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Abstract—It is generally difficult to estimate disease
prevalence or true infection probabilities because these are
not observable quantities. However, these parameters can be
estimated from available data sources that can provide partial
indications of the true incidence of infected cases or prevalence
rates. However, building a construct capable of incorporating
data from these various sources in a coherent manner is not
trivial. In addition, the prevalence of an infectious strain
must be estimated in a timely manner. For instance, in an
epidemic, this estimate must be obtained within a day or
so. We propose to use dynamic Bayesian networks from the
class of probabilistic graphical models in order to identify
probabilistic relationships between different data streams.
This is an initial step towards building a framework that can
support data integration and real-time estimation of disease
prevalence. Our preliminary results on data sources related to
H1N1 pandemic show that the proposed models generalize well.
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I. INTRODUCTION

Infectious disease outbreaks result in high human and
financial costs. Respiratory and gastrointestinal infectious
diseases, in particular, are among the most prevalent types
of infections encountered in routine public health practice.
The rapid emergence of the novel pandemic (H1N1) 2009
influenza virus in the spring of 2009 was the most recent
example with international concern. This pandemic resulted
in more than 18,000 deaths since it appeared in April
2009 [1]. Due to the continued threat of influenza and
recognizing the importance of methodological advances to
estimate the number of infected cases, building models
that provide a good level of understanding of the available
data is crucial. Several streams of data such as visits to
emergency departments, sales of over the counter drugs, calls
to health information lines, and admission to hospitals are
routinely used for monitoring outbreaks. In addition, with
the advances in research on discovering new sources of data
for monitoring of infectious diseases, more emerging data
streams become available. However, majority of surveillance
systems responsible for monitoring these data treat the
sources separately or combine them in an ad hoc fashion.

Combining the data sources can increase statistical power
of the data and alleviate biases due to confounding and
missing values, in general. Building an architecture to fuse
data from different sources in a way that can be eas-
ily used for reasoning and prediction is not always easy.
Moreover, the desired architecture must be scalable, easily
updated, and extensible. Classical approaches to time-series
prediction includes linear models such as ARIMA (auto-
regressive integrated moving average), ARMAX (autoregres-
sive moving average exogenous variables model) [2], [3]
and Nonlinear models such as neural networks, decision
trees. Problems with these approaches include the fact that
it is difficult to incorporate prior knowledge and to integrate
multi-dimensional sources into these models. We address
this problem using probabilistic graphical models which can
be used as appropriate tools for data mining.

Probabilistic graphical models are represented by a graph
with nodes and links. The main advantage of these models
for data mining and analysis is that the graph structure
is used to discover a joint probability distribution for
any number of known and unknown quantities simultane-
ously. Bayesian networks (BNs) and hidden Markov models
(HMMs) are among the most popular forms of these models.
Both models provide promising methodologies for encoding
relations among a large number of random variables based
on conditional independence property and are easy to rep-
resent real-world problems of high degree of complexity. A
generalization over these two models is known as dynamic
Bayesian networks (DBNs). DBNs generalize Bayesian net-
works to model temporal relations and generalize HMMs to
model interdependencies between observations.

Our objective is to create a DBN as a unified model
to mine different data streams for their interrelationships
and to use this model for inference and predictions on data
sources used in routine biosurveillance. Another important
issue we would like to address is the problem of timeliness.
This is specially important in the case of epidemics to have
estimates of future counts rapidly. In this paper, we show that
there is no need to wait for weeks or even a week in order
to estimate the counts of important epidemiological data in
future. To further elucidate upon the concept of applicability
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of DBNs in this context, a case study is persuaded in
this research based on available data sources which carry
information related to the infected incidence rate of H1N1
over the pandemic period. For the illustration purposes, in
this paper we focus on the data from the island of Montreal,
Quebec. Through collaboration with the department of pub-
lic health in Montreal we had access to data sources such
as counts of emergency department visits, calls to health-
information lines, vaccination, and hospitalization. There are
known qualitative relationships between infection rate or
Influenza Like Illnesses (ILI) incidences and a variety of
other data sources. For instance, vaccination would reduce
the rate of infected cases. Several quantitative relationship
between some of these data are also known as domain
knowledge. For instance, flu infection makes almost one
third of the ILI visits. While very useful, these distributed
pieces of information alone are not sufficient to establish a
comprehensive model. DBNs are capable of incorporating
such domain knowledge in their structure while they build
on the knowledge discovered by the data. The steps in the
reasoning and prediction by these models will be illustrated
through the H1N1 case study in this paper.

