
Compressed SIFT Feature-based Matching

Shmuel Tomi Klein

Computer Science Department
Bar Ilan University, Israel
Email: tomi@cs.biu.ac.il

Dana Shapira

Computer Science Department
Ashkelon Academic College, Israel

Email: shapird@ash-college.ac.il

Abstract—The problem of compressing a large collection of fea-
ture vectors so that object identification can further be processed
on the compressed form of the features is investigated. The idea
is to perform matching against a query image in the compressed
form of the descriptor vectors retaining the metric. Specifically,
we concentrate on the Scale Invariant Feature Transform (SIFT),
a known object detection method. Given two SIFT feature vectors,
we suggest achieving our goal by compressing them using a
lossless encoding for which the pairwise matching can be done
directly on the compressed files, by means of a Fibonacci code.
Experiments show that this approach incurs only a small loss in
compression efficiency relative to standard compressors requiring
a decoding phase.

Keywords–Data Compression; Feature vectors; SIFT; Fibonacci
code.

I. INTRODUCTION

The tremendous storage requirements and ever increasing
resolutions of digital images, necessitate automated analysis
and compression tools for information processing and extrac-
tion. A main challenge is detecting patterns even if they were
rotated or scaled, working directly on the compressed form of
the image. In a more general setting, a collection of images
could be given, and the subset of those including at least
one object, which is a rotated or scaled copy of the original
object, is sought. An example for the former could be an
aerial photograph of a city in which a certain building is to
be located, an example for the more general case could be a
set of pictures of faces of potential suspects, which have to be
matched against some known identifying feature, like a nose
or an eyebrow.

Invariance is obtained by using certain transforms, e.g.,
the one called Scale Invariant Feature Transform (SIFT) by
Lowe [1], a high probability object detection and identification
method, which is done by matching the query image against
a large database of local image features. Lowe’s object recog-
nition method transforms an image into a large set of feature
vectors, each of which is invariant to image translation, scaling,
and rotation, partially invariant to illumination changes and
robust to local geometric distortion. Feature descriptor vectors
are computed for the extracted key points of objects from a set
of reference images, which are then stored in a database. An
object in a new image is identified after matching its features
against this database using the Euclidean L2 distance.

Query feature compression can contribute to faster re-

trieval, for example, when the query data is transmitted over
a network, as in the case when mobile visual applications
are used for identifying products in comparison shopping.
Moreover, since the memory space on the mobile device is
restricted, working directly on the compressed form of the data
is sometimes required.

The rest of the paper is organized as follows. Section 2
reviews some of the related work; Section 3 gives a brief
description of SIFT; Section 4 presents our lossless encoding
for SIFT feature vectors, especially suited for CFBM; Section 5
presents the algorithm used for compressed pairwise matching
the feature vectors without decompression; finally, Section 6
presents results on the compression performance and the last
section suggests how to extend this work.

II. RELATED WORK

Wagner et al. [2] developed object recognition algorithms
especially designed for a restricted amount of available RAM,
such as mobile phones. Wagner uses a fast corner detector
for feature detection, and off-line preprocesses the features in
different scales, while using only a fixed scale level, matching
then on-line the phone’s camera scale. Tackling this problem
from another angle is by using good known methods for a non
restricted Random Access Memory environment, but making
them work in a compressed domain.

A feature descriptor encoder is presented in Chandrasekhar
et al. [3]. They transfer the compressed features over the
network and decompress them once data is received for further
pairwise image matching. Chen et al. [4] perform tree-based
retrieval, using a scalable vocabulary tree. Since the tree
histogram suffices for accurate classification, the histogram
is transmitted instead of individual feature descriptors. Also,
Chandrasekhar et al. [5] encode a set of feature descriptors
jointly and use tree-based retrieval when the order in which
data is transmitted does not matter, as in our case. Several
other SIFT feature vector compressors were proposed, and
we refer the reader to [6] for a comprehensive survey. We
propose a special encoding, which is not only compact in its
representation, but can also be processed directly without any
decompression.

