
Considerations When Designing Sponge-based

Extendable-Output Functions for Lightweight and

Mobile Devices

Meaad Tori, David Paul, William Billlingsley

School of Science & Technology

University of New England

Armidale, Australia

email: mtori@myune.edu.au, David.Paul@une.edu.au, wbilling@une.edu.au

Abstract—Through the study of existing lightweight

cryptographic algorithms, we suggest a number of design

guidelines for creating new sponge-based extendable-output

functions for use in resource-constrained environments. While

several such algorithms exist, some knowledge that can be

generalized from studying them in aggregate has not

previously been presented. The developed guidelines include

consideration of the round function width, the number of

rounds, the selection of round constants, the rate, the linear

and non-linear layers, and the required security claim. The

result of these guidelines is a set of recommendations for the

design of sponge-based extendable-output functions that

should allow correctly balanced security and performance in

environments where compute power, available memory, and

battery life may all be limited. These recommendations could

be used to help design purpose-built implementations for

various wireless or mobile systems.

Keywords-lightweight cryptography; extendable-output

function; security analysis; Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT), sensor networks, Radio
Frequency Identifiers (RFID) and smart devices are
connecting the world in ways not previously imagined [1].
However, many of these devices are resource-limited, having
low computational power, small amounts of memory and
limited power supply, often relying on batteries. Because of
this limitation, traditional standardized cryptographic
algorithms, such as the Advanced Encryption Standard
(AES) [2] and Secure Hash Algorithms SHA-2 [3] and SHA-
3 [4], which can have high computational and memory
requirements, are not appropriate for use in these lightweight
devices.

The combination of having these resource-constrained
devices interacting directly with the real world and not being
able to protect them using traditional algorithms means new
approaches are needed to ensure their security and privacy
[5]. Lightweight cryptography aims to develop secure
cryptographic primitives that better fit the environment of
resource-constrained devices [5]. The US National Institute
of Standards and Technology (NIST) is currently holding a
competition to standardize lightweight cryptographic
algorithms because the performance of existing standards is

not acceptable [6] but the competition does not cover all
cryptographic primitives. In particular, the competition does
not include an extendable-output function (XOF), and even a
cryptographic hash function is optional.

A cryptographic hash function is an algorithm that maps
a message of any length to a fixed-size message digest. It is a
one-way function that is difficult and impractical to invert,
and is important for many forms of authentication, including
digital signatures [7]. An XOF has similar functionality to a
cryptographic hash function, but its output can be extended
to any desired length, rather than a single fixed size. This can
prove very useful in lightweight environments, allowing
system designers to choose the length of the output required
for their individual circumstances to better balance security
and performance [8].

While the inclusion of a cryptographic hash function is
optional in the current NIST lightweight cryptography
competition, 12 of the 32 second-round candidates included
such an algorithm. With the exception of SATURNIN [8],
each of these candidates chose to use a sponge construction
(or derivative) [9], which allows for XOFs. Of the ten
finalists in the NIST competition, the Ascon [10], Photon-
Beetle [11], TinyJAMBU [12] and Xoodyak [13] algorithms
are the only ones that include hashing, and each of these are
based on a sponge construction.

In this paper, we examine three representative candidates
from the second round of the NIST lightweight cryptography
competition and, combined with general insight from the
other candidates and related research, present a new set of
design aspects that must be taken into account to design a
secure lightweight sponge-based XOF. Our analysis includes
two of the finalists (Ascon and Xoodyak) and one algorithm
that did not make it to the final round of the NIST
competition (Gimli [14]). The inclusion of Gimli in this
analysis is because some of the reasons it did not make it to
the final round are pertinent to this discussion. This
aggregate study leads to general guidelines that could be
used to develop custom-built XOFs for lightweight
environments, including wireless and mobile systems.

