
IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3 79

Document Retrieval in Big Data

Feifei Pan
Computer Science Department

New York Institute of Technology
New York, USA

Email: fpan@nyit.edu

Abstract—Nearest Neighbor Search for similar document retrieval
suffers from an efficiency problem when scaled to a large dataset.
In this paper, we introduce an unsupervised approach based
on Locality Sensitive Hashing to alleviate its search complexity
problem. The advantage of our proposed approach is that it does
not need to scan all the documents for retrieving top-K Nearest
Neighbors, instead, a number of hash table lookup operations
are conducted to retrieve the top-K candidates. Experiments
on two massive news and tweets datasets demonstrate that our
approach is able to achieve over an order of speedup compared
with the traditional Information Retrieval method and maintain
reasonable precision.

Keywords–Document Retrieval; Locality Sensitive Hashing; Big
Data.

I. INTRODUCTION

The Nearest Neighbor Search (NNS) task [1] aims at au-
tomatically finding the top K objects (e.g., documents) which
are most semantically similar to a given query object. NNS
is essential to motivate the progress in many search related
tasks and is fundamental to a broad range of Natural Language
Processing (NLP) down-stream tasks, including name spelling
correction [2], document translation pair acquisition [3], large-
scale similar noun list generation [4], unsupervised mining of
lexical variants from noisy texts [5], and large-scale first story
detection from news and tweets [6].

Nowadays, data are being collected at unprecedented speed
and scale everywhere around us: various news agencies pro-
duce thousands of news articles while Twitter generates over
500 million Tweets everyday. The traditional Information Re-
trieval (IR) method to tackle NNS is to represent documents
in the vector space and find the candidate documents that
share the highest probabilities with the query document [7].
However, it is very time consuming or even infeasiable to brute
force compute the similarity score of the query document and
all other documents in a large dataset. Thus, it is critical to find
other solutions to deal with the search efficiency problem. In
order to make it scale to big data, some researchers attempted
to reduce the dimentionality of the representative vectors or
add in time constraints to narrow down the search range [8].
Both of these works are able to save some computational costs,
but can not solve the problem fundamentally.

Hashing has been successfully applied to several non-
NLP problems including object recognition [9][10], image
retrieval [11][12] and image matching [13][14]; however, it
received limited attention in NLP fields. The general idea of
hashing is to represent each document as a binary code (1-bit
of a binary code is one digit of “0” or “1”). Its advantage
is two-fold: (1). The capability to store large amount of
documents in memory. For example, we can store 250 million

documents with 16G memory using 64 bit for each document,
while English Gigaword fifth edition [15] stores 10 million
documents with 26G. (2). The time efficiency to process binary
codes. For example, calculation of hamming distance between
a pair of binary codes is far faster than cosine similarity over
a pair of document vectors.

The paper is structured as follows: in Section I-A and II, we
briefly introduce the terminologies and previous related work.
In Section III, we compare our Locality Sensitive Hashing
(LSH) based approach with the traditional IR method in
tackling NNS task. We talk about the experiment results in
Section IV and make the conclusion in Section V.

A. Background and Terminology

Here are some background information and terminologies:
Bit is the basic unit of a binary code; one bit is either a digit
of “0” or “1”. A binary code is a bit sequence assigned to
represent an object. For example, we can represent a document
as “00101100”. A hash table is a table containing all the
binary codes for a set of documents while the documents with
the same binary codes are located within the same bucket.
Hamming Distance between two binary codes is the number
of positions at which the corresponding bits are different. Hash
Lookup is to find candidate neighbors in the hash table buckets
within a given hamming distances from hq , given a query q
with a binary code hq . In practice, the given hamming distance
is usually set to 2. Hash Lookup Success rate is the probability
to find any candidate neighbors in the buckets within a given
hamming distances from hq .

II. RELATED WORK

Locality Sensitive Hashing (LSH) [16] is one of the
notable schemes for data-independent hashing. It uses random
projections to construct randomized hash functions, therefore
similar data points have a higher probability to be mapped
into the same bucket. To address the problem of learning
similarity-preserving binary code for efficient retrieval from
a large scale collection, several data dependent hash schemes
were developed. Weiss et al. [17] designed Spectral Hashing
(SH) which was motivated by spectral graph partitioning
and it used a spectral relaxation to obtain an eigenvector
solution. Liu et al. [18] utilized anchor graphs to discover
the neighborhood structure inherent in the data, and Gong
and Lazebnik [19] proposed an Iterative Quantization (ITQ)
approach by minimizing the quantization errors. Generally
speaking, data dependent hash schemes are able to learn better
quality binary codes than randomized algorithms, so we adopt
ITQ to hash documents to binary codes. However, in most of
the data dependent hash schemes, the generated binary codes
suffer from poor hash table lookup success rate problem which

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3 80

makes the learnt binary codes inefficient for practical use. In
this paper, we aim to alleviate the search efficiency problem
by taking the advantages of LSH.

