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Abstract—The paper develops 1D-based ensemble method for
semi-supervised learning (SSL). The method integrates theclas-
sifier based ondata 1-D representations and label boosting in a
serial ensemble. In each stage, the data set is first represented by
several 1-D stacks, which preserve the local similarity between
data samples. Then, a1-D ensemble labeler (1DEL) is constructed
and used to create anewborn labeled subset from the unlabeled
set. United with the subset, the original labeled is boostedfor
the next learning stage. The boosting process is repeated till the
updated labeled set reaches a certain size. Finally, a 1DEL is
applied again to build the classifier. The validity and effectiveness
of the method are confirmed by experiments. Comparing to
several other popular SSL methods, the results of the proposed
method are very promising.

Keywords–Data 1-D representation; regularization; label boost-
ing; ensemble; semi-supervised learning.

I. I NTRODUCTION

In this paper, we introduce a novel ensemble method for
SSL based ondata 1-D representation. In SSL, the essential
problem is data binary classification, which can be briefly
described as follows: Assume that the samples (or members,
points) of a given data setX = {~xi}ni=1 ⊂ Rm belong
to two classesA and B, labeled by1 and −1, respectively.
Denote by yj the label of the sample~xj , where yj ∈
{1,−1}, 1 ≤ j ≤ n. In a SSL problem,X is divided into
two disjoint subsets:X = Xℓ ∪ Xu, Xℓ ∩ Xu = ∅, where
the members inXℓ = {~x1, ~x2, · · · , ~xn0

} have known labels
Yℓ = {y1, y2, · · · , yn0

}, while the labels for the members in
Xu = {~xn0+1, ~xn0+2, · · · , ~xn} are unknown. We often call a
function f : X → {1,−1} a classifier(or labeler) on X . The
classification erroris measured by the misclassified number:

E(f) = |{~x∈ X | f(~xi) 6= yi 1 ≤ i ≤ n}| ,

where|S| denotes the cardinality of a setS. Then, the quality
of a classifier is measured by theerror rate E(f)/|X |. The
task of SSL is to find a classifierf with the error rate as small
as possible.

The monograph [1] and the survey paper [2] gave a
comprehensive review of various SSL methods, among which
the popular ones are based on kernel technique such as
transductive support vector machines, manifold regularization,
and other graph-based methods [3] [4]. In these methods, using
kernel trick, people construct a kernel function to map original
samples onto a reproducing kernel Hilbert space (RKHS) [5],
where the non-linear decision boundary in the raw data space
becomes nearly linear. Thus, people can construct classifiers
in the RKHS using regularization methods. The success of
a kernel-based method strongly depends on the exploration
of data structure by kernels. However, it is often difficult to
design suitable kernels, which precisely explore the feature

spaces. Recently, researchers have developed new SSL models,
which construct classifiers without adopting kernel technique,
for instance, the data-tree based method [6] [7] constructsthe
classifier based on the data multi-layer structure.

In all of the models above, a single classifier is employed
to label unlabeled points. However, when a data set has a
complicate intrinsic structure and high-dimensionality,a single
classifier usually cannot complete the task satisfactorily. The
proposed method takes the idea of ensemble methodology in
the multiple classifier systems(MCSs) [8]: It build a final
classifier by integrating multiple pre-classifiers. Since MCSs
perform information fusion at different levels, they overcome
the limitations of the traditional approaches [9]–[11].

The novelty of the introduced ensemble SSL method is the
following: It adopts the framework of data 1-D representation,
in which the data set is represented by several different 1-D
sequences, then a classifier is constructed as an ensemble of
pre-classifiers built on these sequences. Here, we choose 1-D
models because 1-D decision boundary is a set of points on a
line, which has the simplest topological structure. As a result,
the pre-classifiers can be easily constructed by classical 1-D
regularization methods without using kernel trick or data trees.
Furthermore, the simplicity of 1-D models makes the algorithm
for building the final classifier relatively reliable and stable. We
new describe the architecture and technological process ofour
method in the following.

1) The data setX is first mapped to several 1-D sets
{T i}ki=1, which preserve the local similarity of mem-
bers inX . Correspondingly, the couple{Xℓ, Xu} is
mapped to{T i

ℓ , T
i
u} for each 1-D setT i.

2) A pre-classifiergi on X is constructed based onT i

by a 1-D regularization method. Then an ensemble
labelerg on X is assembled from{gi}ki=1 to label
all members ofX .

3) A feasibly confident subsetL ⊂ Xu is produced by
g. According to theclass weightsof the members of
L, a half of members inL is chosen into thenewborn
labeled subsetS. Then, the initial labeled setXℓ is
boosted toXnew

ℓ = Xℓ ∪ S.
4) The procedure above is repeated till the updated

labeled setXnew
ℓ reaches a certain size. Finally, the

classifier f is obtained by applying the ensemble
labelerg on the newest couple{Xnew

ℓ , Xnew
u }.