Figure 1 visually represents our approach as opposed to the
traditional one of feature based object detectors and previous
research regarding feature descriptors compression. The client
uses any feature detector for extracting key points from the

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

image, and computes the relevant vectors. These features are
then sent along a network to the server, where pairwise pattern
matching is applied against the stored database, as shown
in Figure 1(a). Figure 1(b) depicts the scenario assumed in
previous research that deals with compressed feature descrip-
tors: compression is applied to the vectors before transmis-
sion, and decompression is performed once the descriptors
are received on the server’s side. Unlike traditional work,
the current suggestion omits the decompression stage, and
performs pairwise matching directly on the compressed data,
as shown in Figure 1(c). Similar work, using quantization, has
been suggested by Chandrasekhar et al. [7]. We do not apply
quantization, and rather use a lossless encoding.

Server

(a)

(b)

(c)

Compute
feature
descriptor

Client

Pairwise
matching

Server

Compute
feature
descriptor

Compress
feature
descriptors

Client

Pairwise
matching

Server

Compute
feature
descriptor

Compress
feature
descriptors

Client

Decompress
feature

descriptors

Pairwise
matching

Figure 1. Block diagram showing (a) the traditional image retrieval sys-
tem, (b) the scenario assumed by previous research, as opposed to (c) the
compressed feature based matching problem.

Working on a shorter representation and saving the decom-
pression process may save processing time, as well as memory
storage, making sure not to hurt the true positives and false
negatives probabilities. Moreover, representing the same set of
feature descriptors in less space can allow us keep a larger set
of representatives, which can result in a higher probability for
object identification by reducing the number of mismatches.

The main idea is to perform the matching against the query
image in the compressed form of the feature descriptor vectors
so that the metric is retained, i.e., vectors are close in the
original distance (e.g., Euclidean distance based on nearest
neighbors according to the Best-Bin-First-Search algorithm
in SIFT) if and only if they are close in their compressed
counterparts. This can be done either by using the same metric
but requiring that the compression does not affect the metric,
or by changing the distance so that the number of false matches
and true mismatches does not increase under this new distance.
In the present work, we stick to the first alternative and do not
change the L2 metric used in SIFT.

For the formal description of the general case, let
{f⃗1, f⃗2, . . . , f⃗n} be a set of feature descriptor vectors generated
using some feature based object detector, and let ∥ ∥M be
a metric associated with the pairwise matching of this object
detector. The Compressed Feature Based Matching Problem
(CFBM) is to find a compression encoding of the vectors,

denoted E(f⃗i), and an equivalent metric m so that for every
ϵ > 0 there exists a δ > 0 in which ∀i, j ∈ {1, . . . , n}

∥f⃗i − f⃗j∥M < ϵ ⇐⇒ ∥E(f⃗i)− E(f⃗j)∥m < δ. (1)

This is an extension of the Compressed Pattern Matching
paradigm introduced by Amir and Benson [8]. Given a pattern
P , a text T and complementing encoding and decoding func-
tions E and D, the Compressed Matching problem is to locate
P in the compressed text E(T). While the traditional approach
searches for the pattern in the decompressed text, i.e., search-
ing for P in D(E(T)), compressed matching calls for rather
compressing the pattern too, and looking for E(P) in E(T),
with the necessary adaptations. In our case, previous work on
feature compression would use complementary encoding and
decoding functions E and D, and apply decompression on the
vectors, so that D(E(f⃗i)) = f⃗i.

III. BRIEF DESCRIPTION OF SIFT

Matching features across different images appearing in dif-
ferent scales and rotations is a common problem in computer
vision, and SIFT is one of the famous tools dealing with it.
The SIFT algorithm first preprocesses the original image in
order to construct a scale space to ensure scale invariance.
SIFT repeatedly generates progressively blurred out images
of the original image and resizes it to half the size. The
blurred images are used to generate another set of images. The
Laplacian of Gaussian (LoG) operation calculates second order
derivatives on the blurred images. The blur smoothes out the
noise and makes the second order derivative more stable. The
LoG operation locates edges and corners in the image, which
are used for finding keypoints. However, since calculating
the LoG is computationally intensive, it is approximated by
the Difference of Gaussians (DoG), calculating the difference
between two consecutive scales, resulting in scale invariant
keypoints.