The remainder of this paper is organized as follows.
Section II recounts literature-supported background
information required to understand the analysis of the
existing lightweight sponge-based XOFs presented in

7Copyright (c) IARIA, 2022. ISBN: 978-1-61208-973-7

ICWMC 2022 : The Eighteenth International Conference on Wireless and Mobile Communications

Section III. Section IV then generalizes the outcomes of the
analysis to present a number of design guidelines that should
be considered when creating such an XOF. Finally, Section
V concludes the paper and suggests future directions for this
research.

II. BACKGROUND INFORMATION

This section briefly outlines, in Section Ⅱ-A, the
requirements of cryptographic hash functions and, in Section
Ⅱ-B, why it is often useful to have a more general XOF
instead of a fixed-sized hash. Section Ⅱ-C then gives an
overview of the general sponge construction, which is
required to create sponge-based XOFs. This information will
be important when we examine three sponge-based XOFs in
Section Ⅲ.

A. Cryptographic Hash Function

A hash function converts an arbitrarily-sized message
into a message digest of some fixed length, say d. In order to
be a cryptographic hash function, a hash function must also
have the following properties [4]:

• Pre-image resistance: Given a particular message
digest, it should be difficult to find a message that
maps to that value.

• Second pre-image resistance: Given a particular
message, it should be difficult to find a different
message that has the same message digest.

• Collision resistance: It should be difficult to find any
two different messages that have the same message
digest.

Generic attacks on hash functions, such as brute force
(which repeatedly tries different inputs until the desired
message digest is found), depend only on the value of d, so d
must be large enough to ensure that such an attack is
computationally inefficient. In general, attacks on hash
functions attempt to break (some of) the above properties of
cryptographic hash functions without resorting to brute force
(i.e., the attack should take fewer than 2d steps).

B. Applications of Extandable-Output Functions

XOFs generalize hash functions by allowing an arbitrary
output digest size. The computational complexity of an XOF
is a combination of the computational complexity of a hash
and a stream cipher [15]. Thus, the security of XOFs relies
on more than just the length of the produced digest, so
different security strengths can be selected. This is useful in
areas where available key material might vary dramatically
from one application to another, with no correlation to the
required security strength [4].

For example, the ED448 digital signature standard [7]
adopts the XOF SHAKE-256 [4] as its internal hash
function. This significantly increases performance compared
to using SHA3-512, without reducing the 256 bits of security
required by the standard [7].

C. The Sponge Construction

Each of the finalists in the NIST lightweight
cryptography competition that support a cryptographic hash
function use a sponge construction [16], which can generally

be extended to an XOF. A sponge function, as illustrated in
Figure 1, is built from three components:

• A state memory, S, consisting of r + c bits, where r
is the rate of the sponge, and c its capacity.

• A function ƒ: {0,1}r+c → {0,1}r+c that transforms the
state memory. It typically consists of a non-linear, a
mixing, and a linear layer.

• A padding function Pad that appends bits to any
input string to ensure its length is a multiple of r.

The state is initialized to zero and then, for each r-bit
block of the padded input string, the state is updated by
replacing the first r bits of the state with the first r bits of the
state bitwise XORed with the r-bit input block. The state is
then further updated by passing it through the function ƒ,
which is often a pseudorandom permutation over all possible
state values. This “absorbs” all blocks of the padded input
into the sponge construction's state.

The output of the sponge construction is then “squeezed
out” by initially outputting the first r-bits of the state and
then, repeatedly until enough output is generated, replacing
the state S by ƒ(S) and outputting the first r bits of the result
(truncating if necessary).

Assuming ƒ is suitably difficult to invert, the following
security results can be derived for a sponge construction that
creates a message digest of length d [17] [18] [36]:

If d ≥ c and c ˃ 2r then:

• The construction has pre-image security of 2d-r.

• The construction has second pre-image and collision
security of 2c/2.

• The best pre-image attack would require a
complexity of 2d-r + 2c/2.

Otherwise:

• The construction has second pre-image security of
2d.

• The construction has collision security of 2c/2.

• The best pre-image attack would require a
complexity of {min 2d, {max 2d-r, 2c/2}}.

