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Abstract —  In this paper, the probability density function of 
the Switch and Stay Combiner (SSC) output signal to noise 
ratio (SNR) at one time instant and the joint probability 
density function of the SSC combiner output signal to noise 
ratio at two time instants, in the presence of Hoyt fading, are 
determined in the closed form expressions. The results are 
shown graphically in several figures and the evaluation of the 
various parameters influence, such as distribution parameters 
and decision threshold values, is given. 

Keywords - Probability Density Function; Joint Probability 
Density Function; Hoyt Fading; Diversity Reception; SSC 
Combining. 

I.  INTRODUCTION 

The radio wave propagation through wireless 
communications channels has received a great deal of 
research interest [1], [2]. The rapid and random fluctuations 
of the signal envelope and phase in a radio channel are 
caused with two propagation phenomena: multipath 
scattering (fast fading) and shadowing (slow fading). In 
wireless communications the multipath fading is modeled 
by several distributions such as: Rayleigh, Rice, Nakagami-
m, Weibull and so on.  

Another distribution, which has recently received 
increased attention in modeling fading channels, is the Hoyt 
(Nakagami-q) distribution. The Hoyt fading model provides 
a very accurate fit to experimental channel measurements in 
a various communication applications, like mobile satellite 
propagation channels [3], and spans the range of the fading 
figure from the one-sided Gaussian to the Rayleigh 
distribution [4]. Similarly, the Hoyt distribution can be 
considered as an accurate fading model for satellite links 
with strong ionospheric scintillation [5]. Recently, in [6], an 
ergodic capacity analysis is presented, and in [7] the 

information outage probability of OSTBC over Hoyt fading 
channels has been studied. Also in [8] this model has been 
used in outage analysis of cellular mobile radio systems, 
while in [9] a capacity analysis of Hoyt fading is provided. 

In wireless communication systems, various techniques 
for reducing fading effect and influence of shadow effect are 
used. Such techniques are diversity reception, dynamic 
channel allocation and power control. Upgrading 
transmission reliability and increasing channel capacity 
without increasing transmission power and bandwidth is the 
main goal of diversity techniques. 

Diversity reception, based on using multiple antennas at 
the receiver, space diversity, with two or more branches, is a 
very efficient method used for improving system’s quality of 
service, so it provides efficient solution for reduction of 
signal level fluctuations in fading channels. Multiple 
received copies of signal could be combined on various 
ways. Among the most popular diversity techniques are: 
maximal ratio combining (MRC), equal gain combining 
(EGC), and generalized selection combining (GSC) [1], but 
their complexity of implementation is relatively high since 
they require a dedicated communication receiver for each 
diversity branch. On the other hand, among the simpler 
diversity combining schemes, the two most popular are 
selection combining (SC) and switch and stay combining 
(SSC). Selection combining (SC) and switch and stay 
combining (SSC) types of diversity systems process only one 
of the diversity branches, so they are less complicated. 

Switch and stay combining (SSC) is an attempt at 
simplifying the complexity of the system but with loss in 
performance. In this case, the receiver selects a particular 
antenna until its quality drops below a predetermined 
threshold. When this happens, the receiver switches to 
another antenna and stays with it for the next time slot, 
regardless of whether or not the channel quality of that 
antenna is above or below the predetermined threshold. The 
consideration of SSC systems in the literature has been 
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restricted to low-complexity mobile units where the number 
of diversity antennas is typically limited to two [10-11]. 
Furthermore, in all these publications, only predetection 
SSC has thus far been considered wherein the switching of 
the receiver between the two receiving antennas is based on 
a comparison of the instantaneous SNR of the connected 
antenna with a predetermined threshold. This results in a 
reduction in complexity relative to SC in that the 
simultaneous and continuous monitoring of both branches 
SNRs is no longer necessary. 

The probability density function (PDF) of the SSC 
combiner output signal at one time instant and the joint 
probability density function of the SSC combiner output 
signal at two time instants in the presence of Rayleigh, 
Nakagami-m, Weibull and log-normal fading are 
determined in [12-15], respectively. 

In this paper the probability density function of the SSC 
combiner output signal to noise ratio at one time instant and 
the joint probability density function of the SSC combiner 
output signal to noise ratio at two time instants in the 
presence of Hoyt fading will be determined. The joint 
probability density function of the SSC combiner output 
signal to noise ratio at two time instants is important when 
the decision is based on multiple samples. 

The remainder of the document is organized in the 
following way: Section II introduces the model of the SSC 
combiner is given and the probability density function of the 
SSC combiner output signal to noise ratio at one time instant 
is determined. Subsequently, in Section III, the joint 
probability density function of the SSC combiner output 
signal to noise ratio at two time instants is calculated. In 
fourth section the numerical results are presented.  

II. SYSTEM MODEL 

The use of SSC combiner with great number of branches 
can minimize the bit error rate (BER) [16]. We determine 
SSC combiner with two inputs because the gain is the 
greatest when we use the SSC combiner with two inputs 
instead of one-channel system. When we enlarge the number 
of branches the improvement becomes less [16]. The ratio 
price/complexity is the best for a system with two branches. 
Because of that it is more economic using SSC combiner 
with two inputs. 

The model of this system is shown in Fig. 1. The signal 
to noise ratios at the combiner inputs are γ1 and γ2, and γ is 
the combiner output signal to noise ratio. 