Each pixel of the DoG scales is compared to all 26 of
its neighbors, 8 neighbors in the current scale image and 18
more in the images of the scales one above and below it.
Maxima and minima pixels are chosen as keypoints, which
cannot be detected in the lowest or highest scales. Edges and
low contrast pixels are eliminated from the set of keypoints. An
orientation is calculated for each keypoint, choosing the most
dominant one(s) around the keypoint. Any further calculations
are done relative to this orientation. This effectively cancels
out the effect of orientation, making it rotation invariant.

Highly distinctive vectors are then created for each key-
point as follows. A 16 × 16 window of pixels around the
keypoint is taken. The window is split into sixteen 4 × 4
windows, each of which used to generate a histogram of 8
bins. Each bin corresponds to a different orientation (first bin
for 0-44 degrees, second for 45-89 degrees, etc.), and the
gradient orientations are put into these bins. To achieve rotation
independence, the keypoint’s rotation is subtracted from each
orientation, so that each gradient orientation is relative to that
of the keypoint. Finally, the 128 values which are attained are
normalized.

The object detection and identification is done by pairwise
matching the feature vectors of the query image against a large
database of local image features using the L2 norm.

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

IV. LOSSLESS ENCODING FOR SIFT FEATURE VECTORS

Given two SIFT feature vectors, we suggest achieving our
goal to compress them using a lossless encoding so that the
pairwise matching can be done directly on the compressed
form of the file, by means of a Fibonacci code [9]. Note that
while the encoding will be different, the metric used in SIFT
does not change, or in terms of the above notation, M and m
refer to the same Euclidean metric generally denoted as L2.

A. The Fibonacci Code

The Fibonacci code is a universal variable length encoding
of the integers based on the Fibonacci sequence rather than
on powers of 2. A subset of these encodings can be used
as a fixed alternative to Huffman codes, giving obviously
less compression, but adding simplicity (there is no need to
generate a new code every time), robustness and speed [10],
[9]. The particular property of the binary Fibonacci encoding is
that there are no adjacent 1’s, so that the string 11 can act like
a comma between codewords. More precisely, the codeword
set consists of all the binary strings for which the substring 11
appears exactly once, at the left end of the string.

The connection to the Fibonacci sequence can be seen as
follows: just as any integer k has a standard binary repre-
sentation, that is, it can be uniquely represented as a sum of
powers of 2, k =

∑
i≥0 bi2

i, with bi ∈ {0, 1}, there is another
possible binary representation based on Fibonacci numbers,
k =

∑
i≥0 fiF (i), with fi ∈ {0, 1}, where it is convenient to

define the Fibonacci sequence here by F (0) = 1, F (1) = 2
and F (i) = F (i − 1) + F (i − 2), for i ≥ 2. This Fibonacci
representation will be unique if, when encoding an integer, one
repeatedly tries to fit in the largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19
is 13, for the remainder 6 one can use the Fibonacci number
5, and the remainder 1 is a Fibonacci number itself. So, one
would represent 19 as 19 = 13 + 5 + 1, yielding the binary
string 101001. Note that the bit positions correspond to F (i)
for increasing values of i from right to left, just as for the
standard binary representation, in which 19 = 16+2+1 would
be represented by 10011. Each such Fibonacci representation
starts with a 1; so, by preceding it with an additional 1, one
gets a sequence of uniquely decipherable codewords.

Decoding, however, would not be instantaneous, because
the set lacks the prefix property. For example, a first attempt
to start the parsing of the encoded string 1101111111110 by
110 11 11 11 11 would fail, because the remaining suffix 10
is not the prefix of any codeword. So, only after having read
5 codewords in this case (and the example can obviously be
extended) would one know that the correct parsing is 1101
11 11 11 110. To overcome this problem, the Fibonacci code
defined in [10] simply reverses each of the codewords. The
adjacent 1s are then at the right instead of at the left end of
each codeword, thus yielding the prefix code {11, 011, 0011,
1011, 00011, 10011, 01011, 000011, 100011, 010011, 001011,
101011, 0000011,. . .}.

