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Abstract—The probability density functions (PDFs) of  

derivatives in two time instants for output signals from dual 

branch Switch and Stay Combiner (SSC) in the presence of 

Rician fading are determined in this paper. The second order 

statistics such as the average level crossing rate and the 

average fade duration can be calculated by using obtained 

closed-form expressions.  
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I.  INTRODUCTION 

Fading is one of the most important causes of 
degradation signals in wireless communication systems [1]. 
Ricean fading is a stochastic model for radio propagation 
anomaly caused by partial cancellation of a radio signal by 
itself — the signal arrives at the receiver by several different 
paths (hence exhibiting multipath interference), and at least 
one of the paths is changing (lengthening or shortening). 
Rician fading occurs when one of the paths, typically a line 
of sight signal, is much stronger than the others. In Rician 
fading, the amplitude gain is characterized by a Rician 
distribution [2], [3]. 

Rayleigh fading is the specialized model for stochastic 
fading when there is no line of sight signal, and is 
sometimes considered as a special case of the more 
generalized concept of Rician fading. In Rayleigh fading, 
the amplitude gain is characterized by a Rayleigh 
distribution. 

In telecommunications, a diversity scheme refers to a 
method for improving the reliability of a message signal by 
using two or more communication channels with different 
characteristics. Diversity plays an important role in 
combating fading effect and co-channel interference and 
avoiding errors [4]-[6]. It is based on the fact that individual 
channels experience different levels of fading and 
interference. Multiple versions of the same signal may be 
transmitted or received and combined in the receiver. 
Diversity techniques may exploit the multipath propagation, 
resulting in a diversity gain, often measured in decibels.  

When space diversity is used the signal is transmitted 
over several different propagation paths. In the case of 
wired transmission, this can be achieved by transmitting via 
multiple wires. In the case of wireless transmission, it can 
be achieved by antenna diversity using multiple transmitter 
antennas (transmit diversity) and/or multiple receiving 
antennas (reception diversity). In the latter case, a diversity 
combining technique is applied before further signal 
processing takes place. 

Diversity combining is the technique applied to combine 
the multiple received signals of a diversity reception device 
into a single improved signal. Various diversity combining 
techniques can be distinguished: 

Selection combining (SC): Of the N received signals, the 
strongest signal is selected [7]. When the N signals are 
independent and Rayleigh distributed, the expected diversity 
gain has been shown to be inversely proportional to the 
number of antennas [8, 9]. Therefore, any additional gain 
diminishes rapidly with the increasing number of channels. 

Switched combining: The receiver switches to another 
signal when the currently selected signal drops below a 
predefined threshold [10, 11]. This is a less efficient 
technique than selection combining. 

Equal-gain combining (EGC): All the received signals 
are summed coherently [12]. 

Maximal-ratio combining (MRC) is often used in large 
phased-array systems. The received signals are weighted 
with respect to their SNR and then summed [13]. 

The authors determined earlier the probability density 
functions and joint probability density functions for SSC 
combiner output signals at two time instants in the presence 
of different fading distributions and used these expressions 
for obtaining better system performances, such as the bit 
error rate and the outage probability, for complex systems 
sampling at two time instants. Performance analysis of 
SSC/SC combiner in the presence of Rayleigh and log-
normal fading are performed in [14] and [15], respectively.  

In this paper, the probability density functions (PDFs) of 
derivatives for Switch and Stay Combiner (SSC) output 
signals at two time instants in the presence of Rician fading 
will be determined. The dual branch SSC combiner will be 
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considered. Subsequently, the second-order characteristics 
can be determined using these PDF [16]. 

The remainder of the document is organized in the 
following way: Section II introduces the model of the SSC 
combiner observed and basic assumptions of the problem 
under consideration. After that, in Section III,  the  
probability density function of derivative is derived and 
graphicaly presented. Last section gives some conclusions. 

II. SYSTEM MODEL 

This section discusses the SSC combiner with two 
branches in two time moments. The model is shown in 
Figure 1. The input signals are r11 and r21 in the first time 
moment, and r12 and r22 in the second time moment. The 

signals at the output are r1 and r2. The derivatives are 11r&  and 

21r&  at the first time moment, and 12r&  and 22r&  at the second 

time moment. The derivatives at the SSC combiner output 

are 1r&  and 2r& . 

 

 

Figure 2.  Model of the SSC combiner with two inputs at two 
time instants 

The indices for input signals and their derivatives are: the 
first index represents the branch ordinal number and the 
other one signs the time instant observed. The indices for the 
output signal correspond to the time instants considered.  

