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Abstract—Through the study of existing lightweight 

cryptographic algorithms, we suggest a number of design 

guidelines for creating new sponge-based extendable-output 

functions for use in resource-constrained environments. While 

several such algorithms exist, some knowledge that can be 

generalized from studying them in aggregate has not 

previously been presented. The developed guidelines include 

consideration of the round function width, the number of 

rounds, the selection of round constants, the rate, the linear 

and non-linear layers, and the required security claim. The 

result of these guidelines is a set of recommendations for the 

design of sponge-based extendable-output functions that 

should allow correctly balanced security and performance in 

environments where compute power, available memory, and 

battery life may all be limited. These recommendations could 

be used to help design purpose-built implementations for 

various wireless or mobile systems. 

Keywords-lightweight cryptography; extendable-output 

function; security analysis; Internet of Things. 

I.  INTRODUCTION  

The Internet of Things (IoT), sensor networks, Radio 
Frequency Identifiers (RFID) and smart devices are 
connecting the world in ways not previously imagined [1]. 
However, many of these devices are resource-limited, having 
low computational power, small amounts of memory and 
limited power supply, often relying on batteries. Because of 
this limitation, traditional standardized cryptographic 
algorithms, such as the Advanced Encryption Standard 
(AES) [2] and Secure Hash Algorithms SHA-2 [3] and SHA-
3 [4], which can have high computational and memory 
requirements, are not appropriate for use in these lightweight 
devices.  

The combination of having these resource-constrained 
devices interacting directly with the real world and not being 
able to protect them using traditional algorithms means new 
approaches are needed to ensure their security and privacy 
[5]. Lightweight cryptography aims to develop secure 
cryptographic primitives that better fit the environment of 
resource-constrained devices [5]. The US National Institute 
of Standards and Technology (NIST) is currently holding a 
competition to standardize lightweight cryptographic 
algorithms because the performance of existing standards is 

not acceptable [6] but the competition does not cover all 
cryptographic primitives. In particular, the competition does 
not include an extendable-output function (XOF), and even a 
cryptographic hash function is optional. 

A cryptographic hash function is an algorithm that maps 
a message of any length to a fixed-size message digest. It is a 
one-way function that is difficult and impractical to invert, 
and is important for many forms of authentication, including 
digital signatures [7]. An XOF has similar functionality to a 
cryptographic hash function, but its output can be extended 
to any desired length, rather than a single fixed size. This can 
prove very useful in lightweight environments, allowing 
system designers to choose the length of the output required 
for their individual circumstances to better balance security 
and performance [8]. 

While the inclusion of a cryptographic hash function is 
optional in the current NIST lightweight cryptography 
competition, 12 of the 32 second-round candidates included 
such an algorithm. With the exception of SATURNIN [8], 
each of these candidates chose to use a sponge construction 
(or derivative) [9], which allows for XOFs. Of the ten 
finalists in the NIST competition, the Ascon [10], Photon-
Beetle [11], TinyJAMBU [12] and Xoodyak [13] algorithms 
are the only ones that include hashing, and each of these are 
based on a sponge construction. 

In this paper, we examine three representative candidates 
from the second round of the NIST lightweight cryptography 
competition and, combined with general insight from the 
other candidates and related research, present a new set of 
design aspects that must be taken into account to design a 
secure lightweight sponge-based XOF. Our analysis includes 
two of the finalists (Ascon and Xoodyak) and one algorithm 
that did not make it to the final round of the NIST 
competition (Gimli [14]). The inclusion of Gimli in this 
analysis is because some of the reasons it did not make it to 
the final round are pertinent to this discussion. This 
aggregate study leads to general guidelines that could be 
used to develop custom-built XOFs for lightweight 
environments, including wireless and mobile systems. 

The remainder of this paper is organized as follows. 
Section II recounts literature-supported background 
information required to understand the analysis of the 
existing lightweight sponge-based XOFs presented in 
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Section III. Section IV then generalizes the outcomes of the 
analysis to present a number of design guidelines that should 
be considered when creating such an XOF. Finally, Section 
V concludes the paper and suggests future directions for this 
research. 

