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Abstract—Single carrier frequency division multiple access
(SC-FDMA) is the access technique which is used in the long term
evolution (LTE) uplink in order to reduce the peak-to-average
power ratio (PAPR). The LTE uplink uses this technique in joint
application with turbo coding and high order modulations to
achieve peak data rates up to 86 Mbps within 20 MHz bandwidth.
This paper introduces a semi analytical method for predicting the
turbo coded SC-FDMA performance in terms of bit error rate
(BER). Simulation results have shown that the BER obtained with
the proposed method is close to that measured by Monte-Carlo
simulation method.
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I. INTRODUCTION

LTE [1] is designed to support peak data rates up to 300
Mbps and 86 Mbps for downlink and uplink, respectively,
within 20 MHz bandwidth. In terms of system performance,
it targets to improve user throughput, coverage and spectrum
efficiency. In order to reach this performance, the LTE radio
interface uses orthogonal frequency division multiple access
(OFDMA) [2] as access technique for its robustness against
both inter-symbol interference and channel impairments.

The LTE uplink transmission is based on SC-FDMA [3]
to its reduced PAPR compared to OFDM. These features are
used in joint application with multiple input multiple output
(MIMO), adaptive modulation and coding (AMC) [4] and
hybrid automatic repeat request (Hybrid ARQ) [5]. For reliable
data transmission, the LTE uplink transmitter consists of a
combination of error detection code, channel coding, interleav-
ing, and SC-FDMA modulator. To meet the LTE requirement,
the channel coding is performed, using a 1/3 rate turbo encoder
which is often decoded with an iterative soft input soft output
(SISO) decoder. The turbo encoder internal interleaver is based
on quadratic permutation polynomials (QPP) to support high
data rates. The performance of LTE uplink physical layer can
be measured in terms of BER, block error rate (BLER) or
throughput. In this work, our focus is BER evaluation which
has been made by simulating the 3GPP LTE uplink transmitter,
the transmission channel and the receiver. This simulation
is done using Monte-Carlo (MC) method. However, it has
been proven that it is prohibitive and time consuming. To
makeupfor this limitation of MC simulation method, semi-
analytical performance prediction has been proposed in several
studies.

Bohdanowicz [6] proposed the importance sampling (IS)
method for BER prediction. It has been found that for simple
memoryless systems (e.g. a BPSK modem [7]), the efficiency
of the IS technique is high and its implementation is relatively

easier. However, its accuracy can be severely degraded, espe-
cially that of the coded systems.

For such systems, several solutions of performance predic-
tion problem for complex system are carried out in several
studies. In [8], a low complexity prediction technique for
Turbo-Like code has been proposed. It is based on estimating
the probability density function (pdf) of the log likelihood ratio
(LLR) at the output of the decoder. The BER prediction is
made assuming that the probability density functions of the
decoder output LLRs are normal densities.

A semi-analytical approach of the BER prediction has been
presented by Saoudi et al. [9]. The authors have proposed
to predict the BER by using the known kernel estimator
of the pdf of the soft decision made at the output of the
detector. This method assumes that any prior information
on the pdf of received samples is available at the receiver
side. Moreover, its accuracy depends on the estimation of the
smoothing parameter which is very important in the prediction
process. Saoudi et al. [10] proposed an unsupervised soft BER
prediction method for any digital communications systems.
This technique considers that the pdf at the detector output
is estimated with a Gaussian Kernel. The accuracy of this
prediction method is very sensitive to smoothing parameter
especially for high signal to noise ratios (SNRs).

In this paper, we propose a semi-analytical BER prediction
method which is based on the pdf estimation using Gaussian
kernel. We assume that no knowledge on the distribution
of the received soft samples is currently available. In the
proposed method, we have derived a new expression of the
smoothing parameter which takes into account the histogram
of the soft samples at the detector output. It has been shown
that our method exhibits a significant accuracy in term of BER
compared to Monte Carlo simulation method.

The remainder of the paper is organized as follows. In
Section II, we present the coded SC-FDMA system. We intro-
duce the problem of error probability derivation in Section III.
Section IV details the probability density function estimation
using kernel method and how one should select the bandwidth
h to optimize the properties of the probability density function.
Simulations and numerical results are given in Section V.
Finally, the paper is concluded in Section VI.

II. CODED SC-FDMA SYSTEM

The coded SC-FDMA system is presented in Figure 1; it
consists of a source, a turbo code LTE, modulation mapper,
modulation SC-FDMA, transmission channel and a receiver.

The coded SC-FDMA system will be the case of study the
performance of the proposed method for BER prediction.
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Fig. 1: Coded SC-FDMA System

A. Analytical form of SC-FDMA signal

This technique consists of distributing a large number of
carriers, not directly as the source symbols in OFDM, but
their frequency representation after having spread over the
band of the system [11].