The security claims of a sponge construction are typically
flattened to rely purely on the capacity c, allowing the
required security to be defined independently of the length of
the output d [16]. Further, the sponge construction is often
used with duplexing to allow the absorb and squeeze
operations to alternate [19].

Figure 1. Hashing mode in Sponge Construction.

8Copyright (c) IARIA, 2022. ISBN: 978-1-61208-973-7

ICWMC 2022 : The Eighteenth International Conference on Wireless and Mobile Communications

TABLE I. COMPARSION OF ASCON, GIMLI AND XOODYAK XOFS

Algorithm Number

of

Rounds

State Size

(bits)

Rate (bits) Capacity

(bits)

Ascon 12 320 64 256

Gimli 24 384 128 256

Xoodyak 12 384 130 254

III. EXISTING SPONGE-BASED XOFS

This section examines Ascon-XOF (in Section Ⅲ-A),
Gimli-XOF (in Section Ⅲ-B) and Xoodyak-XOF (in Section
Ⅲ-C) in order to understand and generalize design decisions
for creating sponge-based XOFs. A comparison of the three
algorithms is presented in Table I. Lessons learned from
these algorithms will be presented as a set of design
considerations in Section Ⅳ.

A. Ascon-XOF

Ascon-XOF [10] uses a 12-round permutation based on a
sponge construction with a state size of 320 bits, consisting
of five 64-bit words. It uses a 64-bit rate and 256-bit

capacity. The substitution layer is identical to the Keccak
mapping [20] and an adaptation of the ∑ function of SHA-2
[21] is used to provide diffusion.

Ascon-XOF has received significant third-party analysis
(e.g., [22]). A summary is provided in Table IⅠ. The pre-
image attacks target the low algebraic degree of the reduced
round version of Ascon-XOF; the search for pre-images can
be speed up for low degree functions. Ascon-XOF has fast
diffusion because it applies its linear layer to every five
words. It also has a strong word structure with a good choice
of round constants, which makes it challenging to apply a
cube attack [23] effectively. However, since each output bit
depends on only three input bits, of which two are non-
linear, consecutive dependent bits can lead to the derivation
of linear equations that can be solved to break the system.
Even the original Ascon specification [10] admits that the
Ascon permutation is not ideal in terms of differential and
linear properties [22] [24]. However, it has been shown that
Ascon-XOF has a good security margin against collision
attacks [22]. Currently, even with the use of all 320 bits of
the state in a semi-free-start collision, only four out of
Ascon-XOF's twelve rounds can effectively be broken.

B. Gimli-XOF

 Gimli-XOF [14] uses a 24 round permutation based
on sponge construction with a state size of 384 bits,
represented as a 3×4 matrix of 32-bit words. It uses a 128-bit
rate and 256-bit capacity. The non-linear layer operates on
the column level. The linear layer operates on the row level
and applies one of two swap operations, a small swap, or a
big swap.

Gimli has a slow diffusion compared to Ascon because
its small and big swap operations only apply to the first row,
and not in every round. This makes it easier to analyze
multiple rounds of Gimli-XOF. Table III demonstrates
Gimli's lower diffusion compared to Ascon.

TABLE II. SUMMARY OF ATTACKS ON ASCON-XOF

Attack Method Round Time

Complexity

Ref

Pre-image cube 2 239 [22]

Pre-image Algebraic 6 263.3 [22]

SFS collision Differential 4 Practical [22]

Collision Differential 2 Practical-215 [25]

TABLE III. UPPER BOUND FOR THE ALGEBRAIC DEGREE OF

DIFFUSION AFTER DIFFERENT NUMBERS OF ROUNDS FOR ASCON AND

GIMLI

Round 1 2 3 4 5 6 7 8 9

Ascon 2 4 8 16 32 64 128 256 298

Gimli 2 4 8 16 29 52 95 163 266

A divide-and-conquer technique, which applies an

exhaustive search to a divided message space, allows
theoretical pre-image attacks on up to five of the nine rounds
of Gimli-XOF [26]. By exploiting Gimli's weak diffusion,
equations that represent the bit dependencies in Gimli-XOF's
rate can be constructed and solved. This did require fixing
the block size to 128 bits, and ignoring the padding rule, but
does give a practical attack on a reduced-round version of
Gimli-XOF.