II. BACKGROUND INFORMATION 

This section briefly outlines, in Section Ⅱ-A, the 
requirements of cryptographic hash functions and, in Section 
Ⅱ-B, why it is often useful to have a more general XOF 
instead of a fixed-sized hash. Section Ⅱ-C then gives an 
overview of the general sponge construction, which is 
required to create sponge-based XOFs. This information will 
be important when we examine three sponge-based XOFs in 
Section Ⅲ.  

A. Cryptographic Hash Function  

A hash function converts an arbitrarily-sized message 
into a message digest of some fixed length, say d. In order to 
be a cryptographic hash function, a hash function must also 
have the following properties [4]: 

• Pre-image resistance: Given a particular message 
digest, it should be difficult to find a message that 
maps to that value.  

• Second pre-image resistance: Given a particular 
message, it should be difficult to find a different 
message that has the same message digest. 

• Collision resistance: It should be difficult to find any 
two different messages that have the same message 
digest. 

Generic attacks on hash functions, such as brute force 
(which repeatedly tries different inputs until the desired 
message digest is found), depend only on the value of d, so d 
must be large enough to ensure that such an attack is 
computationally inefficient. In general, attacks on hash 
functions attempt to break (some of) the above properties of 
cryptographic hash functions without resorting to brute force 
(i.e., the attack should take fewer than 2d steps). 

B. Applications of Extandable-Output Functions 

XOFs generalize hash functions by allowing an arbitrary 
output digest size. The computational complexity of an XOF 
is a combination of the computational complexity of a hash 
and a stream cipher [15]. Thus, the security of XOFs relies 
on more than just the length of the produced digest, so 
different security strengths can be selected. This is useful in 
areas where available key material might vary dramatically 
from one application to another, with no correlation to the 
required security strength [4].  

For example, the ED448 digital signature standard [7] 
adopts the XOF SHAKE-256 [4] as its internal hash 
function. This significantly increases performance compared 
to using SHA3-512, without reducing the 256 bits of security 
required by the standard [7]. 

C. The Sponge Construction 

Each of the finalists in the NIST lightweight 
cryptography competition that support a cryptographic hash 
function use a sponge construction [16], which can generally 

be extended to an XOF. A sponge function, as illustrated in 
Figure 1, is built from three components: 

• A state memory, S, consisting of r + c bits, where r 
is the rate of the sponge, and c its capacity. 

• A function ƒ: {0,1}r+c → {0,1}r+c that transforms the 
state memory. It typically consists of a non-linear, a 
mixing, and a linear layer. 

• A padding function Pad that appends bits to any 
input string to ensure its length is a multiple of r. 

The state is initialized to zero and then, for each r-bit 
block of the padded input string, the state is updated by 
replacing the first r bits of the state with the first r bits of the 
state bitwise XORed with the r-bit input block. The state is 
then further updated by passing it through the function ƒ, 
which is often a pseudorandom permutation over all possible 
state values. This “absorbs” all blocks of the padded input 
into the sponge construction's state. 

The output of the sponge construction is then “squeezed 
out” by initially outputting the first r-bits of the state and 
then, repeatedly until enough output is generated, replacing 
the state S by ƒ(S) and outputting the first r bits of the result 
(truncating if necessary). 

Assuming ƒ is suitably difficult to invert, the following 
security results can be derived for a sponge construction that 
creates a message digest of length d [17] [18] [36]: 

If d ≥ c and c ˃ 2r   then: 

• The construction has pre-image security of 2d-r. 

• The construction has second pre-image and collision 
security of 2c/2. 

• The best pre-image attack would require a 
complexity of 2d-r + 2c/2. 

Otherwise: 

• The construction has second pre-image security of 
2d. 

• The construction has collision security of 2c/2. 

• The best pre-image attack would require a 
complexity of {min 2d, {max 2d-r, 2c/2}}. 

The security claims of a sponge construction are typically 
flattened to rely purely on the capacity c, allowing the 
required security to be defined independently of the length of 
the output d [16]. Further, the sponge construction is often 
used with duplexing to allow the absorb and squeeze 
operations to alternate [19]. 

