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Abstract—Classic support based approaches efficiently ad-
dress frequent sequence mining. However, support based mining
has been shown to suffer from a bias towards short sequences.
In this paper, we propose a method to resolve this bias when
mining the most frequent sequences. In order to resolve the
length bias we definenorm-frequency, based on the statistical z-
score of support, and use it to replace support based frequency.
Our approach mines the subsequences that are frequent relative
to other subsequences of the same length. Unfortunately, naive
use of norm-frequency hinders mining scalability. Using norm-
frequency breaks the anti-monotonic property of support, an
important part in being able to prune large sets of candidate
sequences. We describe a bound that enables pruning to provide
scalability. Experimental results on textual and computer user
input data establish that we manage to overcome the short
sequence bias successfully, and to illustrate the production of
meaningful sequences with our mining algorithm.
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I. I NTRODUCTION

The frequent sequence mining problem was first introduced
by Agrawal and Srikant [1] and by Mannila et al. [2]. There
are many possible applications for frequent sequential patterns,
such as DNA sequence mining [3], text mining [4] anomaly
detection [5] classification [6], and Web mining [7].

Frequent sequential pattern generation is traditionally based
on selecting those patterns that appear in a large enough
fraction of input-sequences from the database. This measure is
known assupport. In support based mining a threshold termed
minsupis set. All sequences with asupporthigher thanminsup
are considered frequent.

Support based mining is known to suffer from a bias
towards short patterns [8]: Short patterns are inherently more
frequent than long patterns. This bias creates a problem,
since short patterns are not necessarily the most interesting
patterns. Often, short patterns are simply random occurrences
of frequent items. The common solution of lowering the
minsup results in obtaining longer patterns, but generates a
large number of useless short sequences as well [9]. Using
confidence measures lowers the number of output sequences
but still results in short sequences.

Thus, removing the short sequence bias is a key issue in
finding meaningful patterns. One possible way to find valuable
patterns is to add weights to important items in the data. Yun
[10] provides an algorithm for frequent sequence mining using
weights. The drawback of this technique is that for many data
sets there is no knowledge of what weights to apply. Seno and

Karypis [11] propose eliminating the length bias by extracting
all patterns with a support that decreases as a function of
the pattern length. This solution is based on the assumption
that a short pattern must have a very high support to be
interesting, and a long pattern may be interesting even with
a lower support. Although this is a fair assumption in many
scenarios, it is challenging to find a measure that can be used
for frequent pattern mining without making an assumption on
the relationship between frequency and length. Searching for
closed or maximal patterns [12]–[14] is another way to ap-
proach this bias. However, mining closed or maximal patterns
may not be the best approach to solve the short sequence bias.
Using closed and maximal sequences ignores shorter partial
sequences that may be of interest. Other approaches include
comparing the frequency of a sequence to its subsequences
[15], and testing for self sufficient sequences [16]. We propose
an algorithm that mines sequences of all lengths without a
bias towards long or short sequences. Horman and Kaminka
[8] proposed using a normalized support measure for solving
the bias. However, their solution is not scalable. Furthermore
they cannot handle subsequences that are not continuous or
have multiple attributes. We allow holes in the sequence,
for example: if the original sequence is ABCD, Horman and
Kaminka can find the subsequences AB, ABC, ABCD, BC etc,
but cannot mine ACD or ABD, whereas our proposed method
can.

In this paper, we present an algorithm forREsolving
lEngth bias inFrequent sequence mining (REEF). REEF is
an algorithm for mining frequent sequences that normalizes
the support of each candidate sequence with a length adjusted
z-score. The use of the z-score in REEF eliminates statistical
biases towards finding shorter patterns, and contributes to
finding meaningful patterns as we will illustrate. However,it
challenges the scalability of the approach: z-score normaliza-
tion lacks the anti-monotonic property used in support based
measures, and thus supposedly forces explicit enumeration
of every sequence in the database. This renders useless any
support based pruning of candidate sequences, the basis for
scalable sequence mining algorithms, such as SPADE [17].