A disadvantage of this reversing process is that the order
preserving of the previous representation is lost, e.g., the
codewords corresponding to 17 and 19 are 1010011 and
1001011, but if we compare them as if they were standard

binary representations of integers, the first, with value 83,
is larger than the second, with value 75. At first sight, this
seems to be critical, because we want to compare numbers
in order to subtract the smaller from the larger. But, in fact,
since we calculate the L2 norm, the square of the differences
of the coordinates is needed. It therefore does not matter if we
calculate x− y or y−x, and there is no problem dealing with
negative numbers. The reversed representation can therefore
be kept.

B. Using a Fibonacci Code for SIFT Vectors

We wish to encode SIFT feature vectors, each consisting
of exactly 128 coordinates. Thus, in addition to the ability
of parsing an encoded feature vector into its constituting
coordinates, separating adjacent vectors could simply be done
by counting the number of codewords, which is easily done
with a prefix code.

Empirically, SIFT vectors are characterized by having
smaller integers appear with higher probability. To illustrate
this, we considered the Lenna image (an almost standard com-
pression benchmark) and applied Matlab’s SIFT application on
it, generating 738 feature vectors. The number of occurrences
of 0 was 28,182, and that of the following numbers 1 to 25 is
plotted in Figure 2.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25

"list-sift.txt"

Figure 2. Value distribution in a feature vector.

Feature vectors also contain repeated zero-runs, as could
be expected by the high number of zeros. We therefore chose
representing a pair of adjacent 0s by a single codeword. That is,
the pair 00 is assigned the first Fibonacci codeword 11, a single
0 is encoded by the second codeword 011, and generally, the
integer k is represented by the Fibonacci codeword correspond-
ing to the integer k+2, for k ≥ 0. The usual approach for using
an universal code, such as the Fibonacci code, is first sorting
the probabilities of the source alphabet symbols in decreasing
order and then assigning the universal codewords by increasing
codeword lengths, so that high probability alphabet symbols
are given the shorter codewords. In our case, in order to be able
to perform compressed pairwise matching, we omit sorting the
probabilities, as already suggested in [11] for Huffman coding.
Figure 2 shows that the order is not strictly monotonic, but that
the fluctuations are very small. Indeed, experimental results
show that encoding the numbers themselves instead of their
indices has hardly any influence (0.1% on our test images).

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

As an example, consider a feature vector of 128 coordi-
nates, the first 20 of which are

0, 0, 0, 0, 0, 0, 0, 0, 10, 3, 6, 4, 0, 0, 2, 4, 10, 83, 69, 0, . . .

corresponding to a point of interest of Lenna’s Image. The
Fibonacci encoding of this feature vector is

11 11 11 11 101011 00011 000011 10011 11

1011 10011 101011 1000101011 0010010011 011 . . .

using 70 bits, rather than 160 bits for the first 20 elements of
the original SIFT vector. Note that since all numbers are simply
shifted by 2, the difference between two Fibonacci encodings
is preserved, which is an essential property for computing their
distance in the compressed form.

V. COMPRESSED PAIRWISE MATCHING

Given two compressed feature vectors one needs to com-
pute their L2 norm. Each component is first subtracted from the
corresponding component, then the squares of these differences
are summed. The algorithm for computing the subtraction of
two corresponding Fibonacci encoded coordinates A and B is
given in Figure 3. We start by stripping the trailing 1s from
both, and pad, if necessary, the shorter codeword with zeros at
its right end so that both representations are of equal length.
Note that the term first, second and next refer to the order
from right to left.

Sub(A,B)

scan the bits of A and B from right to left
a1 ←− first bit of A
a2 ←− second bit of A

while bits of A not empty
{ a3 ←− next bit of A

b1 ←− next bit of B
a1 ←− a1 − b1
a2 ←− a1 + a2

a3 ←− a1 + a3

a1 ←− a2

a2 ←− a3}

b←− value of last 2 bits of B
if b ̸= 0 then b←− 2− b
return 2 ∗ a1 + a2 − b

Figure 3. Subtraction of Fibonacci Codewords.

