
A Ranking Algorithm for the Detection of Composite Concepts Based on Multiple
Taxonomies

Daniel Kimmig
Institute for Applied Computer Science

Karlsruhe Institute of Technology
Germany

daniel.kimmig@kit.edu

Steffen Scholz
Institute for Applied Computer Science

Karlsruhe Institute of Technology
Germany

steffen.scholz@kit.edu

Andreas Schmidt
Department of Computer Science and

Business Information Systems
Karlsruhe University of Applied Sciences

Germany
andreas.schmidt@hs-karlsruhe.de

Abstract—A full-text search is typically not appropriate for
concept mining. For that reason, we use taxonomies to describe
the concepts we are looking for. A typical input for our search
consists of two or more taxonomies, describing the concept we
are looking for. In this paper, we present a similarity measure
between the input taxonomies and the searched documents. The
algorithm is based on the idea of word n-tuples, where each
word in a result tuple comes from another taxonomy. Because
of the vast number of available documents, our similarity
function must be fast to allow a quick ranking of the retrieved
documents. We also provide an optimized implementation for
our algorithm, which allows a fast ranking of the searched
documents.

Keywords–ranking algorithm; taxonomy based search; simil-
larity function; performance measure

I. INTRODUCTION

In previous work [1], [2] we developed a searching
strategy for (composite) concepts in document sets. The
strategy was based on the idea of formulating concepts as
taxonomies. So for example to look for documents contain-
ing information about “energy”, we can use the taxonomy in
Figure 1. The search process is then performed by looking
for every word or phrase (and also defined synonyms - not
shown in the Figure) in the taxonomy tree in the documents.
The result for such a search is then a quantified taxonomy
tree for each document, containing the number of occur-
rences of the words, phrases and synonyms. Additionally,
the counts are cumulated toward the root of the tree. Figure 2
shows such a quantified result tree. Below each word in the
taxonomy you find the number of occurrences inside the
document. For all non-leaf nodes (renewable fuel, coal, oil,
fossil fuel, and energy) you find additionally the accumulated
number of occurrences for this sub tree, i.e., for the sub
tree renewable fuel: 3 (solar energy) + 4 (wind power) +
2(geothermal)+5(renewablefuel) = 14. A more intuitive
representation form could represent the weight of a node by
different font sizes or colors or by different line widths of the
edges in the taxonomy. The ranking of different documents
can than be performed by simply taking the weight at the
root of a taxonomy tree and an additional normalization step
(i.e., division by the number of words in a text).

energy

fossil fuel

coal

brown coal stone coal

oil

gasoline diesel

nuclear fuelrenewable fuel

solar energy wind power geothermal

Figure 1. Energy taxonomy

energy

fossil fuel

coal

brown coal stone coal

oil

gasoline diesel

nuclear fuelrenewable fuel

solar energy wind power geothermal
(3) (4) (2)

(5, sum=14)
(0)

(2) (6)

(4, sum=12)

(3) (3)

(2, sum=8)

(1, sum=21)

(7, sum=42)

Figure 2. Quantified result taxonomy

Typically, we do not only search for one concept (like
energy), but for a combination of concepts forming a more
sophisticated concept like, i.e., “used materials in the auto-
motive industry”. So instead of only looking for the concept
of material, one is required to consider the application of
different materials in automotive manufacturing. Relevant
terms and phrases in the context of vehicle manufacturing
(right side) and material (left side) are shown in Figure 3,
representing a isa and a is-part-of taxonomy.

Looking for a single concept in a document is technically
speaking a query which looks for the different words from
the given taxonomy with an adjacent construction of the
quantified result taxonomy, based on the words found in the
document. In contrary, when we look for multiple concepts
in a document, we have to search the documents for tuples,
from which one word is from taxonomy A and the other
word is from taxonomy B (in the case of two taxonomies).