In order to provide a means for pruning candidate se-
quences, we introduce a bound on the z-score of future
sequence expansions. The z-score bound enables pruning in the
mining process to provide scalability while ensuring closure.
Details on how the bound is calculated will be described later
in the paper. We use this bound with an enhanced SPADE-
like algorithm to efficiently search for sequences with high
z-score values, without enumerating all sequences. A previous
preliminary study [18] indicates that this bound assists the
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speedup substantially. We use three text corpora and computer
user input to demonstrate how REEF overcomes the bias
towards short sequences. We also show that the percentage
of real words among the sequences mined by REEF is higher
than those mined with SPADE.

The structure of the paper is as follows: Section II pro-
vides background and notation and introduces Norm-Frequent
Sequence Mining Problem. In Section III the algorithm used
for the Norm-Frequent Sequence Mining is described in detail.
Experimental evaluation is provided in Section IV, and finally
Section V concludes our paper.

II. N ORM-FREQUENT SEQUENCEM INING

Norm-FrequentSequence Mining solves the short sequence
bias present in traditionalFrequent Sequence Mining. We
begin by introducing the notation and the traditionalFrequent
Sequence Mining problem in Section II-A. We then define
theNorm-FrequentSequence Mining problem in Section II-B.
We explain why the scalability is hindered by the naive imple-
mentation of normalized support and how this is resolved in
Section II-C. Section II-C addresses scalability by introducing
a bound that enables pruning in the candidate generation
process. Finally in Section III we bring all parts together to
compose the REEF algorithm.

A. Notation and Frequent Sequence Mining

We use the following notation in discussing Norm Frequent
Sequence Mining.

event Let I = {I1, I2, ..., Im} be the set of allitems. An
event (also called anitemset) is a non-empty unordered set
of items denoted ase = {i1, ..., in} where ij ∈ I is an
item. Without loss of generality we assume they are sorted
lexicographically. For example,e = {ABC} is an event with
itemsA B andC.

sequence A sequenceis an ordered list ofevents, with a
temporal ordering. The sequences = e1 → e2 → ... → eq is
composed ofq events. If eventei occurs before eventej, we
denote it asei < ej . ei andej do not have to be consecutive
events and no twoeventscan occur at the same time. For
example, in the sequence s={ABC} → {AE} we may say that
{ABC} < {AE} since{ABC} occurs before{AE}.

sequence size and length The size of a sequence is the
number of events in a sequence,size({ABC} → {ABD}) = 2.
The lengthof a sequence is the number of items in a sequence
including repeating items. A sequence with lengthl is called
an l-sequence. length({ABC} → {ABD}) = 6.

subsequence and contain A sequence si is a
subsequenceof the sequencesj , denoted si � sj , if
∀ek, el ∈ si, ∃em, en ∈ sj such that ek ⊆ em and el ⊆ en

and if ek < el then em < en. We say thatsj containssi if
si � sj . E.g.,{AB} → {DF} � {ABC} → {BF} → {DEF}.

database The databaseD used for sequence mining is
composed of a collection of sequences.

support The supportof a sequences in databaseD is the
proportion of sequences inD that contain s. This is denoted
supp(s,D).

This notation allows the description of multivariate se-
quence problems. The data is sequential in that it is composed
of ordered events. The ordering is kept within the subsequences
as well. The multivariate property is achieved by events being
composed of several items. The notation enables discussionof
mining sequences with gaps both in events and in items, as
long as the ordering is conserved. The mined sequences are
sometimes called patterns.

In traditional support based mining, a user specified min-
imum support calledminsup is used to define frequency. A
frequent sequence is defined as a sequence with a support
higher thanminsup, formally defined as follows:

Definition 1 (Frequent):Given a databaseD, a sequences
and a minimum supportminsup. s is frequentif supp(s,D) ≥
minsup.

The problem of frequent sequence mining is described as
searching for all thefrequentsequences in a given database.
The formal definition is:

Definition 2 (Frequent Sequence Mining):Given a
databaseD, and a minimum supportminsup, find all the
frequentsequences.

In many support based algorithms such as SPADE [17],
the mining is performed by generating candidate se-
quences and evaluating whether they are frequent. In or-
der to obtain a scalable algorithm a pruning is used
in the generation process. The pruning is based on the
anti-monotonic property of support. This property en-
sures that support does not grow when expanding a se-
quence, e.g.,supp({AB} → {C}) ≥ supp({AB} → {CD}).
This promises that candidate sequences that arenot frequent
will never generatefrequent sequences, and therefore can
be pruned.Frequentsequence mining seems to be a solved
problem with a scalable algorithm. However, it suffers from
a bias towards mining short subsequences. We provide an
algorithm that enables mining subsequences of all lengths.