III. NEAREST NEIGHBOR SEARCH

In this section, we first show the motivation of adopting
hashing techniques to NNS problem in Section III-A. Then,
we introduce the details of LSH in Section III-B.

A. Traditional NNS

The most traditional way of finding Nearest Neighbors is
to represent each document as a term vector, e.g., each element
of the vector is the tf-idf weight of a term:

tf(t, d) = log(1 + f(t, d)) (1)

idf(t,D) =
log(|D|)

log(|{d ∈ D : t ∈ d}|)
(2)

tf -idf(t, d,D) = tf(t, d)× idf(t,D) (3)

where t is a term, d is a document, D is the whole corpus
and f(t,d) is the frequency of term t in document d. Given a
query document q, we used the cosine similarity metric [20]
to judge the similarity of q with a document candidate c:

distance(q, c) = cos(θ) =
q · c
||q||||c||

=

∑n
i=1 qi × ci√∑n

i=1(qi)
2
√∑n

i=1(ci)
2

(4)

The higher similarity score between q and c, the closer they
are. To find out the top-K nearest neighbors for a query docu-
ment q, one needs to first compute the cosine similarity scores
between q and each document candidate, then pickup the K
documents with the highest similarity scores. However, brute
force search does not scale to big data since the computational
complexity for each query is O(n) and other computational
costs such as similarity calculation and ranking similarity
scores are not immaterial.

Hashing schemes aim to remove the curse of dimensional-
ity and largely save computation cost. We will introduce LSH
in the following section.

B. Locality Sensitive Hashing

The underlying intuition of LSH is that if two objects are
close, then after a “projection” operation they will remain
close together. In other words, similar data points are more
likely to be mapped into the same bucket with a high collision
probability.

Binary Code Learning

Given a LSH setting of M bits and L hash tables, a query
data point q and a candidate data point c will collide if and
only if:

hij(q) = hij(c), i ∈ [1...L], j ∈ [1...k] (5)

and the hash function hij(x) is defined as:

hij(x) = sgn(uTij · x), sgn(u) =
{
1 u ≥ 0
0 Otherwise

(6)

where uij are randomly generated vectors with components
randomly selected from a Gaussian Distribution, e.g., N(0, 1).
In this case, the probability of two points x1 and x2 colliding
under LSH can be calculated as:

Pcoll = 1− θ(x1, x2)

π
(7)

where θ(x1, x2) is the angle between x1 and x2. Given the
desired probability of missing a nearest neighbor δ, we can
approximate the required number of hash table L:

L = log1−PM
collδ

(8)

In this paper, given the term vector as input, we learn the
binary code for each document and we try different settings
for M and L to see how they influence the results.

Document Retrieval

After learning the binary codes for all documents, inverse
table lookup operations are conducted to find nearest neighbors
of a query document given the binary code of the query
document hq:

1) lookup the bucket that has the same binary code as
hq and retreive all the documents within the bucket.
1 hash table lookup operation is needed.

2) lookup the buckets that have Hamming Distance 1
with hq and retreive all the documents within the
buckets. length(hq) hash table lookup operation is
needed.

3) lookup the buckets that have Hamming Distance 2
with hq and retreive all the documents within the
buckets. length(hq) × (length(hq) − 1) hash table
lookup operation is needed.

4) Document candidates in the same buckets will be
randomly pickup to form the top-K nearest neighbors.

We only conduct hash table lookup for the buckets which
have Hamming Distance smaller than or equals to 2 with hq .
Otherwise, it requires too many hash table operations and it is
not efficient for a large dataset.

IV. EXPERIMENTS

A. Data

For the experiments, we use a news dataset and a tweets
dataset, in order to see how the proposed methods perform for
different genres. The news dataset is the English portion of the
standard TDT-5 [21] dataset. It consists of 278, 109 documents
from the 6-month time period since April 2003. 126 topics with
an average of 51 documents per topic are annotated, and other
unlabeled documents are irrelevant to them. 400 randomly
selected labeled documents are used for testing. The tweets
dataset is gathered through Twitter Application Programming
Interface (API) from a time period between October 25th, 2012
and November 4th, 2012, filtered by hashtags ‘#hurricane’ and
‘#sandy’. As a result, we collected 1.49 million tweets before,
during and after Hurricane Sandy hit the northeast of the US.