Figure 1.  Hashing mode in Sponge Construction. 
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TABLE I.  COMPARSION OF ASCON, GIMLI AND XOODYAK XOFS 

Algorithm Number 

of 

Rounds 

State Size 

(bits) 

Rate (bits) Capacity 

(bits) 

Ascon 12 320 64 256 

Gimli 24 384 128 256 

Xoodyak 12 384 130 254 

III. EXISTING SPONGE-BASED XOFS 

This section examines Ascon-XOF (in Section Ⅲ-A), 
Gimli-XOF (in Section Ⅲ-B) and Xoodyak-XOF (in Section 
Ⅲ-C) in order to understand and generalize design decisions 
for creating sponge-based XOFs. A comparison of the three 
algorithms is presented in Table I. Lessons learned from 
these algorithms will be presented as a set of design 
considerations in Section Ⅳ. 

A. Ascon-XOF 

Ascon-XOF [10] uses a 12-round permutation based on a 
sponge construction with a state size of 320 bits, consisting 
of five 64-bit words. It uses a 64-bit rate and 256-bit 

capacity. The substitution layer is identical to the Keccak  
mapping [20] and an adaptation of the ∑ function of SHA-2 
[21] is used to provide diffusion. 

Ascon-XOF has received significant third-party analysis 
(e.g., [22]). A summary is provided in Table IⅠ. The pre-
image attacks target the low algebraic degree of the reduced 
round version of Ascon-XOF; the search for pre-images can 
be speed up for low degree functions. Ascon-XOF has fast 
diffusion because it applies its linear layer to every five 
words. It also has a strong word structure with a good choice 
of round constants, which makes it challenging to apply a 
cube attack [23] effectively. However, since each output bit 
depends on only three input bits, of which two are non-
linear, consecutive dependent bits can lead to the derivation 
of linear equations that can be solved to break the system. 
Even the original Ascon specification [10] admits that the 
Ascon permutation is not ideal in terms of differential and 
linear properties [22] [24]. However, it has been shown that 
Ascon-XOF has a good security margin against collision 
attacks [22]. Currently, even with the use of all 320 bits of 
the state in a semi-free-start collision, only four out of 
Ascon-XOF's twelve rounds can effectively be broken. 

B. Gimli-XOF 

     Gimli-XOF [14] uses a 24 round permutation based 
on sponge construction with a state size of 384 bits, 
represented as a 3×4 matrix of 32-bit words. It uses a 128-bit 
rate and 256-bit capacity. The non-linear layer operates on 
the column level. The linear layer operates on the row level 
and applies one of two swap operations, a small swap, or a 
big swap. 

Gimli has a slow diffusion compared to Ascon because 
its small and big swap operations only apply to the first row, 
and not in every round. This makes it easier to analyze 
multiple rounds of Gimli-XOF. Table III demonstrates 
Gimli's lower diffusion compared to Ascon. 

 

TABLE II.  SUMMARY OF ATTACKS ON ASCON-XOF  

Attack Method Round Time 

Complexity  

Ref 

Pre-image cube 2 239 [22] 

Pre-image Algebraic 6 263.3 [22] 

SFS collision Differential 4 Practical [22] 

Collision Differential 2 Practical-215 [25] 

TABLE III.  UPPER BOUND FOR THE ALGEBRAIC DEGREE OF 

DIFFUSION AFTER DIFFERENT NUMBERS OF ROUNDS FOR ASCON AND 

GIMLI 

Round 1 2 3 4 5 6 7 8 9 

Ascon 2 4 8 16 32 64 128 256 298 

Gimli 2 4 8 16 29 52 95 163 266 

 
A divide-and-conquer technique, which applies an 

exhaustive search to a divided message space, allows 
theoretical pre-image attacks on up to five of the nine rounds 
of Gimli-XOF [26]. By exploiting Gimli's weak diffusion, 
equations that represent the bit dependencies in Gimli-XOF's 
rate can be constructed and solved. This did require fixing 
the block size to 128 bits, and ignoring the padding rule, but 
does give a practical attack on a reduced-round version of 
Gimli-XOF. 