Our strategy adoptsModel-guided Instance Selection(MIS)
approach [9], but is slightly different from AdaBoost algorithm
[12] in the sense that AdaBoost updates the misclassified
weights onXu, while our method updates the setXu itself.

The paper is organized as follows: In Section II, we develop
the 1-D based ensemble SSL method. In Section III, we
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demonstrate the validity of our method in two examples and
give the comparison of our results with other methods. The
conclusion is given in the last section.

II. T HE 1-D BASED ENSEMBLESSL METHOD

In this section, we introduce the novel SSL method based
on data 1-D representation.

A. Data 1-D Representations

Assume that the data setX is initially arranged in a stack
x = [~x1, · · · , ~xn], where the firstn0 members are in ClassA
and others are in ClassB. Let d(~x, ~y) be a metric onX that
measures the dissimilarity between the points ofX . Letπ be an
index permutation of the index sequence[1, 2, · · · , n], which
induces a permutationPπ on the initial stackx, yielding a
stack ofX headed by~xπ(1): xπ = Pπx = [~xπ(1), · · · , ~xπ(n)].
We define the set of all permutations ofX headed by~xℓ by

Pℓ = {Pπ; π(1) = ℓ}.

According to [13], theshortest-path sorting ofX headed by
~xℓ is the stackxπ that minimizes the path starting from~xℓ

and though all points inX , i.e.,xπ = Pπx, wherePπ is given
by

Pπ = argmin
P∈Pℓ

n−1
∑

j=1

d((Px)j , (Px)j+1). (1)

Let the stackxπ be the shortest-path sorting ofX headed by
~xℓ. Set

t1 = 0, tj+1 − tj =
d(~xπ(j), ~xπ(j+1))

∑n−1
k=1 d(~xπ(k), ~xπ(k+1))

. (2)

Then, the stackt = [t1, · · · , tn] is called the 1-D (shortest-
path) representation ofX headed by~xℓ.

The problem (1) has NP computational complexity. A
greedy algorithm to find an approximation ofPπ in (1) is
referred to [13]. Once,Pπ is found, the corresponding 1-D
representation is obtained by (2).

Denote byT the set of the components oft. The bijective
mapping h : T = h(Xℓ) is called a 1-D (shortest-path)
embedding ofX headed by~xℓ, which also map the unlabeled
setXu ontoTu = h(Xu) ⊂ T . Then, a classifier onT induces
a classifier onX . Since T is a 1-D set, its class decision
boundary is reduced to a discrete set in[0, 1].

B. The 1-D based ensemble labeler

Although the simplest topological structure of data 1-D
representation reduces the decision boundary to a discrete
set in [0, 1] points, a single 1-D representation cannot truly
preserve the data similarity because the sorting is a serial
process that makes earlier selected adjacent pairs are more
similar than the later selected ones. To overcome the drawback
of a single 1-D embedding, we employ thespinning technique
to build several 1-D representations. Based on each of them,
we first construct a pre-classifier, then assemble an ensemble
labeler from them. The following is the details.

Let ~h = [h1, · · · , hk] be ak-ple 1D-embedding andPi be
the permutation operator onX corresponding tohi such that
the stackxπi

= Pix is headed by a randomly selected point
~xπi(1). The embeddinghi produces a 1-D representation of

X : ti = hi(xπi
). For a functionf on X , si = f ◦ h−1

i is a
function onti. We now represent a functionf on X by its
vector formf = [f1, · · · , fn], fj = f(~xj), and a functions on
ti by the vectors = [si1, · · · , s

i
n], s

i
j = s(tij).

Let T i
ℓ = hi(Xℓ) and T i

u = hi(Xu). Using a classical
regularization method, we construct a pre-classifiergi for
X based on the couple{T i

ℓ , T
i
u}. For instance, denote by

C1[0, 1] the space of smooth functions on[0, 1] and by
Dsj = (s(tij+1) − s(tij))/(t

i
j+1 − tij) the difference quotient

of s ∈ C1[0, 1] on the stackti at tij . Let qi be the solution of
the following constrained minimization problem:

qi = argmin
s∈C1[0,1]

1

n0

n0
∑

j=1

(

s(hi(~xj))− yj
)2

+
λ

2

n−1
∑

j=1

(Dsi)
2, (3)

subject to the constraint

1

n

n
∑

j=1

s(tij) = M,

where M can be chosen toM = 1
n0

∑n0

j=1 yj . We denote
by ~1 the vector whose all entries are1, denote byIn0

the
n × n diagonal matrix, in which only(πi(j), πi(j))-entries
are1, 1 ≤ j ≤ n0, but others are0. Setw0 = wn = 0, wj =
1/(tij+1 − tij)