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-311-7

IMMM 2013 : The Third International Conference on Advances in Information Mining and Management

material

glass metal

steel

wood

copper
aluminium

car

actuator

engine gear

chassis autobody

mudguard roof

passenger compartment

seat instrument panel

1

1

2

1

2
(2)(3) (1)

(7, sum=12)

(2)

(2, sum=4)

(1) (1)

(2)

(7, sum=21)
(7, sum=21)

(3, sum=6)

Figure 3. Relationship between taxonomies

In the case of three, four or more concepts to search, we
have to find the corresponding n-tuples. This is illustrated
in Figure 3. Here, the two taxonomies car and material are
shown and the tuples which can be found in a concrete
document are shown by connected ellipses (in red). The
value along a connection link indicates how often a tuple
combination was found in a document (i.e., the tuple metal,
chassis appears two times in the document). As in the case
of a single taxonomy these values are propagated toward
the roots of the two trees (in blue). Mind, that in contrast to
the case with one taxonomy, not the number of occurrences
of the words/short phrases is counted, but only those words
of the taxonomies which occur in a tuple. But this is only
a simplified case, because it does not consider the distance
of the words from the different taxonomies inside a found
tuple. Consider the situation in Figure 4. In both situations
the same number of tuples were found. In the first case (a),
the average distance between words in the result tuple is
much higher than in case (b). If the words from the different
taxonomies appear near to each other, the probability is
high, that the desired concept is described (i.e., an aluminum
chassis). As a consequence, we have not only to consider the
number of tuples found, but also the distance of the words
in the found tuples for the ranking function.

(a) (b)

Figure 4. Interrelationships between concepts

While the implementation of a ranking function for the
“one taxonomy” case is straightforward using an OR search
in a conventional full text search engine like Lucene [3] or
Sphinx [4] as basis and implementing the tree aggregation
part on top, this is not possible for the multi-taxonomy
case. The remainder of the paper is structured as follows: In

Section II we review related work, which has already been
done in this field. Afterwards, in Section III the concept of
our fast ranking-algorithm is explained. Section IV shows
the runtime behaviour of our algorithm, compared to the
naive approach. We finish our paper in Section V with a
scientific outlook for furher research.

II. RELATED WORK

In the work of Cummins and O’Riordan [5], different
proximity measures between pairwise terms were defined.
Some of these measures are based on the distance between
the occurences of the terms. Other measures take into
account the term frequencies (tf) [6] of the related terms.
In our work, we also use a proximity measure based on
the distance of the involved terms, but in contrast to the
previously mentioned work, we have to consider multiple
taxonomies instead of multiple terms. Tao and Zhai [7] also
mention the distance of the search terms in a document as
an important factor for proximity measure. The authors add
different metrics as complementary scoring components to
different existing retrieval models to slightly adjust the final
ranking. The results show that adding metrics, based on the
distance of the terms, improve the overall retrieval accuracy,
compared to the more coarse span-based measures. Again,
this research focuses on single terms instead of taxonomies
as in our work.

III. ALGORITHM

The main goal of our approach is to identify tuples
of words and or phrases, which originate from different
taxonomies and rank these based on the distance of each
involved word/phrase. The following Figure 5 illustrates our
concept. In the example, two taxonomies as well as an ex-
emplary text serve as input to the ranking algorithm. Words
from the taxonomies which appear within the exemplary
text are highlighted in the respective colors (blue for T1,
red for T2). Below the exemplary text, an array-like data
structure is shown, which keeps track of the position of the
word in the text as well as the origin of the taxonomy. Our
ranking algorithm will iterate over this list of hits to identify

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-311-7

IMMM 2013 : The Third International Conference on Advances in Information Mining and Management

DX = Build your own car! You can choose a

For the seats, also different materials are available.