II. DYNAMIC BAYESIAN NETWORKS

A Bayesian network is a special type of probabilistic
graphical models that is represented by a Directed Acyclic
Graph (DAG). The DAG explicitly represents independence
relationships among random variables. A DAG contains
nodes for each random variable and a link between any
two statistically correlated nodes. The node originating the
directed link is a parent and the terminating node a child.
Each node contains a conditional probability table (CPT)
that describes the relationship between the node and its
parents. If the topology is unknown, i.e., the independence
relations among the random variables is unknown, an appro-
priate structure must be elicited from the data. Automatically
learning the structure of a Bayesian network DAG from data
is a well-researched but computationally difficult problem
[4], [5], [6], [7]. A function is used to score a network
with respect to the training data, and a search method is
used to look for the network with best score. Different
scoring metrics and search methods have been proposed in
the literature. The scoring functions used to select models are
based on the likelihood function of a model given the data
or the logarithm of this function. Since the associated search
space is exponentially large, local search-based approaches,
which iteratively consider local changes (adding, deleting,
and reversing an edge) to the network structure, are usually
used to find the best network. This type of search is very
useful when dealing with large data sets because of its
computational efficiency. One of the most popular search
strategies due to its simplicity and good performance [8],
[9], [10] in this context is greedy hill-climbing search which
starts from an empty graph and gradually improve it by

applying the highest scoring single edge addition or removal
available. Once the DAG is learned, the parameters of the
model (CPTs) need to be specified or directly learned from
data. CPTs identify the probabilities of the child being in
any specific values given the values of its parents. Parameter
learning in Bayesian networks mainly considers maximum
likelihood estimation of the model given the data and it
is performed through an expectation maximization process.
See [7], [11], [6], [12] for parameter learning methods
in Bayesian networks. The advantage of DBNs is being
able to represent uncertainties, dependencies and dynamics
exhibited in different time series. A DBN consists of a finite
number of BNs called slices, where each slice corresponds
to a particular time instant. BNs corresponding to successive
instants are connected through arcs that represent how the
state of a random variable changes over time. A DBN
is generally assumed to satisfy the Markov property. It is
generally assume that the dependencies between the slices
of a DBN and their strength do not change over time.
Therefore, a DBN can be described by at most a k-slice
network (for a k-order Markov domian). DBNs have been
applied in a variety of applications from activity recognition
and monitoring to medical diagnosis and fault or defect
detection. This is the first time that this framework is used
for mining in epidemiological data. Ideally, we should be
able to learn and discover the probabilistic relationships
between data streams through structure learning in DBNs.
However, when the system consist of many data streams and
in particular when it is partially observed, structure learning
in DBNs becomes computationally intensive. This is due to
the fact that the space of possible models is so huge that it
will be necessary to use strong prior domain knowledge to
make the task tractable.

III. DISCOVERING PROBABILISTIC RELATIONSHIPS
BETWEEN DATA STREAMS

One practical approach to discover the relationship be-
tween time series is to use statistical techniques to learn
about the temporal relationships such as lag-lead relation-
ships among the data sources first, combined that with
domain knowledge, and then use this information to con-
struct the required DBN. A popular technique in statistics
is used for discovering the relationships between time series
data or more generally on sequential data, namely: Wavelet
Coherency Analysis (WCA) [13], [14].

Wavelet analysis is a useful mathematical technique for
analyzing time-series data and periodicities. The wavelet
analysis has found many applications in studying longitudi-
nal data [15], [16], [17]. The wavelet coherence is especially
useful in highlighting the time and frequency intervals where
two time-series have a strong interaction. Such a spectral
analysis should be done in an exhaustive way to find the
best fit.
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The Coherence is defined as the cross-spectrum normal-
ized to an individual power spectrum. It is a number between
0 and 1, and gives a measurement of the cross-correlation
between two time-series and a frequency function. The
wavelet squared coherency is a measure of the intensity of
the covariance of the two series in time-frequency space
[18]. It is used to identify frequency bands within which two
time series are co-varying. The WCA can provides insight
into the temporal relationships to explore in the Bayesian
network setting. This is done via the computation of time-
frequency maps of the time-variant coherence [15].