At the end of the while loop, there are 2 unread bits
left in B, which can be 00, 10 or 01, with values 0, 1 or
2 in the Fibonacci representation, but when read as standard
binary numbers, the values are 0, 2 and 1. This is corrected
in the commands after the while loop of the algorithm. The
evaluation relies on the fact that a 1 in position i of the
Fibonacci representation is equivalent to, and can thus be
replaced by, 1s in positions i + 1 and i + 2. This allows
us to iteratively process the subtraction, independently of
the Fibonacci number corresponding to the leading bits of
the given numbers. Processing is, therefore, done in time
proportional to the size of the compressed file, without any
decoding.

As an example, consider the numbers A = 130 and B =
65, encoded by the strings representing 132 and 67, which are
10001001011 and 1010100011, respectively. Figure 4 shows
the results of applying the subtraction algorithm on A and B,
which appear, in their reduced form (without trailing 1, but
with B padded by 0 to get to the same length) in the boxed
first line and last column. At the end, b1 is assigned the value
1, and the result is indeed 130−65 = 65 = 2∗25+16−1. Note
that had we subtracted A from B, the values in columns a1
and a2 would be negative or 0 (except in the first row), but the
algorithm would still work correctly. In that case, the values
in the last line would be -14 and -25, and indeed 65− 130 =
−65 = 2 ∗ (−25)− 14− 1.

a3 a2 a1 b1
1 0 0 0 1 0 0 1 0 1 0

1 0 0 0 1 0 0 2 1 1
1 0 0 0 1 0 0 2 0

1 0 0 0 1 2 2 0
1 0 0 0 3 4 0

1 0 0 4 7 1
1 0 6 10 0

1 10 16 1
16 25

Figure 4. Example of direct differencing.

L2Norm(V1, V2)
while V1 and V2 are not empty
{ remove first codeword from V1

and assign it to A
remove first codeword from V2

and assign it to B
if A ̸= B then

if A = 11 then
S ←− Sub(B, 011)
V1 ←− 011 ∥ V1

else if B = 11 then
S ←− Sub(A, 011)
V2 ←− 011 ∥ V2

else S ←− Sub(A,B)

SSQ←− SSQ + S2

}
return

√
SSQ

Figure 5. Compressed differencing of the coordinates.

To calculate the L2 norm, the two Fibonacci encoded input
vectors have to be scanned in parallel from left to right. In each
iteration, the first codeword (identified as the shortest prefix
ending in 11) is removed from each of the two input vectors,
and each pair of coordinates is processed according to the
procedure Sub(A,B) above. The codeword 11, representing
two consecutive zeros, needs a special treatment only if the
other codeword, say B, is not 11. In this case, 11 should be
replaced by two codewords 011, each representing a single
zero. We thus perform Sub(B, 011), and then concatenate
the second 011 in front of the remaining input vector, to be
processed in the following iteration. The details appear in the
algorithm of Figure 5, where ∥ denotes concatenation and SSQ
is initialized to 0.

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

VI. COMPRESSION PERFORMANCE

We considered three images for our experiments: Lenna,
Peppers and House, which were taken from the Signal and Im-
age Processing Institute Image Data Base [12]. We first applied
SIFT on all images receiving 737, 872, and 991 interest points,
respectively. Table 1 presents the compression performance of
our Fibonacci encoding suitable for compressed matching as
compared to other compressors. The second column shows the
original sizes of the SIFT feature vectors in bytes. The third
column, headed Fib, presents the compression performance,
as a percentage of the original size, in which each number
is represented by its Fibonacci encoding, which is useful for
compressed pairwise matching. To evaluate the compression
loss due to omitting the sorting of the frequencies, we consid-
ered the compression where each symbol is encoded using the
Fibonacci codeword assigned according to its position in the
list of decreasing order of frequencies. These values appear in
the 4th column headed Ordered Fib.