The slow diffusion of Gimli's state means that the swap
operations only affect 256 of the 384 bits of Gimli's state,
and this does not even occur each round. This can be
exploited to construct equations that can be practically
solved with a SAT solver [27].

C. Xoodyak-XOF

Xoodyak-XOF [13] uses a 12-round permutation based
on a sponge construction with a state size of 384 bits,
consisting of three planes of 128 bits. It uses a 130-bit rate
and 254-bit capacity (reduced by two for internal reasons
[13]). It is based on the Xoodoo Permutation [28] and uses a
column parity mixer [29]; this provides good diffusion and is
suitable for modes that do not need inverses, such as sponge
constructions. The non-linear layer uses a shift-invariant
mapping based on the parity of three bits and implements
bitwise boolean operations. The narrowing of the non-linear
layer from five bits to three bits increases Xoodyak's
resistance to cube attacks [13].

A deep-learning pre-image attack has been proposed on
Xoodyak-Hash [30], though only with a fixed message size
of 32 bits and with adjusted squeeze rates, hash lengths, or
round numbers. The first model increases the squeezing rate
to 384 bits, rather than the original 128 bits, representing the
entire state. The second model increases the hash length to
384 bits, rather than the original 256. The third model is
identical to Xoodyak-Hash, but they reduce the number of
rounds to just one. Xoodyak-Hash is proven to be strong
enough to resist these attacks, as they only have any success
on at most one round [30], though it has been demonstrated
that reducing the capacity of Xoodyak down to 128 bits
helps make pre-image attacks over a small number of rounds
possible [30].

9Copyright (c) IARIA, 2022. ISBN: 978-1-61208-973-7

ICWMC 2022 : The Eighteenth International Conference on Wireless and Mobile Communications

IV. DESIGN CONSIDERATION FOR LIGHTWEIGHT SPONGE-

BASED XOFS

The main goal when designing a lightweight XOF should
be to provide the best trade-off between security and
performance in both hardware and software. While the
sponge construction gives a general framework that can
work well in a resource-constrained environment, choices
related to a particular implementation can greatly affect the
overall result. In this section, we discuss the main choices
that need to be made, including recommendations and
considerations, when developing a sponge-based XOF.

A. Round Function Width

In general, a wider round function (i.e., one that maps
more bits) offers improved security over a narrow one,
though typically has performance and cost implications [29].
Wider round functions may require more circuitry or more
complex software implementations which may not be
appropriate in lightweight environments. Implementing
widths that are a multiple of 32 or 64 bits, such as Ascon
(320-bit state), Gimli (384-bit state) and Xoodyak (384-bit
state), can allow vectorization on some platforms to allow
parallel computation on different blocks of the state. In
contrast Keccack [15], which SHA-3 is based on, uses
permutations that are a multiple of 25 bits, which can
severely impact performance on lightweight devices since
vectorization cannot be used [14].

B. Number Of Rounds

A round function is typically used multiple times per
round, potentially with some different parameters (e.g.,
round constants). A high number of rounds reduces
performance but can improve security [31]. For lightweight
algorithms it is best to select the minimum number of rounds
for which there are no shortcut attacks that have a higher
success probability than generic attacks such as brute force.
Linear, differential and truncated differential [32] attacks
exploit constructed propagation in n rounds, then attack later
rounds of the primitive. If an attack is successful on n
rounds, the designer should double the number of rounds to
increase security resistance [33].

C. Selection Of Round Constants

Good rounds constants eliminate symmetries in iterative
primitives [33]. Round constants should be different for each
round, independent of the non-linear layer and defined by a
specific rule to avoid slide, rotational, self-similarity, and
similar attacks [34].