B. Norm-Frequent Sequence Mining using Z-Score

In this section, we define the problem ofNorm-Frequent
Sequence Mining. We use the statistical z-score for normal-
ization. The z-score for a sequence of lengthl is defined as
follows:

Definition 3 (Z-score):Given a databaseD and a sequence
s. Let l = len(s) be the length of the sequences. Let µl and
σl be the average support and standard deviation of support
for sequences of lengthl in D. Thez-scoreof s denotedζ(s)
is given byζ(s) = supp(s)−µl

σl

.

We use the z-score because it normalizes the support
measure relative to the sequence length. Traditional mining,
where support is used to define frequency, mines sequences
that appear often relative toall other sequences. This results
in short sequences since short sequences always appear more
often than long ones. Using the z-score normalization of
support for mining finds sequences that are frequent relative
to othersequences of the same length. This provides an even
chance for sequences of all lengths to be found frequent.

Based on the definition of z-score for a sequence we define
a sequence as beingNorm-Frequentif the z-score of the
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seq 1: {AB} → {A}
seq 2: {AB} → {B}
seq 3: {BC} → {A}
seq 4: {AB} → {A}
seq 5: {BC} → {B}
seq 6: {AC} → {B}
seq 7: {AB} → {A}
seq 8: {AC} → {C}
seq 9: {BC} → {C}
seq 10: {AC} → {A}

Figure 1: Example database

sequence is among the top z-score values for sequences in
the database. The formal definition follows:

Definition 4 (Norm-Frequent):Given a databaseD, a se-
quences of lengthl and an integerk. LetZ be the set of thek
highest z-score values for sequences in D,s is norm-frequent
if ζ(s) ∈ Z. In other words, we perform top-K mining of the
most norm-frequent sequences.

We introduce the problem ofNorm-FrequentSequence
Mining. This new problem is defined as searching for all
the norm-frequentsequences in a given database. The formal
definition follows and will be addressed in this paper.

Definition 5 (Norm-Frequent Sequence Mining):Given a
databaseD and integerk, find all thenorm-frequentsequences.

In Figure. 1, we provide a small example. The sequences
{AB}, {A} → {A} and{B} → {A}, of length2, all have a
support of 0.4 and are the most frequent patterns using support
to define frequency. Notice that there are several sequences
with this support, and no single sequence stands out. Consider
the sequence{AB} → {A} of length 3. This sequence only
has a support of 0.3. However, all other sequences of length
3 have a support no higher than 0.1. Although there are
several sequences of length2 with a higher support than
{AB} → {A}, this sequence is clearly interesting when com-
pared to other sequences of the same length. This example
provides motivation for why support may not be a sufficient
measure to use. The norm-frequency measure we defined is
aimed at finding this type of sequence.

Unfortunately, the z-score normalization test hinders
the anti-monotonic property: wecannot determine that
ζ({AB} → {C}) ≥ ζ({AB} → {CD}).
Therefore, pruning becomes difficult; we cannot be sure that
the z-score of a candidate sequence with lengthl will not
improve in extensions of lengthl+1 or in generall+n for some
positiven. Therefore, we cannot prune based on z-score and
ensure finding allnorm-frequentsequences. This is a problem
since without pruning our search space becomes unscalable.

Another problem with performingNorm-Frequent Se-
quence Mining is that the values forµl andσl must be obtained
for sequences of all lengths prior to the mining process.
This imposes multiple passes over the database and hinders
scalability.

These important scalability issues are addressed and solved
in Section II-C resulting in a scalable frequent sequence mining
algorithm that overcomes the short sequence bias.

C. Scaling Up

As we explained in Section II-B, pruning methods such
as those described in SPADE [17] cannot be used withnorm-
frequentmining. We propose an innovative solution that solves
the scalability problem caused by the inability to prune.

Our solution is to calculate a bound on the z-score of
sequences that can be expanded from a given sequence.
This bound on the z-score of future expansions of candidate
sequences is used for pruning. We define the bound and then
explain how it is used. Z-score was defined in definition 3.
The bound on z-score is defined in definition 6.

