nearly 2,200) bankruptcies. The
two samples contain companies listed in US exchanges and
present in the Standard & Poor’s “Compustat” database.
They span the period 1979-2008. All sizes (Log-Total As-
sets deciles) and all the 24 “Global Industry Classification
Standard” (GICS) groups are significantly represented in
samples. Cases in the two samples are matched with an
equal number of records from non-bankrupt companies.
Pairing is based on the GICS group, on size decile and
on year. Among financial statements fulfilling the pairing
criteria, one case is randomly selected for matching and
then such case is made unavailable for future matching.
Although the same case is not used to match more than one
bankruptcy case, cases from the same company in different
years are allowed to be available for matching. The two
matched samples have nearly 1,800 cases each. One of the
two samples, always the same, is used as the learning-set
and the other as the test-set. Due to missing observations,
samples contain less than 1,800 cases:

Learning-set: non-bankrupt 845 (50.1%)
Learning-set: bankrupt 841 (49.9%)
Test-set: non-bankrupt (N) 837 (49.8%)
Test-set: bankrupt (P) 845 (50.2%)
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TABLE I. BANKRUPTCY PREDICTION.

Bankruptcy predicting models Ratios Log-modulus
Non-bankrupt correct (TN) 782 (93.6%) 822 (98.2%)
Non-bankrupt incorrect (FP) 55 (6.4%) 15 (1.8%)
Bankrupt correct (TP) 819 (96.9%) 814 (96.3%)
Bankrupt incorrect (FN) 26 (3.1%) 31 (3.7%)
Precision: TP / (TP + FP) 93.71% 98.19%
Pseudo R-Square 0.595 0.693
Chi-Square 1526, 5 df 1993, 5 df

Two models are then built and tested. The first model uses
Altman’s 5 ratios [8] as predictors while the second uses
log-modulus of 5 accounts selected by the algorithm among
the whole set. Test-set results for models using ratios and
log-modulus are compared in Table I.

As mentioned, bankruptcy prediction is the sole case
of successful modelling of financial attributes using ratios.
This is due to the fact that the relationship is strong: along
the last centuries, financial reports were perfected so as to
highlight solvency problems. Also, Altman uses a small
sample (thus limiting variability) and discarded the most
notorious outliers. Even so, when the log-modulus method-
ology is used, performance improves and the proportion of
explained variability (Cox and Snell Pseudo R-Square), as
well as the overall significance of the model (Chi-Square),
both increase markedly.

Log-modulus and coefficients in the model are:

Cash and Short Term Investments +2,473
Total Liabilities -3,532
Retained Earnings +0,222
Tax Expense +0,375
Cash-Flow from Operations +0,269
Constant term +7,129

Therefore, Total Liabilities plays the role of a denominator
to the other four predictors in internally-generated linear
combinations similar to ratios. Coefficients add to −0.193;
such variability models the size effect.

The second experiment replicates the fraud predict-
ing model of Beneish [9]. The methodology is similar
to the above bankruptcy-prediction case. Data used for
learning and testing models consists of a collection of
3,403 “Accounting and Auditing Enforcement Releases”
resulting from investigations made by the US Securities and
Exchange Commission. The database is from the Centre for
Financial Reporting and Management of the Haas School
of Business (University of California) [14]. It contains
enforcement releases issued between 1976 and 2012 against
1,297 companies which had manipulated financial reports.
After removing cases for which no detailed financial data
is available, the database contains 1,152 releases. Manip-
ulated reports from the same company in different years
are not removed from the sample. Enron, for instance, was
the object of 6 releases and all of them are included. Two
random samples of nearly 550 different cases each are then
drawn. The two samples contain companies listed in US
exchanges and which are present in the Standard and Poor’s
“Compustat” database. They span the period 1976-2008.
All sizes and all GICS groups are significantly represented.
The two samples are matched with an equal number of
reports from companies, which are neither the object of

TABLE II. FRAUDULENT REPORT PREDICTION.

Fraud predicting models Ratios Log-modulus
Non-fraud correct (TN) 244 (69.1%) 303 (85.8%)
Non-fraud incorrect (FP) 109 (30.9%) 50 (14.2%)
Fraud correct (TP) 328 (79.8%) 371 (90.5%)
Fraud incorrect (FN) 83 (20.2%) 39 (9.5%)
Precision: TP / (TP + FP) 75.1% 88.1%
Pseudo R-Square 0.305 0.569
Chi-Square 266, 8 df 617, 8 df

releases throughout the period nor bankrupt in the same
year. Pairing is based on the GICS group, on size decile
and on year. Amongst reports from companies fulfilling the
pairing criteria, randomly selected cases for matching are
made unavailable for future matching. Although the same
case is not used to match more than one release case, cases
from the same company in different years are allowed to
remain as candidates to matching. Matched samples have
nearly 1,100 cases each. One of the two samples, always
the same, is used to build models and the other to test
performance of models. Due to missing observations, the
size of samples available for model-building and model-
testing is less than 1,100 cases:

Learning set: non-fraud cases 335 (45.7%)
Learning set: fraud cases 398 (54.2%)
Test set: non-fraud cases (N) 353 (46.2%)
Test set: fraud cases (P) 411 (53.8%)

Two models are then built and tested. One of the models
uses the 8 Beneish ratios [9] while the other uses 8 log-
modulus selected by the algorithm. Since, in this case, some
Beneish ratio components refer to the previous period, log-
modulus are also allowed to express changes in relation to
the previous period as in (6) and the algorithm has selected
two such changes. Test-set results for models using ratios
and log-modulus are compared in Table II.