2, and denote byD = [Di,j ] the n × n three-
diagonal matrix, in which

{

Dj,j = wj−1 + wj 1 ≤ j ≤ n,

Dj,j+1 = Dj+1,j = −wj 1 ≤ j ≤ n− 1,

Then, the vector representation ofqi on the stackti is the
following solution

qi = (In0
+ n0λD)−1 (~y + µ~1), (4)

with

µ =
M − E

(

(In0
+ n0λD)−1~y

)

E
(

(In0
+ n0λD)−1~1

) ,

whereE(~v) denotes the mean value of the vector~v. We define
the pre-classifier onX associated with the 1-D embeddinghi

by gi = qi ◦ h−1
i . Finally, we define 1DEL onX by

g(~x) =
1

k

k
∑

i=1

sign(gi(~x)), x ∈ X. (5)

C. The newborn labeled subset selector

Using the 1-D ensemble labelerg in (5), we construct

L+ = {~x ∈ Xu; g(~x) = 1}, L− = {~x ∈ Xu; g(~x) = −1}.

In a great chance,L+ contains the members in ClassA, while
L− contains the members in ClassB. We callL = L+ ∪ L−

the feasibly confident subsetcreated byg. For convenience,
we denote the set operator that create the feasibly confident
subsetL from Xu by G : G(Xu) = L.

We now select a half of the members inL to form a
newborn labeled subsetS = S+ ∪S−, whereS+ contains all
Class-A members inL+ andS− contains all Class-B members
in L−. They are constructed as follows. LetX+

ℓ contain all
Class-A members ofXℓ andX−

ℓ contain all Class-B members
of Xℓ. For each~x ∈ L, defined(~x,X+

ℓ ) = min~y∈X
+

ℓ

d(~x, ~y)
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andd(~x,X−
ℓ ) = min~y∈X

−

ℓ

d(~x, ~y). We now associate~x with
the class weight

w(~x) =
d(~x,X−

ℓ )

d(~x,X−
ℓ ) + d(~x,X+

ℓ )
.

Finally, let the setS+ contain the half of members ofL+ with
the greatest class weights andS− contain the half of members
in L− with the smallest class weights. We call the operator
S : S(L) = S a newborn labeled subset selectorand call
the compositionM= S ◦G a newborn labeled subset creator
because the newborn labeled subsetS = M(Xu).

D. Construction of the final classifier

We now build the (final) classifier by a serial ensemble, in
which the labeled set is cumulatively boosted. Let the initial
labeled set be equipped with the index0: X0

ℓ = Xℓ. Starting
from X0

ℓ , we apply the newborn labeled subset creatorM1 to
create a newborn labeled setS1, which is united withX0

ℓ to
produceX1

ℓ = X0
ℓ ∪S1. Repeating the proceduren times, the

labeled set will be cumulatively boosted to a labeled setXn
ℓ :

X0
ℓ =⇒ X1

ℓ =⇒ · · · =⇒ Xn
ℓ .

We set aboosting-stop parameterp, 0 < p < 1. The process
will not be terminated until the labeled setXn

ℓ reaches the
size |Xn

ℓ | ≥ p|X |. Finally, we apply 1DEL on the couple
{Xn

ℓ , X
n
u} to construct the final classifierf onX , which labels

each~x ∈ X by sign f(~x).

III. E XPERIMENTS

We use two benchmark databases of handwritten digits,
MNIST [21] and USPS [22] in the experiments to present
the validity and effectiveness of the proposed method. In the
literature of machine learning, MNIST is often used to test the
error rate of classifiers obtained by supervised learning. The
best result for the error rate up to 2012 was 0.23%, reported in
[14] by using the convolutional neural network technique. In
2013, the authors of [15] claimed to achieve 0.21% error rate
using DropConnect, which is based on regularization of neural
networks. Because in SSL no large training set is available for
producing classifiers, the error rates obtained by SSL methods
usually are much higher than the claimed error rates obtained
by supervised learning. Besides, the error rates of SSL are
strongly dependent the size of the initial label setXℓ. In
general, the smaller the size ofXℓ, the higher the error rate.
Hence, it is unfair to compare the error rates obtained by SSL
methods to the above recorded ones.

In all of our experiments, the spin number3 is used for
constructing 1DEL while20 for building the final classifier,
and the boosting-stop parameterp is set to0.7.

For comparison, we choose the same data setting as in [7]:
In MINST, for each of the digits{3, 4, 5, 7, 8}, 200 samples
were selected at random so that the cardinality of the data set
is |X | = 1000, where the digit8 is assigned to ClassB, and
others belong to ClassA. In USPS, for each of the digits0−9,
150 samples are selected at random so that|X | = 1500, where
the digits2 and5 are assigned to ClassB, and others belong
to ClassA. In all experiments, the initial labeled setX0 is
preset to10 various sizes of10, 20, · · · , 100, respectively, and
the labeled digits are distributed evenly on each chosen digit.