For comparison, the compression achieved by a Huffman
code is also included in the fifth column as a lower bound.
As can be seen, encoding the numbers themselves instead of
their indices induces a negligible compression loss. The high
probability for small integers also reduces the gap between the
performances of Fibonacci and Huffman codes.

TABLE I. COMPRESSION EFFICIENCY OF THE PROPOSED ENCODINGS
(IN PERCENT OF ORIGINAL SIZE).

Image Original Size Fib Ordered Fib Huffman gzip bzip
Lenna 236,382 27.82 27.78 26.2 34.7 30.7
Peppers 279,422 27.3 27.2 25.7 34.3 30.4
House 325,778 29.5 29.4 27.3 35.6 31.7

The last two columns give the compression performances
of gzip and bzip2. These are adaptive compression schemes,
and as such no real competitors to Huffman or Fibonacci
coding: while their performance on text files is often superior,
taking advantage also of the order in which the characters
appear, and not just of their frequencies, they cannot be used
when direct access to a part of the compressed file is required,
as in our case of SIFT feature vectors, and they require a
sequential scan from their beginning for the decoding. In this
particular case, their compression is also worse than that of
Huffman or Fibonacci. This can be explained by the fact that
they need to encode also the separating blanks or newlines
between the elements of the feature vectors, which constitute
a substantial part of the files, whereas Huffman and Fibonacci
encode the elements themselves, and not their representations,
so the original file can be reconstructed without having to
encode the separators explicitly.

VII. CONCLUSION AND FUTURE WORK

We have dealt with the problem of compressing a set of
feature vectors known as SIFT, under the constraint of allowing
processing the data directly in its compressed form. Such an
approach is advantageous not only to save storage space, but
also to the manipulation speed, and in fact improves the whole
data handling from transmission to processing.

Our solution is based on encoding the vector elements
by means of a Fibonacci code, which is generally inferior
to Huffman coding from the compression point of view, but

has several advantages, turning it into the preferred choice in
our case: (a) simplicity – the code is fixed and need not be
generated anew for different distributions; (b) the possibility
to identify each individual codeword – avoiding the necessity
of adding separators, and not requiring a sequential scan; (c)
allowing to perform subtractions using the compressed form –
and thereby calculating the L2 norm, whereas a Huffman code
would have to use some translation table.

The experiments suggest that there is only a small loss,
of 6–8%, in compression efficiency relative to the optimal
Huffman codes, which might be worth a price to pay for the
improved processing. Relative to other standard compressors,
like gzip or bzip, there is even an improvement in compres-
sion, contrarily to what one might expect on text files, for
example. This is due to the fact that the separators between
the vector elements need not be encoded in the Fibonacci
approach.

The basic techniques of the present work can be extended
to a different, yet related problem: the Compressed Approxi-
mate Pattern Matching paradigm. When searching for a pattern
in a given text one may also be interested in locating strings
that are not completely identical to the original pattern, but are
quite similar. In the literature, this problem is referred to as
Approximate Pattern Matching, which is to find all occurrences
of substrings in a given text T that are at a given “distance” k
or less from a pattern P under some metric. A common choice
is the edit distance metric, in which the distance between
two strings is defined as the minimum number of insertions,
deletions or substitutions of single characters performed on one
of the strings in order to convert it to the other. The case where
k = 0 corresponds to the classical pattern matching problem.

The Compressed Approximate Matching Problem (CAMP)
is locating similar patterns to the searched one working di-
rectly on the compressed form of the text. Defining similarity
formally necessities the existence of a metric so that if the
distance between two patterns under this metric is small,
searching for one of them in the compressed form of the file
will be able to locate both patterns. Approximate compressed
pattern matching was first introduced by Amir and Benson [8]
as an open problem. It has been solved for many cases, e.g.,
for byte Huffman coding of words [13], for run length encoded
strings [14], for Lempel-Ziv compressed text in [15][16], and
Straight Line Programs [17][18].

More formally, given a pattern P , a compressed text E(T),
and a metric ∥ ∥M , the CAMP is to locate all patterns Q
in E(T) so that ∥P − Q∥M ≤ ϵ for some ϵ ≥ 0. This is a
generalization of the compressed pattern matching problem in
which ϵ = 0.