Definition 6 (Z-score-Bound):Given a databaseD and a
sequences. Letµl′ andσl′ be the average support and standard
deviation of support for sequences of lengthl′ in D. The z-
score-boundof s, for length l′ denotedζB(s, l′) is given by
ζB(s, l′) = supp(s)−µ

l′

σ
l′

.

We know that support is anti-monotonic, therefore as the
sequence length grows support can only get smaller. Given a
candidate sequences of lengthl with a support ofsupp(s) we
know that for all sequencess′ generated froms with length
l′ > l the maximal support issupp(s). We can calculate the
bound on z-score,ζB(s, l′), for all possible extensions of a
candidate sequence. Notice that for all sequencess′ that are
extensions ofs, ζ(s′) ≤ ζB(s, l′). The ability to calculate this
bound on possible candidate extensions is the basis for the
pruning.

In order to minefrequentor norm-frequentsequences, can-
didate sequences are generated and evaluated. In traditional fre-
quentsequence mining there is only one evaluation performed
on each sequence. If the sequence is found to befrequentit
is both saved in the list offrequentsequences and expanded
to generate future candidates, if it is notfrequent it can be
pruned (not saved and not used for generating candidates).
Fornorm-frequentmining we perform two evaluations for each
sequence. The first is to decide whether the proposed sequence
is norm-frequent. The second is to determine if it should be
expanded to generate more candidate sequences for evaluation.
There are two tasks since z-score is not anti-monotonic and a
sequence that is notnorm-frequentmay be used to generate
norm-frequentsequences. This second task is where the bound
is used for pruning. The bound on future expansions of the
sequences is calculated for all possible lengths. If the bound
on the z-score for all possible lengths is lower than the top nz-
scores then no possible expansion can ever benorm-frequent
and the sequence can be safely pruned from the generation
process. If for one or more lengths the bound is high enough
to be norm-frequentwe must generate candidates from the
sequence and evaluate them in order to determine if they are
norm-frequentor not. This process guarantees that allnorm-
frequentsequences will be generated.

Using the bound enables pruning of sequences that are
guaranteed not to generatenorm-frequentcandidates. The
pruning enabled by using the bound resolves the first scalabil-
ity issue of sequence pruning in the generation process. The
second scalability problem of calculatingµl andσl is resolved
by calculating the values forµl andσl on a small sample of
the data in a preprocessing stage described below.
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III. REEF ALGORITHM

In this section, we combine all the components we have
described in the previous sections and describe the implemen-
tation of REEF. The REEF algorithm is composed of several
phases. The input to REEF is a database of sequences and
an integer’k’ determining how many Z-scores will be used
to find norm-frequentsequences. The output of REEF is a
set of norm-frequentsequences. Initially a sampling phase
is performed to obtain input for the later phases. Next we
perform the candidate generation phase. First norm-frequent
1-sequences and 2-sequences are generated. Once 2-sequences
have been generated, an iterative process of generating can-
didate sequences is performed. The generated sequences are
evaluated, and if found to benorm-frequentare placed in the
output list of norm-frequentsequences. These sequences are
also examined in the pruning process of REEF in order to
determine if they should be expanded or not.

Sampling Phase -The sampling phase is performed as
a preprocessing of the data in order to gather statistics of
the average and standard deviation of support for sequences
of all possible lengths. This stage uses SPADE [17] with a
minsupof 0 to enumerate all possible sequences in the sampled
data and calculate their support. For each length the support
average and standard deviation are calculated. These values
are distorted and corrected values are calculated using the
technique described in [18]. These corrected values provide
the average supportµl and standard deviation of supportσl

that are used in z-score calculation and the bound calculation.

Candidate Generation Phase -The candidate generation
phase is based on SPADE along with important modifications.
As in SPADE we first find all 1-sequence and 2-sequence can-
didates. The next stage of the candidate generation phase in-
volves enumerating candidates and evaluating their frequency.

We make two modifications to SPADE. The first is moving
from setting aminsupto setting the′k′ value. ′k′ determines
the number of z-score values that norm-frequent sequences
may have. Note that there may be several sequences with the
same z-score value. The reason for this modification is that
z-score values are meaningful for comparison within the same
database but vary between databases. Therefore, setting the
′k′ value is of more significance than setting a min-z-score
threshold.

