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Abstract—The development and debugging of a wireless
protocol are complex tasks that many face in the industry
and academia. This paper aims at facilitating those tasks
by proposing a simulation framework that is capable of
verifying and validating a protocol stack at binary level.
This simulation framework is based on the co-simulation of
QEMU and SystemC, which are interfaced through TLMu.
An observer module was developed to analyze the traffic in
the simulated network, which contains protocol properties
modeled in Light Esterel to check that the frame exchanges
comply with the protocol properties, in order to validate the
protocol implementation.We describe the development of the
simulation framework and its node models capable of executing
the protocol’s binary stack. We then explain the modeling of
protocol properties in Light Esterel and their insertion in the
simulation framework. Finally, we test the OCARI protocol for
wireless sensor networks in the simulation framework.
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I. INTRODUCTION

Wireless Sensor Networks (WSN) are an expanding tech-
nology employed in a wide and growing variety of ap-
plications. To communicate, they use a set of rules and
conventions called protocol. Developing, debugging and de-
ploying wireless sensor network protocols are complex tasks,
especially when these protocols are aimed at applications
requiring a high reliability, such as medical or industrial
applications [1]. In such applications, a lost packet, a missed
alarm or a sensor blocked due to interrupts can potentially
lead to devastating consequences. That is why all wireless
protocols, especially the ones aimed at more critical appli-
cations, have to be extensively tested and validated before
they can be industrialized. While testing and debugging of
WSN protocols heavily rely on testbeds, this phase can be
facilitated by simulation.

In this paper we present a simulation framework for
WSN based on QEMU (Quick EMUlator) [2] and Sys-
temC co-simulation that aims at validating, verifying and
debugging a wireless communication protocol by emulating
the execution of the protocol’s binary stack on a detailed
model of the node’s hardware. One of the main novelties
of this framework is the addition of an observer module,
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containing protocol properties modeled with Light Esterel
[3], that can detect whether a protocol property has been
violated during simulation, halting the simulation to pinpoint
the source of the bug thanks to the debugging capabilities
provided. This approach will be tested on a protocol named
OCARI (Open Communication protocol for Ad hoc Reliable
industrial Instrumentation) [4] based on the IEEE 802.15.4
standard, which is currently in its pre-industrialization phase.

In Section II, we will explain the complexity in vali-
dating a protocol stack and the need to precisely model
the hardware platform upon which the stack is executed.
We will then describe in Section III the new simulation
environment we developed including an observer module
to verify protocol properties, and in Section IV we will
explain how the protocol’s properties are modeled in Light
Esterel and inserted into simulation. Finally, in Section V,
we will provide our simulation results that demonstrate the
functionality of the simulation framework we developed. We
then draw conclusions and discuss further improvements to
be made on this simulation framework in Section VI.

II. THE COMPLEXITY OF WSN PROTOCOL VALIDATION

Protocols are geared to serve a number of needs and
constraints, some of which are contradictory, such as tol-
erance to RF medium temporary disturbances, deterministic
behaviors, a good link budget, power saving techniques and
security. The resulting compromise is complex to implement
and also to validate. It is highly likely that even after a
communication protocol has been industrialized, some bugs
might remain. According to [5], the average of bugs in
released industrial software is about 15 to 50 per 1000 lines
of delivered code. This is why finding new solutions for
debugging and validation of code is of great interest to both
industrialists and academia.

Validation heavily relies on human driven testing of the
real platform and can take a very long time in the project.
Testbeds are long to set up as each node has to be handled
individually for software deployment and debugging. They
also suffer from scenario limitations when it comes to the
number of nodes in the network and their mobility or the
environmental conditions (obstacles, interference, etc.). That
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is why simulation is an important step in the development
of wireless protocols, to better diagnose software problems
before the deployment on real hardware.

Simulation can offer better flexibility on environmental
conditions, as well as the possibility to test attacks on the
network more easily, to validate the security aspects of the
protocol. Another one of the great benefits of validating a
stack on a simulator is that the scenario execution can be
replayed exactly, while usual hardware test-beds cannot truly
reproduce the same run, due to the asynchronous nature of
the system: the CPUs of network nodes do not share the
same clock and even show clock drifts. Moreover, hardware
debugging is intrusive as it modifies the execution timing of
the software being inspected.