To see how important round constants are, consider
Gimli. Gimli's use of round constants only each four rounds
and having them affect just one 32-bit word of the state, led
to the construction of a distinguisher for the full Gimli
permutation [27]. Instead, some constant rotation should be
applied each round to help provide fast diffusion [13].

Round constants also have an implication for
performance. For example, Ascon's choice of round
constants allows pipelining, while still ensuring that
differential attacks are impossible [10].

D. Rate

In general, a low rate is less susceptible to pre-image and
differential cryptanalysis attacks [31]. In Ascon-XOF, a rate
of 64 bits is used. Increasing the rate would decrease the
capacity, reducing robustness of the primitive [10] and
increasing the likelihood of rebound attacks [36]. Recent
collision attacks on Ascon [22] [25], Gimli [26] [27] and
Xoodyak [30] are constrained to at most six round reduced
versions of these algorithms, primarily because each uses a
small rate.

E. Non-linear Layer

The non-linear layer is essentially an s-box, which is a
vectorial Boolean function that performs substitution. It is
mainly responsible for creating confusion (measured using
Shannon's entropy) in the cryptographic primitive [37].
There is a trade-off between the size of s-boxes and the
security they provide; a small differential probability, high
algebraic degree and significant non-linearity reduce the
number of rounds needed to secure the primitive, but often
require larger, less efficient sizes [38]. In resource-
constrained devices, designers are left with the choice of
using smaller optimal s-boxes (perhaps combined to give a
virtual larger s-box) or using a larger sub-optimal s-box that
gives moderate performance [38]. In lightweight
cryptographic primitives, smaller 4×4 s-boxes are the most
commonly used [38].

F. Linear Layer

The design of a linear layer specifies how the non-linear
and mixing layers are combined and affects propagation of
the function [39]. For lightweight cryptography, a bit-
oriented design should be used to improve efficiency.
Further, the linear layer should be carefully considered to
ease the derivation of algebraic, diffusion and correlation
propagation [29]. This is achievable by ensuring weak
alignment of the primitive [40], as this reduces susceptibility
to truncated differential, saturation and trail clustering efforts
related to differential or linear cryptanalysis. Ascon-XOF
achieves this using a similar approach to SHA-2, using
variant rotation constants for each word without decreasing
performance [10]. On the other hand, Xoodyak uses column
parity mixers, similar to Keccak [29], which are lightweight
and offer weak alignment [39]. Further, using an odd number
of rows makes a column parity mixer invertible, which gives
immediate full diffusion in the backward direction [29].

G. Security Cliam

For sponge-based XOFs, the security claim is typically
flattened to only rely on the capacity c, though the length of
the digest used must be long enough to make generic attacks
implausible (i.e., at least 128-bits). It is recommended to use
a 255-bit capacity to give a strength of 128 bits [41].

V. CONCLUSION AND FUTURE WORK

This paper examined three sponge-based XOF
implementations (Ascon-XOF, Gimli-XOF and Xoodyak-
XOF) to inform some design considerations that need to be
taken into account when designing a secure lightweight

10Copyright (c) IARIA, 2022. ISBN: 978-1-61208-973-7

ICWMC 2022 : The Eighteenth International Conference on Wireless and Mobile Communications

XOF. While exact considerations depend on the environment
in which the XOF will operate, the following general
guidelines were presented:

• Wider round functions offer improved security,
though often at the expense of performance.

• Many platforms that support vectorization perform
best when the round function width is a multiple of
32 or 64 bits.

• The number of rounds used should be minimized to
improve performance while giving an adequate level
of security; if there is a known attack on n rounds,
doubling the number of rounds should give adequate
security in many cases.

• Round constants should be different for each round
and should eliminate symmetries in the primitive.

• Low absorbing and squeezing rates are preferable;
64 bits seems to be a good rate size.