IV. EXPERIMENTAL EVALUATION

We used and evaluated DBNs in the context of data
integration from different sources which partially indicate
the pattern of Influenza H1N1 infection. Although, conven-
tionally DBNs are based on first-order Markov processes
(i.e. they can be implemented by one-step temporal relation-
ships between two static BNs for only two consecutive time
slices), we observed that the data sources we have in hand
may potentially indicate more than one step lag between
the time series. Therefore, embedding of this particular
information into a DBN formulation requires a k-order
Markov process for representing a k-layer network, where k
indicates the maximum lag between the time-series.

The experiments reported here are based on the data
presented in the next section. We learned DBN models from
the data in a variety of settings, and compared them with
respect to their performance in predicting observable data
streams. The main purpose of this phase of the research
is to understand how well DBNs can represent the whole
processes, how many observations are required, and what
sorts of observations are most useful. In all our experiments,
we enforced the presence of the arcs in the DBN network
structure based on the suggested settings by WCA, or BN
structure learning. In performing the BN structure learning,
we followed a similar strategy to what suggested by [19].
For each data source, we selected the variables observed at
t, t+1..., t+10 days and performed hill climbing search to
find the network with the best score.

A. Data

Through collaborations with the department of public
health in Montreal, we had access to five different data
sources. These data sources include: daily counts of emer-
gency department visits (ED), daily counts of calls to health
information lines,Info-Sante, (IS), weekly counts of H1N1
vaccination, weekly counts of confirmed cases of H1N1
through lab tests, and weekly counts of admission to the
hospitals. Since the data sources have different resolutions
in time and have different significance in predicting the
number of infected cases, we are only considering the
daily time-series of ED and IS, preliminary. Emergency
department visits may well estimate incidence of influenza.

Figure 1. Three data sources of media reports, calls to InfoSante, and
emergency department visits from top to bottom.

We can combine emergency department triage data with
the telephone survey to characterize the effectiveness of
incidence estimation. We aggregated visits for ILI by age
group, sex, and day of visit. Similar to the ED data, the
IS data can be used to estimate influenza incidence. We
aggregated ILI calls by age group, sex, and day of call.

Media reports of deaths from pH1N1 were considered
important because of their pronounced effect on the uti-
lization of health services, thus media reports were filtered
for content. We also extracted the Media data from the
Healthmap [20] on a daily basis.Figure 1 shows the total
daily counts of H1N1 media reports about Montreal during
the period of April 28, 2009 to December 16, 2009 in the
top graph. The second graph illustrate the total daily calls to
Info-Sante, and the third graph shows the total daily counts
of emergency department visits during the same period. The
arrow points to the time when a 13 year old boy (hockey
player) in Ontario died on October 26. There were reports of
his funeral at around November 4 (t=203 on the time axis).
This precedes, by 1 day, the sharp spike in Info-sante calls.

B. Results

The extent of the temporal relationship between IS and
ED series data was estimated using WCA in Figure 2. Our
results in Figure 2 shows about 2-4 day lead or lag. There
is a phase change at around Nov 2, in the second wave. We
are able to see a predictable relationship during seasonal
influenza (with IS leading ED by approximately 4 days),
but during the pandemic (and especially the second wave)
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Figure 2. Wavelet coherency analysis for two data sources ED and
InfoSante.

the relationship was less predictable. We speculated that it
is possibly due to media influence.

In this research, we aimed to learn DBN models that
generalize well. The generalization ability of a model G
is interpreted as the expected predictive accuracy for the
next time series, DT+1. We evaluated the DBN model for
prediction accuracy of important observations in time series
IS and ED through cross validation techniques. The first
set of experiments involved learning DBNs of different
complexities. Once trained, we can use the model to do real-
time prediction through approximate inference in BNs.

We used a BN structure learning search over the space of
all possible graphs to find the best graph, and we discovered
two day lag for ED during the seasonal and pandemic flu
2009. However, for an extended period of time (May 1,
2008 to December 30, 2009), which includes non-pandemic,
seasonal, and pandemic flu, we found different dependency
relations between the two series by BNs structure learning.
As the WCA suggested candidate models with 4 days lag,
we also tried to train a DBN model with no-phase difference
between IS and ED in a DBN (Figure 3). The structure
learning method also found that media reports data can lead
the Info-Sante data by one day. However, this relationship
only exist during the pandemic period in our data sets (April-
December 2009). We also presented the Bayesian network
models to the experts in public health surveillance and asked
them to assess the face validity of the dependence between
the time series. The expert feedback was more in favor of
IS leading ED.