TABLE I. ERROR RATE OF THE PROPOSED 1-D BASED ENSEMBLE
SSL METHOD FOR 50 RANDOMLY SELECTED SUBSETS FROM

MNIST WITH |X| = 1000.

|X0| 10 20 30 40 50 60 70 80 90 100
Mean% 7.8 7.9 4.6 2.5 2.1 1.9 1.9 1.9 1.2 1.2
Min% 7.6 7.9 4.6 1.9 2.1 1.9 1.9 1.9 1.2 1.2
Max% 19.4 7.9 4.6 3.5 2.1 1.9 1.9 1.9 1.2 1.2
STD% 1.7 0 0 0.7 0 0 0 0 0 0

TABLE II. ERROR RATE OF THE PROPOSED 1-D BASED ENSEMBLE
SSL METHOD FOR 50 RANDOMLY SELECTED SUBSETS FROM

USPS WITH|X| = 1500.

|X0| 10 20 30 40 50 60 70 80 90 100
Mean% 3.3 2.1 1.5 1.5 1.3 1.4 1.4 1.4 1.4 1.2
Min% 2.0 1.3 1.5 1.5 1.3 1.4 1.4 1.4 1.4 1.2
Max% 16.8 2.9 1.7 1.5 1.3 1.4 1.4 1.4 1.4 1.2
STD% 1.99 0.8 0.02 0 0 0 0 0 0 0

Note that a vector~x ∈ X is originally represented by a
c× c matrix [xi,j ]

c
i,j=1, wherec = 20 for MNIST andc = 16

for USPS. To reduce the shift-variance, we define the1-shift
distance between two digit images [16]:

d(~x, ~y) = min
|i′−i|≤1
|j′−j|≤1

√

√

√

√

c−1
∑

i=2

c−1
∑

j=2

(xi,j − yi′,j′)
2
.

We first run our algorithm on 50 subsets (with1000 members)
randomly chosen from the MNIST database and show the
test results in Table I, where the first row is the number of
samples inXℓ, and the2nd−5th rows are the mean, minimum,
maximum, and standard deviation of the error rates of the
50 tests, respectively. In the second experiment, we run our
algorithm for USPS is a similar way: 50 subsets with 1500
members are randomly chosen from USPS database. The test
results are shown in Table II, where the setting for the rows
is the same as in Table I. The Tables I and II show that the
standard deviations of the error rates are quite small, particular
when the known labeled members are more than 1%. This
indicates the high stability of the proposed SSL algorithm.

In Figure 1, we give the comparison of the average error
rates (of 50 tests) of our 1-D based ensemble method to
Laplacian Eigenmaps (Belkin & Niyogi, 2003 [3]), Laplacian
Regularization (Zhu et al., 2003 [17]), Laplacian Regulariza-
tion with Adaptive Threshold (Zhou and Belkin, 2011 [18]),
and Haar-Like Multiscale Wavelets on Data Trees (Gavish
et al., 2011 [7]) on the subsets randomly chosen from both
MNIST and USPS databases. The results show that our method
achieves competitive results comparing to other SSL methods.

We have also applied the proposed method on the real-
world applications, such as the classification of hyperspectral
images [19] and the face recognition [20]. In these experi-
ments, we have even adopted a much simpler label boosting
method: Choosing the newborn labeled subset at random. The
obtained results are still very promising and superior over
many other popular methods. It is also worth to point out
that the method is not very sensitive to the parameters. For
instance, in our experiments, if spinning numbers are set to
3–5, and the boosting-stop parameter is set in the range of
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Figure 1. RESULT COMPARISON WITH DIFFERENT SSL MODELS.

0.6–0.8, the results are similar. The detailed discussion on the
parameter tuning can be found [19] [20].

IV. CONCLUSION

We proposed a new ensemble method for SSL based
on data 1-D representations, which enable us to construct
ensemble classifiers assembled from several pre-classifiers for
the same data set using classical 1-D regularization tech-
nique. Furthermore, a label boosting technique is applied for
robustly enlarging the labeled set to a certain size so that
the final classifier is built based on the boosted labeled set.
The experiments show that the performance of the proposed
method is superior to many popular methods in SSL. The
new method also exhibits a clear advantage for learning the
classifier when only a small labeled set is given. Because the
method is independent of the data dimensionality, it can also
be applied to various types of data. Since the algorithms to
construct the classifiers in the proposed method only employ
1-D regularization technique, avoiding the complicate kernel
trick, they are simple and stable. It can be expected that the
created 1-D framework in this paper will be applied to the
development of more machine learning methods for different
purposes. In the future work, we will study how to accelerate
the sorting algorithm in 1-D embedding and consider to
integrate the data-driven wavelets with the proposed method.
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