• The non-linear layer should consist of smaller (e.g.,
4 × 4) optimal s-boxes or larger sub-optimal s-boxes
to balance performance and security.

• A bit-oriented design should be used for the linear
layer and should ensure weak alignment of the
primitive. The use of column parity mixers is
recommended.

• A capacity of at least 255 bits and a digest length of
at least 128 bits should be used to provide a security
strength of 128 bits.

These guidelines help ensure the creation of a performant
and secure lightweight sponge-based XOF, suitable for use
in low-resource environments such as mobile systems.
Future work will consider automatic security analysis of
XOFs created using these guidelines with the goal of using
evolutionary computation to design XOFs that are fit for
purpose in a wide range of resource-constrained
environments.

REFERENCES

[1] K. McKay, L. Bassham, M. Sönmez Turan, and N. Mouha,
“Report on lightweight cryptography,” tech. rep., National
Institute of Standards and Technology, 2016.

[2] J. Daemen and V. Rijmen, “AES and the wide trail design
strategy,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 2332, no. April 2002, pp. 108–
109, 2002.

[3] W. Penard and T. van Werkhoven, “On the secure hash
algorithm family,” Cryptography in context, pp. 1–18, 2008.

[4] M. J. Dworkin et al., “SHA-3 standard: Permutation-based
hash and extendable-output functions,” tech. rep., National
Institute of Standards and Technology, 2015.

[5] S. P. Jadhav, “Towards light weight cryptography schemes for
resource constraint devices in IoT,” Journal of Mobile
Multimedia, pp. 91–110, 2019.

[6] National Institute of Standards and Technology, “Lightweight
Cryptography,” tech. rep., National Institute of Standards and
Technology, 2022.

[7] National Institute of Standards and Technology, “Digital
Signature Standard (DSS),” tech. rep., National Institute of
Standards and Technology, 2013.

[8] A. Canteaut et al., “Saturnin: A suite of lightweight
symmetric algorithms for post-quantum security,” IACR

Transactions on Symmetric Cryptology, vol. 2020, Special
Issue 1, pp. 160–207, 2020.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Cryptographic sponges,” tech. rep., Team Keccak, 2011.

[10] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer,
“Ascon v1.2,” Submission to the CAESAR Competition, 2016.

[11] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda, “Beetle
family of lightweight and secure authenticated encryption
ciphers,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 2, pp. 218–241, 2018

[12] H. Wu and T. Huang, “TinyJAMBU: A Family of Lightweight
Authenticated Encryption Algorithms,” Submission to
Lightweight Cryptography Competition , March, 2021.

[13] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V.
Keer, “Xoodyak, a lightweight cryptographic scheme,” in
IACR Transactions on Symmetric Cryptology, vol. S1, pp.
60–87, 2020.

[14] D. J. Bernstein et al., “Gimli: a cross-platform permutation,”
in International Conference on Cryptographic Hardware and
Embedded Systems, pp. 299–320, Springer, 2017.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Keccak sponge function family main document,” Submission
to NIST (Round 2), vol. 3, no. 30, pp. 320–337, 2009.

[16] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Sponge functions,” in ECRYPT hash workshop, vol. 9,
2007.

[17] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “On the
indifferentiability of the sponge construction,” in Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 181– 197, Springer, 2008.

[18] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON family
of lightweight hash functions,” in Annual Cryptology
Conference, pp. 222– 239, Springer, 2011.

[19] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
“Duplexing the sponge: single-pass authenticated encryption
and other applications,” in International Workshop on
Selected Areas in Cryptography, pp. 320– 337, Springer,
2011.

[20] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
“Keccak,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 313–314,
Springer, 2013.

[21] National Institute of Standards and Technology, “Secure Hash
Standard (SHS) Publication,” tech. rep. March 2012, National
Institute of Standards and Technology, 2012.

[22] C. Dobraunig and F. Mendel, “Preliminary Analysis of Ascon-
Xof and Ascon-Hash,” Tech. Rep. 2019.