The probability that combiner examines first the signal 
from the first branch is P1 and P2 for the second. The values 
of P1 and P2 for SSC combiner are obtained in [1]. 

The four different cases are discussed here: 

1)   r1<rT, r2<rT     

In this case all signals are less then threshold rT, i.e.: 
r11<rT, r12<rT  r21<rT, and r22<rT. Let combiner considers 

first the signal r11. Because r11<rT, then 1r& = 21r& , and because 

of r22<rT, then 2r& = 12r& . The probability of this event is P1. If 

combiner examines first the signal r21, then r21<rT, 1r& = 11r& , 

as r21<rT, 2r& = 22r& . The probability of this event is P2. 

 

2)   r1≥rT, r2<rT     

The possible combinations are: 

- r11≥rT,    r12<rT, r22<rT,  1r& = 11r&  2r& = 22r&  P1 

- r11<rT,  r21≥rT   r22<rT, r12<rT, 1r& = 21r&  2r& = 12r&  P1 

- r21≥rT,   r22<rT, r12<rT,  1r& = 21r&  2r& = 12r&  P2 

- r21<rT, r11≥rT,    r12<rT, r22<rT, 1r& = 11r&  2r& = 22r&  P2 

3)   r1<rT, r2≥rT     

The possible combinations for this case are: 

- r11<rT, r21<rT,   r22≥rT,                1r& = 21r&  2r& = 22r&  P1 

- r11<rT, r21<rT,   r22<rT, r12≥rT,  1r& = 21r&  2r& = 12r&  P1 

- r21<rT, r11<rT,   r12≥rT,  1r& = 11r&  2r& = 12r&   P2 

- r21<rT, r11<rT,   r12<rT, r22≥rT, 1r& = 11r&  2r& = 22r&   P2 

4)   r1≥rT, r2≥rT  

Now, the possible combinations are: 

- r11≥ rT,  r12≥rT,   1r& = 11r&  2r& = 12r&   P1 

- r11≥ rT,  r12<rT, r22≥rT  1r& = 11r&  2r& = 22r&   P1 

- r11<rT, r21≥rT, r22≥rT,   1r& = 21r&  2r& = 22r&   P1 

- r11<rT, r21≥rT, r22<rT, r12<rT 1r& = 21r&  2r& = 12r&   P1 

- r21≥rT, r22≥rT,    1r& = 21r&  2r& = 22r&  P2 

- r21≥rT, r22<rT, r12≥rT,                       1r& = 21r&  2r& = 12r&  P2 

- r21<rT, r11≥rT, r12≥rT,  1r& = 11r&  2r& = 12r&   P2 

- r21<rT, r11≥rT,   r12<rT, r22≥rT, 1r& = 11r&  2r& = 22r&  P2 

III. PROBABILITY DENSITY FUNCTIONS OF DERIVATIVES 

The joint probability density functions of signal 
derivatives are: 

r1<rT, r2<rT     
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For the case that signal and its derivative are not 

correlated, after integrating of the whole range of signal 
values and some mathematical manipulations, the joint PDF 
of derivative can be expressed as:  
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The signal derivatives PDFs can be found from joint PDF 
based on: 

∫
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By replacing (5) in (6) and (7), obtained: 
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while Bi(rT) and Ci(rT) are obtained based on [(11), 17] 
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Figure 2.  The probability density functions of derivatives at the 

SSC combiner output at two time instants  
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γ() is incomplete gamma function and kε is Neumman factor 

defined by  
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The probability density functions of signal derivatives in 
the presence of Rician fading at the combiner input has 
normal distribution with zero mean value [18, 19]: 
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where i=1,2; j=1,2 and 
2222

2 mii fπσσ =&  is the variance 

and fm is maximal Doppler frequency. 

Probability density function of signal derivatives 1r&  and 

2r&  at the SSC combiner output at two time moments in the 

presence of Rician fading is obtained when (12) putting in 
previously obtained general expressions for PDFs of signal 
derivatives and replacing of CDF with [20]: 

( ), 1 , ,( ) 1 / , / , 0
ir i j i i i j i i j

F r Q A r rσ σ= − ≥             (13) 
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The PDFs of signal derivatives are presented in Fig. 2 for 

different values of parameter iσ&  in the case of channels with 

identical distribution.  

IV. CONCLUSION 

In this paper, the expressions for probability density 
functions (PDFs) of the time derivatives in two time instants 
for output signals from dual branch SSC combiner in the 
presence of Rician fading are obtained. The second order 
characteristics: the average level crossing rate and the 
average fade duration for complex combiner who makes the 
decision based on sampling at two time moments can be 
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calculated by using closed-form expressions derived in this 
paper. 
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