Validation through simulation of a protocol at behavioral
level or at C code level might be faster than validation at
binary code level, but it is less reliable. Indeed, validating
the source code or a behavioral model of the protocol
only provides a very crude notion of time [6]. Therefore,
it cannot precisely model interrupts and multitasking for
instance. Yet temporary errors that are hard to reproduce
in hardware validation may have their origin in wrong
timer programming, missed interrupts or interrupts taken too
late leading to task scheduling issues, buffer overflows and
packet loss. That is why validating the binary code on a
realistic platform model is a much more reliable approach.

Moreover, a simulator capable of executing the protocol’s
binary code has the advantage of being compatible with
testing protocols for which only the binary code is provided
without the source files, to test that the specifications of
this protocol are met. This is why we focused on simulators
capable of executing the protocols stacks binary code for
our purpose of protocol validation. Only a few existing
network simulators offer this advantage. To our knowledge,
these simulators are TOSSIM, ATEMU, AVRORA, COOJA
and Worldsens (WSim/WSNet) [7]. However, they all suffer
from a few limitations, mainly in terms of the type of node
platform modeled. Indeed, Atemu emulates MICA-2 motes,
Cooja associated to MSPSIM emulates nodes based on the
Texas Instruments MSP430 processor, and Worldsens is also
limited to models of the MSP430 processor based nodes.
Moreover, Avrora does not model mobility or clock drift
and Tossim is not capable of capturing properties related
to interruptions or the codes execution time [8]. This is
the reason why we decided to develop a new simulation
framework that could be more easily adapted to a larger
variety of hardware platforms. To ensure the durability of
this framework, we focused on open source solutions.

III. MODELING A PRECISE NODE HARDWARE MODEL
WITH QEMU AND SYSTEMC

Our hardware platform model was developed with QEMU
and SystemC. We decided to use TLMu as the interface
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between both simulation environments because it is more
easily adaptable to our platform model.

A. TLMu - An Interface between QEMU and SystemC

Based on our need to execute the binary code of protocols
for a wide range of platform, we have decided to create a
simulation environment based on QEMU (Quick EMUlator)
[2], a popular open source environment developed in C for
the rapid prototyping of virtual platforms. We have also
decided to associate QEMU with SystemC, a popular C++
library to model the architecture and behavior of hardware
components, to model parts of the hardware platforms absent
in QEMU and the network.

TLMu [9] is a wrapper for QEMU that integrates with
SystemC TLM-2.0 models, which handles the communi-
cations and time synchronization between both simulation
cores. It is based on the open source hardware/software em-
ulation framework called QEMU-SystemC [10], which was
proposed in 2007 by Marius Montén and GreenSoCs. This
project aimed at attaching devices modeled in SystemC to
QEMU, with QEMU as the simulation master and SystemC
as the simulation slave.

An advantage of TLMu is the possibility to have mul-
tiple QEMU platforms connected to SystemC in the same
simulation. It can provide either only the CPU cores or a
more complete system, and the CPU emulators are built as
shared libraries, one library per supported architecture (e.g.,
libtlmu-arm.so). Each CPU executes as a different thread in
the same process as SystemC.

1) Communications between QEMU and SystemC: The
wrapper loads QEMU as a shared object and accesses
QEMU’s main function by a loaded function pointer from
the shared object. The wrapper defines callback functions. In
QEMU, the SystemC environment is registered as a memory
region, which when accessed uses a callback to access the
TLM memory bus model using TLM transactions to read or
write memory spaces in SystemC. This allows switching the
control between QEMU and SystemC. A callback function
also handles the communications of events to QEMU, such
as interrupts from SystemC to QEMU, or reset, sleep and
wake up commands.

2) Handling time and synchronization: TLMu is run by
using QEMU’s icount feature which means that QEMU’s
virtual clock (vm_clock) advances according to the num-
ber of instructions executed. In SystemC, time progresses
according to the information provided by the hardware
platform. TLMu may trigger a synchronization between
QEMU and SystemC in various cases: when the CPU makes
I/O accesses into the main emulator, when the CPU gets
interrupted or after the execution of a translation block. To
trigger a synchronization, QEMU calls a callback sync_time
function of TLMu, and passes as a function parameter its
vm_clock time. If the sync_time function estimates that
enough time has passed since the last synchronization, it
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triggers a new synchronization. The time between synchro-
nizations is handled by the TLM quantum keeper [11].