The second and major change we make is swapping
frequencyevaluation withnorm-frequencyevaluation. In other
words, for each sequences replace the test of issupp(s,D) >
minsup with the test of isζ(s) ∈ Z where Z is the set
of the ′k′ highest z-score values for sequences inD. This
replacement of the frequency test with the norm-frequency test
is the essence of REEF and our main contribution.

The improved version of sequence enumeration including
the pruning is presented in Figure. 2 and replaces the enumer-
ation made in SPADE. The joining ofl-sequences to generate
l+1-sequences (Ai

∨
Aj found in line 6) is performed as in

SPADE [17].

Pruning Phase using Bound -Obviously REEF cannot
enumerate all possible sequences for norm-frequency evalua-
tion. Furthermore as we discussed in Section II-B the z-score
measure is not anti-monotonic and cannot be used for pruning

1: for all x is a prefix in Sdo
2: Tx = ∅
3: FR = {k empty sequences}
4: for all itemsAi ∈ S do
5: for all itemsAj ∈ S, with j ≥ i do
6: R = Ai

∨
Aj (join Ai with Aj)

7: for all r ∈ R do
8: if ζ(r) > ζ(a seqs in FR) then
9: FR = FR

⋃
r\s //replaces with r

10: for all l′ = l+1 to input sequence length
do

11: if ζB(r, l′) > ζ(a seqs in FR) then
12: if Ai appears beforeAj then
13: Ti = Ti

⋃
r

14: else
15: Tj = Tj

⋃
r

16: enumerate-Frequent-Seq-Z-score(Ti)
17: Ti = ∅

Figure 2: Enumerate-Frequent-Seq-Z-score(S).
WhereS is the set of input sequences we are mining for

frequent subsequences, A set ofnorm-frequentsubsequences
is returned,FR is a list of sequences with the top′k′ z-scores

.

while ensuring that norm-frequent candidates are not lost.In
Section II-C we introduced the bound on z-score that is used
for pruning.

The pruning in REEF calculatesζB(s, l′) for all possible
lengths l′ > l of sequences than could be generated from
s. The key to this process that there is no need to actually
generate the extensionss′ that can be generated froms. It is
enough to know thesupp(s), µl andσl for all l′ > l. If for
any lengthl′ > l we find thatζB(s, l′) ∈ Z (in the list of ’k’
z-scores) we keep this sequence for candidate generation, if
not then we prune it. Using the bound for pruning reduces the
search space while ensuring closure or in other words ensuring
all frequent sequences are found. The pruning is performed
as part of the enumeration described in algorithm Figure. 2.
This pruning is the key to providing ascalablenorm-frequent
algorithm.

IV. EVALUATION

In this section, we present an evaluation of REEF on a
corpora of literature of various types. Section IV-A will show
that norm-frequentmining overcomes the short sequence bias
present infrequent mining algorithms. In Section IV-B we
will provide evidence that the sequences mined with REEF
are more meaningful than sequences mined with SPADE.

TEXT is a corpus of literature of various types. We treat
the words as sequences with letters as single item events.
We removed all formatting and punctuation from text (apart
from space characters) resulting in a long sequence of letters.
Mining this sequential data for frequent sequences produces
sequences of letters that may or may not be real words. The
reason we chose to mine text in this fashion is to show
how interesting the frequent sequences are in comparison to
norm-frequent sequences by testing how many real words are
discovered. In other words, we use real words from the text as
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ground truth against which to evaluate the algorithms. We use
three sets of textual data, one is from Lewis Carroll’s ”Alice’s
Adventures in Wonderland” [19], another is Shakespeare’s ”A
Midsummer Night’s Dream” [20] and the third is a Linux
installation guide [21]. Evaluation is performed on segments
of the corpus. Each test is performed on five segments.

User PatternDetection (UPD), is a data set composed of
real world data used for evaluation. UPD logs keyboard and
mouse activity of users on a computer as sequences, for a
detailed description see [18]. Sequences mined from the UPD
data can be used to model specific users and applied to security
systems as in [22], [23] and [18]. The experiments are run on
11 user sessions.