[23] I. Dinur and A. Shamir, “Cube attacks on tweakable black box
polynomials,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp.
278–299, Springer, 2009.

[24] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer,
“Cryptanalysis of Ascon,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 9048, pp. 371–
387, 2015.

[25] R. Zong, X. Dong, and X. Wang, “Collision Attacks on
Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash,”
Cryptology ePrint Archive, 2019.

[26] F. Liu, T. Isobe, and W. Meier, “Exploiting Weak Diffusion of
Gimli: Improved Distinguishers and Preimage Attacks,” IACR
Transactions on Symmetric Cryptology, pp. 185–216, 2021.

[27] A. Flórez Gutiérrez, G. Leurent, M. Naya-Plasencia, L.
Perrin, A. Schrottenloher, and F. Sibleyras, “New results on
Gimli: full-permutation distinguishers and improved
collisions,” in International Conference on the Theory and

11Copyright (c) IARIA, 2022. ISBN: 978-1-61208-973-7

ICWMC 2022 : The Eighteenth International Conference on Wireless and Mobile Communications

Application of Cryptology and Information Security, pp. 33–
63, Springer, 2020

[28] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van
Keer, “Xoodoo Cookbook,” Cryptology ePrint Archive,
2018.

[29] K. Stoffelen and J. Daemen, “Column Parity Mixers,” IACR
Transactions on Symmetric Cryptology, vol. 1, pp. 126–159,
2018.

[30] G. Liu, J. Lu, H. Li, P. Tang, and W. Qiu, “Preimage Attacks
Against Lightweight Scheme Xoodyak Based on Deep
Learning,” in Future of Information and Communication
Conference, pp. 637–648, Springer, 2021.

[31] L. Song, G. Liao, and J. Guo, “Non-full sbox linearization:
applications to collision attacks on round-reduced Keccak,” in
Annual International Cryptology Conference, pp. 428–451,
Springer, 2017.

[32] L. R. Kundsen, “Truncate and higher order differentials ,” in
International Workshop on Fast Software Encryption, pp.
196-211, Springer, 1994.

[33] J. Daemen and V. Rijmen, “The design of Rijindal, vol 2.2
Springer, 2002.

[34] C. Beierle, A. Canteaut, G. Leander, and Y. Rotella, “Proving
resistance against invariant attacks: How to choose the round
constants,” in Annual International Cryptology Conference,
pp.647-678, Springer, 2017.

[35] M. Eichlseder, “Differential Cryptanalysis of Symmetric
Primitives,” Ausgezeichnete Informatikdissertationen, 2019.

[36] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici,
and I. Verbauwhede, “SPONGENT: the design space of
lightweight cryptographic hashing,” IEEE Transactions on
Computers, vol. 62, no. 10, pp. 2041– 2053, 2012.

[37] I. Haitner, T. Holenstein, O. Reingold, S. Vadhan, and H.
Wee, “Universal one-way hash functions via inaccessible
entropy,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 616–637,
Springer, 2010.

[38] S. Picek, L. Mariot, B. Yang, D. Jakobovic, and N. Mentens,
“Design of S-boxes defined with cellular automata rules,”
ACM International Conference on Computing Frontiers 2017,
CF 2017, pp. 409–414, 2017.

[39] N. Bordes, J. Daemen, D. Kuijsters, and G. V. Assche,
“Thinking Outside the Superbox,” in Annual International
Cryptology Conference, pp. 337–367, Springer, 2021.

[40] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche , “On
alignment in Keccak,” ECRYPT Ⅱ Hash Workshop, pp. 1-18,
2011.

[41] G. Bertoni et al., “Kangaroo twelve: Fast Hashing Based on
Keccak-p,” in International Conference on Applied
Cryptography and Network Security, pp. 400-418, Springer,
2018.

12Copyright (c) IARIA, 2022. ISBN: 978-1-61208-973-7

ICWMC 2022 : The Eighteenth International Conference on Wireless and Mobile Communications