B. Modeling the node’s hardware platform and the network

The binary stack to be tested implements the OCARI
protocol on an Atmel SAM3S platform based on the ARM
Cortex-M3 processor and an IEEE 802.15.4 radio module,
the Atmel AT86RF233, which are connected through an SPI
interface, as well as three pins for interrupt notification,
reset, and sleep/wakeup command.

To develop a model of the SAM3S platform, we reused
the Cortex-M3 CPU model that is available in QEMU. The
memories and different peripherals of the SAM3S (timers,
power management controller, SPI, etc.) were modeled in
the SystemC environment according to their behavioral de-
scription, which is found in the SAM3S datasheet provided
by Atmel [12]. Only the peripherals that are enabled by
the Power Management Controller during the execution of
OCART’s binary code, and therefore useful to the execution
of OCARTI’s protocol, are modeled, as seen in Figure 1.

The peripherals are connected through a TLM bus and
communicate through loosely timed blocking TLM trans-
actions. These transactions are objects that are defined by
TLM 2.0 containing amongst other a data pointer, a data
length and an address. They are sent between different
SystemC modules from TLM initiator sockets to TLM target
sockets. At the reception of a transaction in a target socket,
ab_transport function is called defining what action to
take.

The interrupt mechanism was not fully implemented by
TLMu, though callbacks were provided as an interface
between SystemC and QEMU. In our implementation, we
reused the model of the Nested Vectored Interrupt Controller
(NVIC) for the ARM Cortex-M3 that was already available
in QEMU to complete the interrupt mechanism.

Main clock

SAM3S NODE MODEL SystemC-TLM environment

Shared Library Powar Timer
Management Counters WDT
Controller
QEMU (6 channels)
Mem accesses
Callbacks
Interrupts
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Figure 1. Simplified block diagram of the SAM3S platform modeled with
SystemC and QEMU interfaced by TLMu.

The radio was also modeled in SystemC according to
the AT86RF233 datasheet. The protocol controls the radio
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module through an SPI interface to read or write the radio
registers or the frame buffer. A PIO pin is also used so that
the radio can send back interrupts to the SAM3S platform.
Frames that are sent out are sent as TLM transactions
through the Antenna_out TLM socket. The frame is modeled
as an array containing the bytes corresponding to the frame
length and the Mac Protocol Data Unit (MPDU). Incoming
frames are received through the Antenna_in TLM socket to
later be interpreted by the protocol stack if the frame passes
the radio filter.

It was verified that the model of the SAM3S and the radio
were functionally correct by comparing frames output by the
simulator to frames from real exchanges between nodes in a
lab for similar scenarios [13]. It is possible to instantiate sev-
eral models of the SAM3S platform modeled with QEMU,
as well as more simple nodes that do not execute the binary
code of a protocol but mimic the protocol’s behavior.

In our simulation framework, all the node models are
connected through a radio link module as shown in Figure
2. The radio link module relays the frames from the sender
node to the other nodes according to the topology defined
by the user. The user can also define times when new nodes
will be added to the topology or times when a radio link
between two nodes will be lost or created.

The radio link module also contains another module
called the observer, which analyzes the frames exchanged
as described in Section IV.

To be able to observe in an aesthetic manner the frames
exchanged by the different nodes in simulation, the frames
that go through the radio link module are saved in a pcap
(packet capture) format file by using functions from the
libpcap library to create packet headers and to encapsulate
each packet. The frames in the pcap file can then be observed
in a network analyzer, such as Wireshark for example. Using
the same libpcap library, the radio link module is also able
to extract frame packets from pcap files to generate traffic in
the network, with the possibility of using frames recorded
from exchanges between nodes in a lab.