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3 81

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of hash tables

T
o
p
−

1
 P

re
c
is

io
n

Traditional IR

LSH(64bits)

LSH(56bits)

LSH(48bits)

LSH(40bits)

Figure 1: LSH Top-1 NNS Precision.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of hash tables

T
o
p
−

1
0
 P

re
c
is

io
n

Traditional IR

LSH(64bits)

LSH(56bits)

LSH(48bits)

LSH(40bits)

Figure 2: LSH Top-10 NNS Precision.

TABLE I: SAMPLE QUERY TWEETS AND THE CORRESPONDING TOP RETRIEVED SIMILAR TWEETS.

Query 1: @danburyweather: Mayor Bloomberg Tells NYC Residents: ‘Be Prepared To Evacuate’ Read more: http://t.co/oe2IUB2E
Mayor Bloomberg Tells NYC Residents: ‘Be Prepared To Evacuate’ http://t.co/eIXJBzmO
#Hurricane Sandy @businessinsider: Mayor Bloomberg Tells NYC Residents: ‘Be Prepared To Evacuate’ by @DinaSpector http://t.co/l76jFAAH
Watch out NYC
I can’t wait to hear Mayor Bloomberg say Zone Ah again in Spanish when talking about hurricane evacuation procedures. #Frankenstorm
For NYC residents - hurricane evacuation zone finder tool - http://t.co/mB1WSDPf
@DanSkeldonNBC40 Which storm was Bering hyped more Sandy or Irene? Do you think Cape May County residents need to evacuate for Sandy?
RT @EasternSurfMag: STAY ALERT and BE PREPARED this weekend
RT @Chels sahagian3: Just watching the news about this hurricane is making me more and more scared:(
NYC Hurricane evacuation map
Watch there be a hurricane on Monday and Bloomberg stills makes us go to school. Jew bastard
Query 2: People return home from shelters after hurricane Sandy: More than 1800 people who were housed in shelters prior to the hurricane
People return home from shelters after hurricane Sandy http://t.co/36cSHU2r
Jamaica: More than 1800 people return home from sutlers after hurricane Sandy
At the height of #Sandy more than 1800 people were housed in Red Cross shelters
258 shelters in 16 states safely housed 11
@JeffreyYoung HC are hospitals exempted from evacuation NYU endangered 300 lives for not evacuating prior to the storm. http://t.co/QvqQmwCG
@Tek Roo FEMA organized with states prior to Sandys landing to get people evacuated and resources in place for rescue.
RT @nycgov: RI @NYCMayorsOffice: Mayor: we will keep shelters open until New Yorkers can safely return to their homes. #Sandy
West Deptford shelter housed 40 people during Hurricane Sandy
Thanks toRedCross258 shelters in 16 states safely hosed 11000 people. #Sandy Recovery begins today Every dollar helps http://t.co/ghhORZvz
Thousands in New York remain homeless and in shelters nearly a week after Hurricane Sandy. It seems like things are returning to normal.

We select 20 informative tweets as testing queries. For each
tweet, we remove hashtags, URLs and @ information. For each
news article and tweet, we apply the Stanford Tokenizer [22]
for tokenization, remove stopwords based on the stop list from
InQuery [23], and apply Porter Stemmer [24] for stemming.

To evaluate the system performance for new articles, we
use the topic labels of documents as ground truth: if one
retrieved document shares the same topic label with the query
document, they are true neighbors. We evaluate the precision of
the top-K candidate documents returned by each method and
calculate the average precision across all queries. Since we
do not have groundtruth for tweets, we will not report system
performance for tweets dataset in the paper. Instead, we show
system outputs given some tweet queries to demonstrate the
effectiveness of our proposed method.

B. Results

Our LSH-based approach aims to alleviate the search
efficiency problem of NNS. We compare the average search

time of the traditional IR method and our LSH-based method.
In the news dataset, LSH-based method only needs about one
twentieth of the search time as the traditional IR while in
tweets dataset the differences becomes even larger: LSH-based
method only needs one twentieth of the time approximately.
It clearly proves the superiority of our approach.