The signal of user k to the output of the system will be
given by the expression:

Sk(t) =
∑
n∈Ωk

n

Uk
np(t− nTs)e

j2πfnt

(1)

• Let {fn}0<n<N−1 all orthogonal carrier frequencies
modulated system, and fc the center frequency (RF
frequency) of the transmitted signal in the channel. It
has the following relationship:

fn = fc + n∆f (2)

Or ∆f = 1
Ts

is the spacing between sub-channels, with Ts

the duration of a symbol.

• {Uk
n}n∈Ωk

n
, frequency representation of the symbols

of the modulation block of user k ∈ [0, 1, · · · , L− 1]
with DFT obtained after the modulation.

We recall that the spectral spreading factor of the system
is denoted L and the maximum number of users that can
communicate simultaneously in the system.

• Ωk
n represents the set of Q sub-carriers modulated by

user k.

• p(t) shows the shaping filter.

B. SC-FDMA demodulation

The principle of the demodulation of the SC-FDMA
system is to demodulate the signal on each sub-carrier
system. As a result, the received signal is first reduced
to baseband, before being sampled for the digital signal
processing. After removing the guard interval, a demodulator
DFT provides the symbols modulating each carrier. An
equalizer is then implemented, as in the technical SC / FDE,
in order to eliminate the contribution of the channel on each
subcarrier signal, and there by recover the symbol frequency.
A demodulator IDFT can then retrieve the source symbols of
the system. The signal received at user k receiver on symbol

duration is written as follows:

yk(t) =
∑
n∈Ωk

n

Uk
n

∫
[hk

n(t− τ)p(t− nTs)e
j2πfnt dτ (3)

C. Turbo Coder LTE

The LTE system [12] has adopted a new structure
for the turbo encoder. This is an improvement to turbo
encoder interleaver by a new permutation polynomial
based deterministic interleaver, called QPP interleaver and
anti-interleaver with advantages beyond other interleavers.
The encoder is characterized by a new structure simple,
flexible operation and the most important is that parallel
turbo decoding and register contention problem is solved
successfully, which effectively increases the efficiency of the
high-speed block parallel Turbo decoding [13].

In addition, the receiver contains an LTE turbo decoder
based on the theory of iterative decoding. This is an important
feature in the turbo- decoding, so decoding complexity
lineally increases, with the size of the sequence information.
In order to achieve a better decoding performance, component
decoding must adopt soft input soft output (SISO) algorithm.
MaxMAP decoding algorithm and SOVA decoding algorithm
are two kinds of common soft-input soft-output Turbo
decoding methods [14][15].

III. BIT ERROR PROBABILITY DERIVATION

To derive the bit error probability, we consider the general
digital communication system presented in Figure 2. It
consists of a source, a transmitter, transmission channel and
a receiver. The source is considered to be digital and delivers
the information bits b ∈ {0, 1}. These bits are processed by
a transmitter which can include channel coding, interleaving,
and modulation. After that, the information bits at the output
of the transmitter are transmitted over a channel.

 Transmitter        AWGN Receiver Decision
b̃b ∈ {0, 1}

Fig. 2: General system model

For simplicity, the channel is assumed to be Gaussian [7].
The channel output is delivered to the receiver, which tries
to detect the information bits from a noisy signal by using
a detector, a sampling process and a decision. Due to the
channel effect, the receiver can make a wrong decision on
information bits at its output b̃. So, it is important to measure
the communication system efficiency. The most popular mean
to do this is the BER evaluation. According to figure above,
the bit error probability is written as :

pe = P1.P r(̃b = 0\b = 1) + P0.P r(̃b = 1\b = 0) (4)

where Pk, k = 0, 1 , is the probability that b = k. Pr(.) is
the conditional probability. In terms of the decision threshold,
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the probability in (4) can be rewritten as follows:

pe = P1.P r(y(t0) < µ\b = 1) + P0.P r(y(t0) ≥ µ\b = 0)
(5)

where t0 is the sampling time, µ is the decision threshold and:{
y(t0) ≥ 0; if b̃i = 1

y(t0) < 0; if b̃i = 0

The conditional probabilities in (5) can be evaluated by
integrating the probability density functions of the random
variable y. If f(y) denotes the pdf of y, the error probability
is expressed as:

pe = P1.

∫ µ

−∞
f1(y) dy + P0.

∫ +∞

−µ

f0(y) dy (6)

So, to predict the error probability Pe, one has to estimate
the probability density f(y).