Protocol properties
modeled in Light Esterel

Compilation GDB
Simulated
NODE 0 Properties.c topology
CPAN ‘ NODE 1
SAM3S + o
Observer -*’_ } Radio model

NODE 2 | o a

Figure 2. Connection between node models through a radio link module
containing the observer focused here on node 1.

o

_____

NODE 3
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IV. VERIFYING PROTOCOL PROPERTIES DURING
SIMULATION

The verification of protocol properties is an important
feature of the simulation framework. To implement this
feature, we have developed an observer module.

A. The observer’s role

The observer module is integrated into the simulator to
analyze the frames exchanged between nodes. To have the
capability of analyzing any frame that is exchanged in the
network, the observer module is contained in the radio link
module. Its role is to halt simulation if a protocol property is
violated, so that the source of the bug causing the violation
may be pinpointed thanks to the debugging capabilities
provided by the simulation framework. The observer focuses
on the frames sent and received from a specific node which
is running the binary protocol stack under test.

B. Modeling and integrating protocol properties into simu-
lation

We searched for a good solution to model protocol prop-
erties that could be easily introduced into our simulation
environment. A communication protocol is considered to
be a reactive system, and general purpose programming
languages are not suited to design reactive systems: they
are clearly inefficient to deal with the inherent complexity
of such systems [14]. That is why we looked into using a
language dedicated to reactive systems. Various synchronous
languages have been designed such as Esterel [15]. Based
on concurrency and synchronicity, they are model-based lan-
guages to allow formal verification of the system behavior.
Their execution model is simple: first, the initial state is
initialized and then, for each input event set, outputs are
computed and then state is updated [14].

1) Light Esterel: Light Esterel (LE) [3] is a reactive
synchronous programming language derived from Esterel V5
[15]. Just like Esterel, it is able to maintain a permanent
interaction with its environment, such as communication
protocols, man-machine interface drivers or VLSI chips.

The Light Esterel language units are named modules.
Communication takes place between modules or between
a module and its environment. Sub-systems communicates
via events. The module interface declares the set of input
events it reacts to and the set of output events it emits.

The textual or graphical Light Esterel views gives the
possibility to write compact specifications for very complex
systems. A system with thousands of states can generally
be specified by an Esterel program of only a few hundred
lines thanks to the explicit preemption and parallel operator.
Moreover, this deterministic concurrent programming lan-
guage can be compiled into a Finite State Machine (FSM)
classically represented by an automaton. LE automata are
Mealy machines and they have a set of input signals, which
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can be valued, to define transition triggers and a set of output
signals that can be emitted when a transition is raised.

Consequently, Light Esterel programs can also be com-
piled into popular languages such as C, VHDL, CSharp,
or other synchronous languages like Lustre. In our case we
used the C program compilation of Light Esterel.

As Light Esterel has been designed to model reactive
systems such as communication protocols, and because of
the ease of insertion into the simulation framework, we
decided to use this language to model protocol properties
defined by the protocol’s specifications.

2) Integration of protocol properties in the simulation
framework: The objective of the observer module is to
verify that the implementation of a protocol complies with
its specified properties. The properties that we want to check
are modeled in a LE program.

When the Light Esterel program is compiled into C to be
integrated in the simulator, functions are defined where the
function parameters are the inputs of the LE program and
pointers to the output values.

The observer dissects the frames sent and received from a
specific node that is running the binary protocol stack under
test. If the information contained in those frames are relevant
to the modeled protocol property, the corresponding Light
Esterel C program function is called with the corresponding
boolean presence predicat set to 1, followed by the signal
value if the signal is valued. After the function call, the
Light Esterel program outputs are checked to see whether
the property has been violated, or if the conditions of the
property have been met. The latter information helps in
statistics on property coverage. Indeed, in certain scenarios,
some properties might not be checked at all while other
properties might be checked numerous times. The simulation
scenarios have to be adapted in this case to make sure that
all properties have been extensively put under test.

V. EXPERIMENTAL RESULTS AND INTERPRETATION

To demonstrate the functionality of the simulator we
developed, we tested it with the OCARI protocol, to verify
that the implementation of the protocol complies with the
properties from its specifications. Some simple properties
that we desired to check were modeled in LE, compiled into
C, and inserted into the simulator. We ran different scenarios
to check that the protocol properties we modeled weren’t
detected as violated by the simulator. Here we describe
a particular scenario where an attack on the network was
simulated to see how the nodes running the OCARI protocol
binary stack reacted.