Furthermore, we compare the top-K NNS precision of the
traditional IR method and our LSH-based method. Fig. 1 and
Fig. 2 are the top-K NNS results for the news dataset. Gener-
ally speaking, with longer binary code length or more number
of hash tables, the top-K NNS precision keeps increasing and it
reaches convergence approximately in the setting of 64 bits and
10 hash tables. In Fig. 1, it is clear that when retrieving top-1
Nearest Neighbors, although LSH can not well approximate
the performance of traditional IR, it is still able to produce an
acceptable performance. However, in Fig. 2, LSH is surpassed
by traditional IR by a large margin when retrieving top-10
Nearest Neighbors. It suggests that our approach is more
reliable when K is small. Table I shows two sample query

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3 82

tweets and the correspoding similar tweets returned by the
LSH-based approach with 64 bits and 10 hash tables setting.
The returned tweets are the most tropically related results to
the query tweets and it demonstrates that our approach can be
adapted to tweets as well.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an efficient LSH based solution
for document retrieval in big data. Although our approach is
unable to achieve similar performance as the traditional IR
method, it boosts the search time over an order of magnitude.
Experiments on two genres show that our approach is flexible
and feasible in practical use, especially for retrieving a small
number of documents in a large dataset. In the future, we plan
to conduct manual annotation on the tweets dataset in order
to carry out quantitative evaluations. After that, we will focus
on improving the document representation to further boost the
precision of the LSH based approach.

REFERENCES

[1] A. Andoni, “Nearest neighbor search: the old, the new, and the
impossible,” in PhD Dissertation in MIT, 2009.

[2] R. Udupa and S. Kumar, “Hashing-based approaches to spelling cor-
rection of personal names,” in EMNLP, 2010, pp. 1256–1265.

[3] K. Krstovski and D. A. Smith, “A minimally supervised approach for
detecting and ranking document translation pairs,” in The sixth ACL
Workshop on Statistical Machine Translation, 2011, pp. 207–216.

[4] D. Ravichandran, P. Pantel, and E. H. Hovy, “Randomized algorithms
and nlp: Using locality sensitive hash functions for high speed noun
clustering,” in ACL, 2005, pp. 622–629.

[5] S. Gouws, D. Hovy, and D. Metzler, “Unsupervised mining of lexical
variants from noisy text,” in EMNLP, 2011, pp. 82–90.

[6] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming first story
detection with application to twitter,” in HLT-NAACL, 2010, pp. 181–
189.

[7] J. Allan, V. Lavrenko, D. Malin, and R. Swan, “Detections, bounds,
and timelines: Umass and tdt-3,” in In Proceedings of Topic Detection
and Tracking Workshop, 2000, pp. 167–174.

[8] S. Petrovic, “Real-time event detection in massive streams,” in PhD
Theis at University of Edinburgh, 2012.

[9] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” in IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30(11), 2008, pp. 1958–1970.

[10] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in CVPR, 2008, pp. 1–8.

[11] B. Kulis, P. Jain, and K. Grauman, “Fast similarity search for learned
metrics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, 2009,
pp. 2143–2157.

[12] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary
hashing for approximate nearest neighbor search,” in ICCV, 2011, pp.
1631–1638.

[13] S. Korman and S. Avidan, “Coherency sensitive hashing,” in ICCV,
2011, pp. 1607–1614.

[14] C. Strecha, A. A. Bronstein, M. M. Bronstein, and P. Fua, “Ldahash:
Improved matching with smaller descriptors.” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, 2012, pp. 66–78.

[15] R. Parker, D. Graff, J. Kong, K. Chen, and K. Maeda, “English gigaword
fifth edition (http://catalog.ldc.upenn.edu/ldc2011t07),” 2011.

[16] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in STOC, 1998, pp. 604–613.

[17] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008,
pp. 1753–1760.

[18] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,”
in ICML, 2011, pp. 1–8.

[19] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” in CVPR, 2011, pp. 817–824.

[20] A. Singhal, “Modern information retrieval: A brief overview,” in Bul-
letin of the IEEE Computer Society Technical Committee on Data
Engineering, vol. 24(4), 2001.

[21] K. M. S. S. David Graff, Junbo Kong, “Tdt5 multilingual text
(https://catalog.ldc.upenn.edu/ldc2006t18),” 2006.

[22] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, 2014, pp. 55–60.
[Online]. Available: http://www.aclweb.org/anthology/P/P14/P14-5010

[23] J. Callan, W. Croft, and S. Harding, “The inquery retrieval system,”
in Proceedings of the Third International Conference on Database and
Expert Systems Applications, 1992, pp. 78–83.

[24] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14(3),
1980, pp. 130–137.