IV. PROBABILITY DENSITY FUNCTION AND ERROR
PROBABILITY ESTIMATION :

A. Kernel estimator

Several types of non parametric estimation approaches are
suggested to estimate a probability density function. This is
due to the recent development in statistics theory. The most
known of these methods is the kernel estimator [16] which we
have adopted in this work. For a given set S of N received
samples y1, y2, . . . , yN , the kernel estimator of the probability
density function f̃(y) is [17][18]:

f̃(y) =
1

Nh

N∑
i=1

K(
y − yi
h

) (7)

where h is the smoothing parameter and K(.) is the kernel
function. To guaranty that f(y) is a density; the kernel is
a function that satisfies

∫ +∞
−∞ K(u) du = 1. Moreover, it is

assumed to be symmetric about 0. In this work, we used the
Gaussian kernel, which satisfies the above properties. The
estimated density f̃(y) can be rewritten as:

f̃(y) =
(Nh)−1

√
2π

N∑
i=1

e−(
y−yi

h )2/2 (8)

To get the expression of the estimated bit error probability
pe, we divide the set of observed samples into two subsets S0

and S1. The first subset contains N0 observed samples, which
correspond to the transmission of b = 0. The second subset
consist of N1 observed samples when b = 1 is transmitted.
In this manner, and by substituting the probability density
f(y) by its estimate f̃(y), the estimated bit error probability
is expressed as:

p̃e =
P0

N0

N0∑
i=1

Q(
−(yi)0
h0

) +
P1

N1

N1∑
i=1

Q(
(yi)1
h1

) (9)

where hk, k = 0, 1 is the smoothing parameter and Q(.)
denotes the complementary unit cumulative Gaussian distri-
bution, that is,

Q(x) =

∫ ∞

x

1√
2π

e−t2/2 dt. (10)

From (9), it is very clear that the accuracy of bit error
probability estimation depends on the choice of the optimal
smoothing parameter.

B. Choice of optimum smoothing parameter h

The mean integrated squared error (MISE) criterion is one
of several methods used for selecting the optimum bandwidth.
In MISE-based method, this optimum bandwidth is obtained
by minimizing the MISE, which is expressed as:

MISE = E[

∫ +∞

−∞
[f̃(y)− f(y)]2 dy] (11)

The bandwidth that mimimizes MISE is given by:

hopt = argh min (MISE(h)) (12)

Under additional assumptions:

lim
N→∞

h = 0; lim
N→∞

Nh = 0; (13)

Several types of MISE criterion have been suggested in
litterature. Hereafter, we details the most populer ones.

1) Kernel based MISE Criterion:

For Kernel based MISE, we can use the normal reference
method in selecting the bandwidth h for kernel estimator. As
in [10], the optimum smoothing parameter is expressed as:

hopt,Kernel = C1(f)C2(K)N−1/5 (14)

C1(f) = [

∫ +∞

−∞
[f ′′(x)]2 dx]−1/5 (15)

C2(K) =
[
∫ +∞
−∞ [K(x)]2 dx]1/5

[
∫ +∞
−∞ [x2K(x)]2 dx]2/5

(16)

From (14), it is clear that the optimum parameter depends
on the unknown pdf and also on the kernel K(.). For a
Gaussian kernel, we get C2(K) = (2

√
π)−1/5 and for the

normal reference method C1(f) = (8
√
π/3)1/5σ, yielding:

hopt,Kernel = (4/3)1/5σN−1/5 = 1.06σN−1/5 (17)

Other way are used to select the bin size h. We focus on the
normal reference method that uses the histogram of the PDF.
Our approach is based on the latter method of calculating h.
This method will be detailled in the following paragraph.

2) Histogram based MISE Criterion:

The histogram is used to measure the probability of
observing a particular interval length [19]. It is a way
to estimate the pdf by taking origin x0 and a bin width
h and define the bins of the histogram as the intervals
[x0 + mh, x0 + (m + 1)h] for positive and negative integers
m. The histogram estimate of the pdf is then defined by:

HN (x) =
1

Nh
(number of xi in the same bin as x) (18)

Based on the same principle in the previous section, the
MISE between HN (x) and the true pdf is written as:

MISE = ε[

∫ +∞

−∞
[HN (x)− f(x)]2 dx] (19)
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For a very large N (N → ∞), the value of h needed in
(18) can be shown [20] as:

hopt,Hist = C1(f)N−1/3 (20)

C1(f) = 61/3[

∫ +∞

−∞
[f ′′(x)]2 dx]−1/3 (21)

As can be seen, the optimum smoothing parameter
depends only on the unknown pdf f . We need to find C1(f)
and under the assumption that f ∼ N(µ, σ2). This gives a
simple data-based strategy for choosing the bin width h.