A tempting definition is dealing with two metrics, ∥ ∥M
and a corresponding metric ∥ ∥m so that if ∥P −Q∥M ≤ ϵ
for some ϵ ≥ 0 in T , then there exist a corresponding metric
∥ ∥m and δ ≥ 0 so that ∥E(P) − E(Q)∥m ≤ δ in the
compressed file E(T). However, this raises some difficulties, as
an occurrence of E(Q) in the encoded file does not necessarily
correspond to an occurrence of an approximated pattern.
For example, if the encoded file uses Huffman coding, an
occurrence of the compressed pattern E(P) might appear in
the encoded file, without implying that there is a corresponding
occurrence of the original pattern in the original file, since

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

E(P) is not necessarily aligned on codeword boundaries. We
intend to deal with these extensions in future work.

REFERENCES

[1] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, vol. 60 (2), 2004,
pp. 91–110.

[2] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg, “Pose tracking from natural features on mobile phones,” in
Proceedings of the International Symposium on Mixed and Augmented
Reality, 2008, pp. 125–134.

[3] V. Chandrasekhar et al., “Transform Coding of Image Feature Descrip-
tors,” in Visual Communications and Image Processing, vol. 7257 (1),
2009, pp. 725 710–725 710–9.

[4] D. M. Chen et al., “Tree Histogram Coding for Mobile Image Match-
ing,” in Data Compression Conference, DCC–09, 2009, pp. 143–152.

[5] V. Chandrasekhar et al., “Compressing Feature Sets with Digital Search
Trees,” in ICCV Workshops, 2011, pp. 32–39.

[6] V. Chandrasekhar et al., “Survey of SIFT compression schemes,” in Int.
Workshop on Mobile Multimedia Processing (WMMP), 2010.

[7] V. Chandrasekhar et al., “Compressed Histogram of Gradients: A Low-
Bitrate Descriptor,” International Journal of Computer Vision, vol.
96(3), 2012, pp. 384–399.

[8] A. Amir and G. Benson, “Efficient two-dimensional compressed match-
ing,” in Data Compression Conference DCC–92, Snowbird, Utah, 1992,
pp. 279–288.

[9] S. T. Klein and M. Kopel Ben-Nissan, “On the Usefulness of Fibonacci
Compression Codes,” The Computer Journal, vol. 53, 2010, pp. 701–
716.

[10] A. S. Fraenkel and S. T. Klein, “Robust universal complete codes for
transmission and compression,” Discrete Applied Mathematics, vol. 64,
1996, pp. 31–55.

[11] S. T. Klein and D. Shapira, “Huffman Coding with Non-Sorted Frequen-
cies,” Mathematics in Computer Science, vol. 5(2), 2011, pp. 171–178.

[12] [Online]. Available: http://sipi.usc.edu/database/
[13] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Fast and flexible

word searching on compressed text,” ACM Trans. Inform. Syst. (TOIS),
vol. 18 (2), 2000, pp. 113–139.

[14] V. Mäkinen, G. Navarro, and E. Ukkonen, “Approximate Matching of
Run-Length Compressed Strings,” Algorithmica, vol. 35 (4), 2003, pp.
347–369.

[15] G. Navarro and M. Raffinot, “A general practical approach to pattern
matching over Ziv-Lempel compressed text,” in Proceedings of Com-
binatorial Pattern Matching (CPM), 1999, pp. 14–36.

[16] J. Kärkkäinen, G. Navarro, and E. Ukkonen, “Approximate string
matching on Ziv-Lempel compressed text,” Discrete Algorithms, vol.
1 (3-4), 2003, pp. 313–338.

[17] P. Bille et al., “Random access to grammar-compressed strings,” in
Symposium on Discrete Algorithms (SODA), 2011, pp. 373–389.

[18] T. Gagie, P. Gawrychowski, C. Hoobin, and S. J. Puglisi, “Faster Ap-
proximate Pattern Matching in Compressed Repetitive Texts,” ISAAC,
2011, pp. 653–662.

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