The input is composed of long sequences. In order to
use REEF these sequences are cut into smaller sequences
using a sliding window thus creating manageable sequences
for mining. The size of the sliding window is termedinput
sequence lengthin our results. We use a setting ofminsup=1%
and ’k’=50 throughout all experiments and a sample rate of
10% for the preprocessing sampling component. Further details
on implementation, running times etc. can be found in [24].

A. Resolving Length Bias in Frequent Sequence Mining

In this section, we establish how REEF successfully over-
comes the short sequence bias that is present in the frequent
sequence mining techniques. We performedfrequentsequence
mining with SPADE andnorm-frequentsequence mining with
REEF. We compared the lengths of the mined sequences for
both algorithms. The results are displayed in Figure. 3. Results
are shown for all three TEXT data sets and for the UPD set.
The x-axis shows the lengths of the mined sequences. The
y-axis displays the percentage of sequences found with the
corresponding length. For each possible length we counted the
percentage of mined sequences with this length.

The text results on all three text corpora show how SPADE
mines mainly short sequences, while REEF manages to mine
a broader range of sequence lengths as displayed in Figure.
3(a),(b),(c). REEF results are much closer to known relation
between word length to frequency [25] than the SPADE output.
In the next section we count how many of these sequences are
real words to illustrate superiority of REEF.

For the UPD data REEF again overcomes the short se-
quence bias and provides output sequences of all lengths in a
more normal distribution than with SPADE. This can be seen
in in Figure. 3(d). We must point out that in contrast to the
TEXT corpora, there is no known ground truth as to what the
length of frequent sequences should be in this domain, and
what their distributions are. Thus, there is no way to confirm
whether we have found the correct distribution of the frequent
sequences. However, we do show that we are not restricted to
mining short sequences alone.

B. Mining Meaningful Sequences with REEF

The text domain was chosen specifically in order to illus-
trate the quality of the output sequences. We wanted a domain
where the meaning of interesting sequences was clear. TEXT
is obviously a good domain for this purpose since words are
clearly more interesting than arbitrary sequences of letters.
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Figure 3: Removal of length bias.

We hope to find more real words when mining text than
nonsense words. Our evaluation is performed on three sets
of text as described above. Results appear in Figure. 4. We
compare results onfrequentsequence mining using SPADE
with norm-frequentsequence mining using REEF. The x-axis
shows different input sequence lengths (window sizes). For
each input sequence length we calculated the percentage of
real words that were found in the mined sequences. This
is displayed on the y-axis. For example the top 15 mined
sequences in Shakespeare using REEF:{e he,or,e and,her,n
th,though,he,s and,her,thee,this,thou,you,love,will}and using
SPADE: {rth,mh,lr,sf,tin,op,w,fa,ct,ome,ra,yi,em,tes,t l} Using
REEF yields many more meaningful words than using SPADE.

For all text sets REEF clearly outdoes SPADE by far. REEF
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Figure 4: Percentage of real words found among sequences.

manages to find substantially more words than SPADE for all
input lengths. The short input-sequence sizes of 2 does not
produce high percentages of real words for REEF or SPADE.
Using longer input sequence lengths exhibits the strength of
REEF in comparison to SPADE. For input lengths of 4,6 and 8
REEF manages to find a much higher percentage of words than
SPADE. Clearly for text REEF performs much better mining
than SPADE and the sequences mined are more meaningful.

V. CONCLUSION AND FUTURE WORK

We developed an algorithm for frequent sequence mining
named REEF that overcomes the short sequence bias present
in many mining algorithms. We did this by definingnorm-
frequencyand using it to replace support based frequency used
in algorithms such as SPADE. In order to ensure scalability
of REEF we introduced a bound for pruning in the mining
process.

Our experimental results show without doubt that the
bias is indeed eliminated. REEF succeeds in finding frequent
sequences of various lengths and is not limited to finding short
sequences. We illustrated that REEF produces a more variant
distribution of output pattern lengths. We also clearly showed
on textual data how REEF mines more real words than SPADE.
This seems to indicate that when mining sequences are not
textual, we can expect to mine meaningful sequences as well.
In the future we hope to improve the bound used for mining.
Thus providing an algorithm that is more efficient while still
producing the high quality sequences we found in REEF.
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