C1(f) = (24
√
π)−1/3σ (22)

The optimum smoothing parameter is finaly written as:

hopt,Hist = (24
√
π)−1/3σN−1/3 (23)

In practice, the choice of an efficient method for the
calculation of h; for an observed data sample is a more
complex problem, because of the effect of the bandwidth on
the shape of the corresponding estimator. If the bandwidth is
small, we will obtain an under-smoothed estimator, with high
variability. On the contrary, if the value of h is important, the
resulting estimator will be very smooth and farther from the
function that we are attempting to estimate.

An example is drawn in Figure 3, where we show kernel
estimators using the kernel function (the standard Gaussian
density) and two different values for the bandwidth. The data
sample consists of 1000 random numbers of an exponential
distribution.
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Fig. 3: Estimated densities for bandwidths chosen using
different methods

For the data from a SC-FDMA system, the kernel estima-
tors using the kernel function (the standard Gaussian density)
and two different values for the bandwidth provides the result
in Figure 4.

Figure 4 shows Gaussian kernel density estimates based
on two different bandwidths for a sample of 500 data points
from the SC-FDMA system. The second method MISE of
bandwidth calculation h is of a good performance and can

obtain an under smoothed estimator as the Kernel based MISE
criterion.
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Fig. 4: Estimated densities for bandwidths chosen using
different methods

Our practice shows that the histogram based MISE Cri-
terion appears to be a suitable method for the choice of
the bandwidth. As this method is based on estimating the
histogram of samples, we have compared it to another method
that is also based on the estimation of MISE using Kernel
estimator. It is seen that the histogram based MISE Criterion
ouperforms the Kernel based MISE Criterion in terms of
squared errors.

Thus, we choose the histogram based MISE Criterion to
study the performance of the new BER estimation method
proposed in this paper.
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Fig. 5: Estimated Conditional pdfs for SNR = 4dB

Once the optimal smoothing parameter is calculated, we
can present both the estimated conditional pdfs for (yi)0 and
(yi)1 by using (9). We consider that the number of soft outputs
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whose simulator result is shown in Figure 5 is N = 1024
observations whose simulation result is shown in Figure 5.

V. SIMULATIONS AND NUMERICAL RESULTS

To evaluate the performance of the proposed new method
of estimating the BER, we consider two systems to simulate,
namely BPSK system and a coded SC-FDMA system.

A. Validation of BER Prediction

In this section, we have shown that the new proposed
BER estimator (Figure 6) provides the same performance as
the Monte Carlo method whose data sample consists of 1000
random numbers of an exponential distribution.
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Fig. 6: BER perfomance for BPSK

This validation encourages us to study this performance for
a coded SC-FDMA system.

B. BER prediction results for SC-FDMA

The objective of this section is to study and evaluate the
implementation of the SC-FDMA technology encoded by a
turbo encoder LTE on a Gaussian channel.

Our focus is on the behavior of the estimator proposed
on the transmission bits by a coded SC-FDMA system. In
such a system, it is difficult to have a reliable estimate of
BER using MC-aided techniques with a limited number of soft
observations and in the regions where the SNR is very high. In
other words, the BER estimation performances of coded SC-
FDMA system are studied in LTE uplink simulation system
under Gaussien Channel.

In Figure 7, we can see that the new proposed BER esti-
mator (9) provides the same performance as the Monte Carlo
method, based on the perfect knowledge of the transmission
bits. The proposed method is characterized, however, by the
lack of knowledge of the received samples distribution of a SC-
FDMA demodulation. We also present in Figure 7, the BER
estimation performance using turbo encoded with SC-FDMA
technique. The proposed technique provides reliable estimates,
comparable to the Monte Carlo technique.
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Fig. 7: BER performance comparison for Turbo Coded
SC-FDMA

Note that the new technique allows a reliable estimate of
BER for SNR up to 8dB values, while the MC-technique is
unable to do so. It stops at SNR = 8dB due to the very
limited number of bits of information transmitted. This last
conclusion presents a major advantage of the new estimator
proposed for digital communications.

VI. CONCLUSION

The purpose of this article is to address the problem of
estimation of BER for digital communication systems. In
this context, we have proposed a semi-analytical method for
predicting the turbo coded SC-FDMA performance in terms
of bit error rate (BER), which is based on the pdf estimation
using Gaussian kernel. We have assumed that no knowledge
on the distribution of the received soft samples is available.

In the proposed method, we have derived a new expression
of the smoothing parameter, which takes into account the
histogram of the soft samples at the detector output. After,
application to turbo coded BPSK modulation and coded SC-
FDMA; we have concluded that have the same performance
with either Monte Carlo technique (MC) or the new proposed
BER estimator.
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