1 2 3 4 5 6 7 8

17 18 19 20 21 22 23 24

T1: material

glass metal

steel

wood

copper
aluminium

T2: car

actuator

engine gear

chassis autobody

mudguard roof

passenger compartment

seat instrument panel

(4, 9, 11, 12, 19, 22)

=1/(11-4)

=1/(11-9)

=1/(19-11)

=1/(19-12)

=1/(22-19)

=1/7

=1/2

=1/8

=1/7

=1/3

mudguard in steel, wood or different plastic types.

9 10 11 12 13 14 15 16

Figure 5. Ranking example using tuples from two taxonomies

tuples. A tuple is complete if words from all participating
taxonomies are found. The first tuple is (car/steel) at position
four and eleven. The distance value of a tuple plays a major
role in the ranking formula. It is defined as the difference
between the highest and lowest position value of the words
of the tuple. In our case the distance value of the tuple
(car/steel) is seven. This distance value embraces the fact
that we are looking for cases in which words from all
taxonomies appear very close to each other, as this indicates
that the text is actually about a composite concept (see
Figure 4). After all tuples have been identified as well as
their distance is available, the ranking formula is calculated,
which is shown in the following equation:

rank(T1, T2, Dx) = (17 + 1
2 + 1

8 + 1
7 + 1

3) ∗
1
24 = 0.052

The resulting ranking value is the sum of the inverse of
each distance value divided by the length of the text. The
inverse of the distance value is chosen to reduce the impact
of higher distance values. Lower distance values indicate a
high probability of the occurrence of a composite concept,

which means the ranking should increase.

IV. RUNTIME BEHAVIOR

A naive approach to determine the ranking value is
to iterate over the hit list while trying to find a closed
tuple for each element. This makes it necessary to find
complementary words from all other taxonomies for every
element of the hit list, which requires three nested loops.
This can become very costly depending on the size of the
hit list as well as the amount of specified taxonomies as they
determine when a closed tuple is achieved.

One potential optimization is to avoid the nested loops
in some cases. This can be achieved by maintaining a
dictionary of subsequent words from other taxonomies while
calculating the ranking value across the entire hit list. This
dictionary is used as a lookup table to complete tuples
without searching for subsequent words for each element
of the list. This dictionary is filled initially whenever the
search for a closed tuple starts. The dictionary hereby serves
as a memory of previous iterations in order to reduce the
workload of subsequent stages of the processing.

Another idea is to stop the calculation once it is first
encountered that no more tuple can be closed. Depending
on the frequency distribution of words from each taxonomy,
this can also reduce the required processing compared to
the naive approach. However, this is very dependent on the
dataset and might not be triggered at all in some cases, e. g.,
when a word from an infrequent taxonomy appears at the
end of the hit list. We also tried to introduce a threshold
value to limit the search space, in which tuples can be found.
However, this technique actually decreased the performance
of our algorithm, as words from infrequent taxonomies
were not physically located within the area between the
current index and the threshold value. This led to a lot of
missing values in our lookup dictionary, which meant that
the algorithm started to behave similar to the naive approach.
We therefore decided to remove the search threshold and
only keep the optimization approaches described before.

In the following, we will introduce performance metrics
to illustrate the runtime behavior of our algorithm depending
on the size of the hit list in Figure 6 as well as the amount
of taxonomies under consideration in Figure 7. To run the
benchmarks, we used a machine with a single 2,66 GHz
Quad-Core Intel Xeon and 24 GB of main memory. The
implementation is done in Java based on the 1.7.0u25 Oracle
JDK in "-server" mode. We separate the benchmark in a
warm-up and run phase of each 10.000 runs to reduce
the impact of startup and JIT compilation effects. The
Figures 6, 7 display the average runtime in msec. The first
benchmark, is about the size of the hit list. A hit list is a
data structure very similar to the example given in Figure 5.
It is an ascending list of hits, which store the position of the
word and the taxonomy it belongs to.