We experimented with four DBNs that correspond to the

settings suggested by BN structure learning and WCA:
• ED leads InfoSante by 2 days
• No phase difference between ED and InfoSante
• InfoSante leads ED by 2 days
• Media leads InfoSante by one day and Infosante leads

ED by 2days
Figure 3 shows the unrolled DBNs for seven time steps
(weekly). We can treat the unrolled version of a network as
a static BN and apply inference algorithms in BNs. We used
cross validation for evaluation of all models. Four fifth of the
data was used for training and One fifth of the data was used
for testing. In each model we provided the information for
today’s count on ED and IS and predicted the first to 6th
next day’s counts on both ED and IS. The second model
works actually the best when it is trained and tested on the
pandemic period (no more than 11% error in predicting ED).

It should be noted that for all models we considered cat-
egorization for all variables. This includes Media ∈ {0, 1−
3, 3− 7, > 7}, ED ∈ {0− 100, 100− 200, 200− 300, 300−
400, 400−500, > 500}, and IS ∈ {0−100, 100−200, 200−
300, 300 − 400, 400 − 500, 500 − 600, 600 − 700, > 700}.
The results may vary with changing the categorization.

Although, there exist dependencies between the media
data and the IS data, we did not see a significant changes in
the prediction results for IS. This can be potentially related
to other factors which have not been considered in our model
or solely related to the experimental setup we selected for
these evaluations including the discretization levels of the
Media and IS variables and the information provided for
reasoning at each time.

V. CONCLUSIONS AND FUTURE WORK

Monitoring epidemiological data is critical for detecting
epidemics and for guiding control measures. During the
H1N1 pandemic, the Direction de sante publique de Mon-
treal collected data from multiple sources to describe H1N1
influenza infection and associated health care utilization.
None of these data sources alone are believed to measure
the incidence of H1N1 influenza accurately. In this paper,
we proposed a probabilistic graphical model to different
heterogeneous data and discover meaningful information
these data exhibit. We showed how a DBN model can
be used for generating short-term predictions of real-time
surveillance data. The estimates are also timely. We showed
that only the order of one to two days required in order
to estimate future counts in the studied data sources These
estimates will be eventually useful in forecasting the spread
of H1N1 influenza.

We will continue our investigations for choosing a better
DBN structure. We plan to evaluate all lags (plus/minus) 4
and pick the one with the best prediction power. We did not
consider the complete DBN model to predict the number
of infected cases of H1N1 in this paper. After reaching a
good DBN model for integration of data sources, we plan to
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Figure 3. (a) No phase difference between ED and InfoSante, (b) Infosante leads ED by 2days, and (c) Media leads InfoSante by one day and Infosante
leads ED by 2days

Table I
COMPARISON OF THE PERFORMANCE OF DIFFERENT DBN MODELS IN PREDICTING INFORMATION-SANTE DATA IN THE NEXT SIX FOLLOWING DAYS.

error%
Model

Day1 Day2 Day3 Day4 Day5 Day6
ED leads 1-day 19.49 21.19 22.03 26.72 29.03 29.9
IS leads 2-days 18.68 23.37 25.64 26.22 28.81 29.06
Zero-phase difference 18.68 23.37 25.64 26.22 28.81 29.06
Media-effect 18.24 24.21 26.72 27.65 29.31 32.59

Table II
COMPARISON OF THE PERFORMANCE OF DIFFERENT DBN MODELS IN PREDICTING ED DATA IN THE NEXT SIX FOLLOWING DAYS.

error%
Model

Day1 Day2 Day3 Day4 Day5 Day6
ED leads 1-day 8.47 11.86 14.53 16.1 21.37 24.14
IS leads 2-days 8.47 11.02 12.52 13.33 13.56 18.49
Zero-phase difference 9.32 11.68 12.71 13.64 13.68 16.38

extend the DBN model of observable data sources presented
here to what is called an autoregressive hidden Markov mod-
els (AHMM) to contain the unobservable infected counts.
We can then apply learning algorithms such as Viterbi and
Baum-Welch on this hierarchical dynamic Bayesian network
just as we can on HMMs to estimate the prevalence of
H1N1.
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