The slow diffusion of Gimli's state means that the swap 
operations only affect 256 of the 384 bits of Gimli's state, 
and this does not even occur each round. This can be 
exploited to construct equations that can be practically 
solved with a SAT solver [27]. 

C. Xoodyak-XOF 

Xoodyak-XOF [13] uses a 12-round permutation based 
on a sponge construction with a state size of 384 bits, 
consisting of three planes of 128 bits. It uses a 130-bit rate 
and 254-bit capacity (reduced by two for internal reasons 
[13]). It is based on the Xoodoo Permutation [28] and uses a 
column parity mixer [29]; this provides good diffusion and is 
suitable for modes that do not need inverses, such as sponge 
constructions. The non-linear layer uses a shift-invariant 
mapping based on the parity of three bits and implements 
bitwise boolean operations. The narrowing of the non-linear 
layer from five bits to three bits increases Xoodyak's 
resistance to cube attacks [13]. 

A deep-learning pre-image attack has been proposed on 
Xoodyak-Hash [30], though only with a fixed message size 
of 32 bits and with adjusted squeeze rates, hash lengths, or 
round numbers. The first model increases the squeezing rate 
to 384 bits, rather than the original 128 bits, representing the 
entire state. The second model increases the hash length to 
384 bits, rather than the original 256. The third model is 
identical to Xoodyak-Hash, but they reduce the number of 
rounds to just one. Xoodyak-Hash is proven to be strong 
enough to resist these attacks, as they only have any success 
on at most one round [30], though it has been demonstrated 
that reducing the capacity of Xoodyak down to 128 bits 
helps make pre-image attacks over a small number of rounds 
possible [30]. 
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IV. DESIGN CONSIDERATION FOR LIGHTWEIGHT SPONGE-

BASED XOFS 

The main goal when designing a lightweight XOF should 
be to provide the best trade-off between security and 
performance in both hardware and software. While the 
sponge construction gives a general framework that can 
work well in a resource-constrained environment, choices 
related to a particular implementation can greatly affect the 
overall result. In this section, we discuss the main choices 
that need to be made, including recommendations and 
considerations, when developing a sponge-based XOF. 

A. Round Function Width 

In general, a wider round function (i.e., one that maps 
more bits) offers improved security over a narrow one, 
though typically has performance and cost implications [29]. 
Wider round functions may require more circuitry or more 
complex software implementations which may not be 
appropriate in lightweight environments. Implementing 
widths that are a multiple of 32 or 64 bits, such as Ascon 
(320-bit state), Gimli (384-bit state) and Xoodyak (384-bit 
state), can allow vectorization on some platforms to allow 
parallel computation on different blocks of the state. In 
contrast Keccack [15], which SHA-3 is based on, uses 
permutations that are a multiple of 25 bits, which can 
severely impact performance on lightweight devices since 
vectorization cannot be used [14].  

B. Number Of Rounds 

A round function is typically used multiple times per 
round, potentially with some different parameters (e.g., 
round constants). A high number of rounds reduces 
performance but can improve security [31]. For lightweight 
algorithms it is best to select the minimum number of rounds 
for which there are no shortcut attacks that have a higher 
success probability than generic attacks such as brute force. 
Linear, differential and truncated differential [32] attacks 
exploit constructed propagation in n rounds, then attack later 
rounds of the primitive. If an attack is successful on n 
rounds, the designer should double the number of rounds to 
increase security resistance [33]. 

C. Selection Of Round Constants 

Good rounds constants eliminate symmetries in iterative 
primitives [33]. Round constants should be different for each 
round, independent of the non-linear layer and defined by a 
specific rule to avoid slide, rotational, self-similarity, and 
similar attacks [34]. 

To see how important round constants are, consider 
Gimli. Gimli's use of round constants only each four rounds 
and having them affect just one 32-bit word of the state, led 
to the construction of a distinguisher for the full Gimli 
permutation [27]. Instead, some constant rotation should be 
applied each round to help provide fast diffusion [13]. 

Round constants also have an implication for 
performance. For example, Ascon's choice of round 
constants allows pipelining, while still ensuring that 
differential attacks are impossible [10]. 