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-311-7

IMMM 2013 : The Third International Conference on Advances in Information Mining and Management

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1000 10000 100000 1e+06

tim
e

(m
se

c.
)

size of hitlist

Optimized algorithm
Naive implementation

Figure 6. Runtime behavior depending on hit-list size

In the first benchmark, we used three taxonomies and
manually generated a synthetic hit list. The frequency of
words from the three different taxonomies is distributed by
70%, 25% and 5%. This is based on our observation from
previous work [1], [2] in which we learned that hits are
not distributed evenly among taxonomies, but rather follow
Zipf’s law. Based on this test setup, we generated hit lists of
increasing sizes and calculated the ranking value using the
naive and optimized algorithms. It can be concluded, that as
the hit list grows in size, our optimizations have a bigger
effect.

The following benchmark compares the algorithms based
on various amounts of taxonomies, which are required to
find a closed tuple. The frequencies are distributed in a
similar fashion as the previous benchmark, which means
that one taxonomy dominates the hit list, while others are
rare in order to make the synthetic hit lists comply with
our experiences from previous work. While the amount of
taxonomies vary, each hit list has a size of 10.000 items.

 0

 2

 4

 6

 8

 10

 2 3 4 5 6

tim
e

(m
se

c.
)

Number of taxonomies

Optimized algorithm
Naive implementation

Figure 7. Runtime behavior depending on considered taxonomies

In the case of a small amount of taxonomies, the cost of
maintaining the dictionary outweighs its benefits. However,
once more taxonomies are considered, the optimizations
become more effective. Although the gains do not meet
our expectations, overall it is clear that our optimizations

improve the required processing time in both test scenarios.

V. CONCLUSION AND OUTLOOK

We presented an algorithm for the ranking of documents
based on taxonomy based queries. The algorithm calculates
a similarity measure between the used taxonomies and a
document which than can be used to rank the searched
documents according to the used taxonomies. This measure
is based on the occurrences of tuples containing words
or phrases from all the different taxonomies and also the
distance of the words found in the text.

Actually, we consider all the words with the same rele-
vance. A more elaborate similarity function can give every
word a different weight, so for example based on the term
frequency and the inverse document frequency (weight:
wterm,doc = tfterm,doc ∗ idfterm) [6].

In our current implementation, the weight of every tuple
is defined by the inverse of the distance of the words found
in a tuple. Some (but not all) search results suggest that
this measure probably favors tuples with words occurring
consecutive inside a document too much. Optionally a
measure which decreases the weight only logarithmically
based on the distance could be more appropriate (i.e.,
1/log(posmax−posmin)). But, to clarify this point, we need
more input from our domain experts, when evaluating our
ranked results. Another point for the future is to integrate
our taxonomic based search inside the Lucene code base.

REFERENCES

[1] A. Schmidt, D. Kimmig, and M. Dickerhof, “Search and
graphical visualization of concepts in document collections
using taxonomies,” 46th Hawaii International Conference on
System Sciences, 2013, pp. 1429–1434.

[2] A. Schmidt, D. Kimmig, and R. Senger, Poster: “Extraction and
visualisation of semantic concepts from document-sets using
taxonomies,” First International Conference on Data Analytics
(DATA ANALYTICS), 2012.

[3] E. Hatcher and O. Gospodnetic, Lucene in Action (In Action
series). Greenwich, CT, USA: Manning Publications Co.,
2004.

[4] A. Aksyonoff, Introduction to Search with Sphinx: From
installation to relevance tuning. O’Reilly Media, 2011.

[5] R. Cummins and C. O’Riordan, “Learning in a pairwise
term-term proximity framework for information retrieval,” in
Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, 2009,
pp. 251–258.

[6] K. S. Jones, “A statistical interpretation of term specificity and
its application in retrieval,” Journal of Documentation, vol. 28,
1972, pp. 11–21.

[7] T. Tao and C. Zhai, “An exploration of proximity measures in
information retrieval,” in Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and development
in information retrieval, 2007, pp. 295–302.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-311-7

IMMM 2013 : The Third International Conference on Advances in Information Mining and Management