In the scenario in question, 3 nodes running the OCARI
protocol on full SAM3S platform models are instantiated,
one is the network coordinator (CPAN) loaded with the
ocari_CPAN.elf binary code, and the other two nodes are
running the ocari_DEVICE.elf binary code. A fourth node
is added to the simulation that will act as a node attacking
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Figure 3. Simulation output frame traces from 2 regular OCARI protocol cycles viewed with Wireshark.

Figure 4. Network topology.

the network. The topology of the network can be seen in
Figure 4.

The simulation was set up so that the attacker node is a
simple node that copies a frame from the beginning of the
simulation, more specifically a Beacon type frame from node
2. After 25 seconds of simulation, the attacker nodes starts
sending the Beacon frame copied from node 2 at constant
intervals of 50 ms. The fake beacon is received by all three
other nodes in the network.

The simulation results can be observed through the ter-
minal where the simulation was launched, but the frame
exchanges can also be viewed through Wireshark, as they
are saved in a pcap format. A plugin was created in Wire-
shark to dissect OCARI frames to correctly display frame
information. Before the intervention of the attacker node, no
anomaly is detected in the exchanges. In Figure 3, two cycles
can be seen (a cycle beginning with a beacon frame from
the CPAN) before the attacker node starts sending frames,
with nodes 3 and 2 correctly relaying data to the CPAN,
which are Connexion type frames with random data values
for this particular application.

25 seconds into simulation, the attacker node starts send-
ing Beacon frames pretending to be node 2. The simulation
was stopped at 26.754397 seconds, as the observer in the
simulator detected and indicated a "Hello” property violation
from node 2. The property in question states that once nodes
are associated to the CPAN, a Hello message must be sent
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every 2 cycles. In the frame traces observed on Wireshark,
we can see that nodes 2 and 3 completely stop sending
frames after 25.55445 seconds of simulation time. In Figure
5, we can observe the two last cycles before the simulation
stopped where no Hello messages were sent by node 2 and
3, causing the Hello property to be violated. The violation is
detected as the last Beacon frame from the CPAN is received
indicating the beginning of a new cycle without a Hello
frame having been received.

To know what went wrong with node 2, and why it
stopped sending frames, we used GDB to know which
function of the ocari_DEVICE.elf code was being executed
by node 2 when the simulation stopped. We have observed
that node 2 was stuck in a while loop waiting for a timer
to expire, and that the while loop was initiated by the
mac_wrapper_reset_ MaCARI function, indicating that the
node couldn’t handle the frames sent by the attacker node
and had to reset itself.

This experiment is an example of how this simulation
environment facilitates testing protocols under more flexible
scenarios and environmental conditions. Indeed, adding such
an attacker node in simulation was relatively easy and would
have been more complicated in a lab environment. The
version of the OCARI protocol has been updated since this
test with enhanced security. Not all protocol properties were
inserted in simulation for these tests, only a few that we
wished to check. Extra properties will be modeled and added
into simulation in the future, in order to validate them under
very diverse scenarios to explore the limits of the protocol.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented a simulation framework based
on QEMU/SystemC co-simulation and Light Esterel prop-
erty modeling for the validation of wireless sensor network
protocol implementations against their specified properties.
We also showed the possibility of simulating an attack on
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Figure 5. Simulation traces from the two last OCARI protocol cycles before the property violation viewed with Wireshark.

the network to find weaknesses in the protocol and fix
them. This simulation framework still needs some more
development but shows promising results.

Future improvements on the simulation framework will
include random test generation and the possibility to re-
produce scenarios played out on testbeds with real nodes
using the exchange traces in pcap format. There will be
improvements on the radio link module to represent more
diverse environmental conditions and packet loss. To obtain
a better scalability, we also wish to introduce a frame
generator that imitates the behavior of several nodes running
the protocol under test, in order to stimulate one node that is
running the protocol’s binary code on a full platform model.

Verifying that the execution of the protocol respects all
of its defined properties in a wide range of scenario will
prove that the protocol is reliable, and will facilitate its
industrialization. With this simulation framework, the great
number of hardware platforms supported by the open source
tools used extends the approach to a wide range of protocols
for all kinds of networked embedded systems.
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