D. Rate 

In general, a low rate is less susceptible to pre-image and 
differential cryptanalysis attacks [31]. In Ascon-XOF, a rate 
of 64 bits is used. Increasing the rate would decrease the 
capacity, reducing robustness of the primitive [10] and 
increasing the likelihood of rebound attacks [36]. Recent 
collision attacks on Ascon [22] [25], Gimli [26] [27] and 
Xoodyak [30] are constrained to at most six round reduced 
versions of these algorithms, primarily because each uses a 
small rate. 

E. Non-linear Layer 

The non-linear layer is essentially an s-box, which is a 
vectorial Boolean function that performs substitution. It is 
mainly responsible for creating confusion (measured using 
Shannon's entropy) in the cryptographic primitive [37]. 
There is a trade-off between the size of s-boxes and the 
security they provide; a small differential probability, high 
algebraic degree and significant non-linearity reduce the 
number of rounds needed to secure the primitive, but often 
require larger, less efficient sizes [38]. In resource-
constrained devices, designers are left with the choice of 
using smaller optimal s-boxes (perhaps combined to give a 
virtual larger s-box) or using a larger sub-optimal s-box that 
gives moderate performance [38]. In lightweight 
cryptographic primitives, smaller 4×4 s-boxes are the most 
commonly used [38]. 

F. Linear Layer 

The design of a linear layer specifies how the non-linear 
and mixing layers are combined and affects propagation of 
the function [39]. For lightweight cryptography, a bit-
oriented design should be used to improve efficiency. 
Further, the linear layer should be carefully considered to 
ease the derivation of algebraic, diffusion and correlation 
propagation [29]. This is achievable by ensuring weak 
alignment of the primitive [40], as this reduces susceptibility 
to truncated differential, saturation and trail clustering efforts 
related to differential or linear cryptanalysis. Ascon-XOF 
achieves this using a similar approach to SHA-2, using 
variant rotation constants for each word without decreasing 
performance [10]. On the other hand, Xoodyak uses column 
parity mixers, similar to Keccak [29], which are lightweight 
and offer weak alignment [39]. Further, using an odd number 
of rows makes a column parity mixer invertible, which gives 
immediate full diffusion in the backward direction [29]. 

G. Security Cliam 

For sponge-based XOFs, the security claim is typically 
flattened to only rely on the capacity c, though the length of 
the digest used must be long enough to make generic attacks 
implausible (i.e., at least 128-bits). It is recommended to use 
a 255-bit capacity to give a strength of 128 bits [41]. 

V. CONCLUSION AND FUTURE WORK 

This paper examined three sponge-based XOF 
implementations (Ascon-XOF, Gimli-XOF and Xoodyak-
XOF) to inform some design considerations that need to be 
taken into account when designing a secure lightweight 
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XOF. While exact considerations depend on the environment 
in which the XOF will operate, the following general 
guidelines were presented: 

• Wider round functions offer improved security, 
though often at the expense of performance. 

• Many platforms that support vectorization perform 
best when the round function width is a multiple of 
32 or 64 bits. 

• The number of rounds used should be minimized to 
improve performance while giving an adequate level 
of security; if there is a known attack on n rounds, 
doubling the number of rounds should give adequate 
security in many cases. 

• Round constants should be different for each round 
and should eliminate symmetries in the primitive. 

• Low absorbing and squeezing rates are preferable; 
64 bits seems to be a good rate size. 

• The non-linear layer should consist of smaller (e.g., 
4 × 4) optimal s-boxes or larger sub-optimal s-boxes 
to balance performance and security. 

• A bit-oriented design should be used for the linear 
layer and should ensure weak alignment of the 
primitive. The use of column parity mixers is 
recommended. 

• A capacity of at least 255 bits and a digest length of 
at least 128 bits should be used to provide a security 
strength of 128 bits. 

These guidelines help ensure the creation of a performant 
and secure lightweight sponge-based XOF, suitable for use 
in low-resource environments such as mobile systems. 
Future work will consider automatic security analysis of 
XOFs created using these guidelines with the goal of using 
evolutionary computation to design XOFs that are fit for 
purpose in a wide range of resource-constrained 
environments. 
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