Performance observed in the model using ratios agrees
with that reported in the literature. The model using log-
modulus shows a substantial increase in out-of-sample
performance. Besides a clearly lower performance, the
model using ratios introduces imbalance in the recognition
of classes: misclassification in non-fraudulent cases is
significantly higher than in fraudulent cases. It is also worth
noting the proportion of explained variability (Cox and
Snell Pseudo R-Square) and the Chi-Square of the model,
which are less than half of that in the log-modulus model.
Clearly, the latter fully uses the available variability while
the former only uses a limited portion of it.

The third and last experiment involves the prediction
of the sign of unexpected changes in Earnings per Share
(EPS) one year ahead [11]. The characteristic features of
this experiment are the large number of available cases
(unexpected Earnings changes one year ahead can be
estimated from the database), a weak relationship, indeed
the weakest of the three relationships modelled and the
absence of matching. The emphasis is placed on comparing
the effect of unbalanced samples.

After estimating the classes to be predicted, a number
of records is put aside, namely cases with missing values in
the predicted dichotomous variable or in predictors. A total
of nearly 140,000 cases remain, where some 90,000 are
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TABLE III. INCREASE IN EPS PREDICTION.

EPS predicting models Ratios Log-modulus
EPS non-increases correct (TN) 42,006 (97.4%) 35,783 (85.7%)
EPS non-increases incorrect (FP) 1,101 (2.6%) 5,967 (14.3%)
EPS increases correct (TP) 4,725 (20.5%) 16,153 (70.8%)
EPS increases incorrect (FN) 18,378 (79.5%) 6,658 (29.2%)
Precision: TP / (TP + FP) 81.1% 73.0%
Pseudo R-Square 0.061 0.342
Chi-Square 4,191, 8 df 27,263, 8 df

non-increases and 50,000 are increases. Methodology has
been detailed in previous experiments. The final number of
cases in the learning- and test-set is:

Learning set: EPS non-increases 43,242 (64.7%)
Learning set: EPS increases 23,560 (35.3%)
Test set: EPS non-increases (N) 43,107 (65.1%)
Test set: EPS increases (P) 23,103 (34.9%)

Class proportions are significantly imbalanced; both the
modelling process and the interpretation of results should
reflect such imbalance [15].

From these samples, two models are built and tested.
One of the models uses 8 ratios from previous authors [11]
and the other uses a set of 8 log-modulus selected by
the algorithm. Since, in this case too, some of the ratio
components refer to the previous period, log-modulus are
also allowed to express changes as in (6) and the algorithm
has indeed selected two such changes. Test-set results
for models using ratios and log-modulus are compared in
Table III.

In this case, classification results should be interpreted
in the light of the initial imbalance of classes in the
training-set [15], which is 15.1%. For example, a classifica-
tion accuracy of 70.6%, obtained from an initial imbalance
of 15.1% means a gain, in relation to a classification
made at random (without any previous information) of just
5.5% = 70.6%− (50% + 15.1%).

Ratios lead to an extremely small percentage of false-
positives while the percentage of false-negatives is very
high. The model is almost blind to unexpected increases in
EPS while recognising decrease very sharply. Therefore,
similarly to the previous experiment, the model based on
ratios tends to amplify class imbalances.

The examination of the overall significance of the
model and the proportion of explained variability shows
conclusively that ratios fail to use much variability, which
is clearly useful for the modelling of the relationship.
This may also explain their notorious inability to produce
balanced models: wherever there is neglected variability
there is a bias.

V. CONCLUSION

Till the present day, effective KDD of financial reports
has proved to be an elusive goal except in the case of
bankruptcy prediction, just one of the many attributes
involved in Financial Analysis. Log-modulus, not requiring
previous knowledge while apportioning all the available
variability, may overcome this stalemate.

Predictive models based on ratios incorporate knowl-
edge from the analyst, who is required to select appropriate

ratios capable of apportioning information needed to recog-
nise specific attributes. Therefore, the modelling process is
not fully automated. Log-modulus, by contrast, allow full
KDD since the algorithm generates internal representations
similar to ratios. It was shown that the modelling algorithm
builds linear combinations of predictors able to unveil
financial attributes, such as Solvency or Profitability.

It was also shown that the proposed methodology
circumvents most of the difficulties associated with ratios
when used as predictors in statistical models, namely the
curtailing of variability apportioned by ratio components
and the generation of missing cases. Finally, the use
of controlled experiments has demonstrated that the log-
modulus, agreeing with the statistical characteristics of data
being modelled, perform better than ratios, delivering more
accurate, robust and balanced models.
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