 

 

Figure 1. Model of the SSC combiner with two inputs  
 

Let see how the SSC combiner with two inputs works. 
The probability of the event that the combiner first examines 
the signal at the first input is P1, and for the second input is 

P2. If the combiner examines first the signal at the first input 
and if the value of the signal to noise ratio at the first input 
is above the treshold, γT, SSC combiner forwards this signal 
to the circuit for the decision. If the value of the signal to 
noise ratio at the first input is below the treshold γT, SSC 
combiner forwards the signal from the other input to the 
circuit for the decision, regardless if it is above or below the 
predetermined threshold. If the SSC combiner first 
examines the signal from the second combiner input it 
works in the similar way. 

The expression for the probability density of the 
combiner output signal to noise ratio will be determined 
first for the case γ <γT. Based on the work algorithm of the 
SSC combiner in this case, the probability density is equal, 
for γ <γT: 

)()()()()(
1221 21 γγγγγ γγγγγ pFPpFPp TT ⋅⋅+⋅⋅=    (1) 

In the case γ ≥ γT the expression for the probability 
density of the signal to noise ratio at the combiner output is : 
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where γT is the treshold of the decision, and the cumulative 
probability densities (CDFs) are given by [17]: 
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The probability densities of the SNRs at the combiner 
input, γ1 and γ2, in the presence of Hoyt fading, are [17]: 
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where qi are Nakagami-q fading parameters, which range 

from 0 to 1 and iγ  are average SNRs for input channels 

After putting of the expressions (4)-(7), (10) and (11) 
into (1), the probability density of the signal to noise ratio at 
the combiner output γ, is, for γ  <γT: 
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After putting of the expressions (4)-(7), (10) and (11) 
into (2), the probability density of the signal to noise ratio at 
the combiner output γ, is, for γ  ≥ γT: 
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The cumulative probability densities (CDFs) of the 
SNRs at the combiner input in the presence of Hoyt fading, 
after putting of the expressions (6), (7), into (3), are given 
by: 
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where Ie(k, x) is Rice’s Ie function [18]. 
After putting of the expressions (10) and (11) into (4) 

and (5), the probabilities P1 and P2 are: 
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The obtained expressions for the probability density 
function (PDF) of the output signal to noise ratio after 
diversity combining can be used to study the moments, the 
amount of fading, the outage probability and the average bit 
error rate of proposed system. 

III.  SYSTEM PERFORMANCES AT TWO TIME INSTANTS 

The model of the SSC combiner with two inputs at two 
time instants considering in this section is shown in Fig. 2. 
The signal to noise ratios at the inputs are γ11 and γ21 at the 
first time moment and they are γ12 and γ22 at the second time 
moment. 

 
Figure 2. Model of the SSC combiner with two inputs at two time instants 

 

The output signal to noise ratios are γ1 and γ2. The 
indexes for the input signal to noise ratios are: first index is 
the number of the branch and the other signs time instant 
observed. For the output signal to noise ratios, the index 
represents the time instant observed. 

The joint probability density function of uncorrelated 
signals at the input, with Hoyt distribution and same 
parameters, is [17]: 

 
SSC 

γ11, γ12  

γ1, γ2 

γ21,γ22 
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Modified Bessel function of the first kind is defined by 
[19]: 
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Now we have four different cases. The first case is: 
γ1<γT and γ2 <γT. In this case all signal to noise ratios at the 
input are below γT , i.e.,: γ11<γT, γ12<γT, γ21<γT, and γ22<γT.  

Let the combiner first examines the signal r11. Because 
γ11<γT, it follows that γ1=γ21, and since γ22<γT it is γ2=γ12. 
The probability of this event is P1. 

When SSC combiner first examines the signal r21, then 
γ1=γ11, because γ21<γT. Since γ12<γT, then it is γ2=γ22. The 
probability of this event is P2. After previous, the joint 
probability density of the combiner output signal to noise 
ratios at two time instants, γ1 and γ2, is, by using expression 
(14), for γ1<γT and γ2 <γT: 
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In the similar way we can derive the other joint 
probability density functions. The joint PDF is, for γ1≥γT 
and γ2<γT: 
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(19) 
 

IV. NUMERICAL RESULTS 

It is simple to present these expressions grafically using 
mathematical software, for example “MatLab”. Because of 
simplicity we supposed that the variances of both signals at 
the combiner input are equal. 

 
Figure 3. Probability density function of the combiner output signal at one 

time instant for 121 == γγ , q1=q2=0.5 
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In the case we observe one time instant, Fig. 3, the 
probability density function of the combiner output signal to 
noise ratio is determined as function of input signal to noise 
ratio γ and the threshold γT, for three different variance 
values for the same distribution parameters in branches of 
the receiver. 

When we observe two time instants, Figs. 4-6, the PDF is 
given versus input signals at two time instants, γ1 and γ2, for 
different values of the distribution parameters and the 
threshold γT. 
 

 

Figure 4. The probability density function of the combiner output signal at 
two time instants for 121 == γγ , 1=Tγ , q1=q2=0.5 

 
Figure 5. The probability density function of the combiner output signal at 

two time instants for 121 == γγ , 1=Tγ , q1=q2=0.9 

 
The bit error probability of digital telecommunication 

systems in the presence of Hoyt fading can be calculated by 
the probability density function obtained here. The outage 
probability also can be calculated using PDF. 

The performances of the Switch and Stay Combining/ 
Selection Combining (SSC/SC) combiner output signal at 
two time instants in the presence of different types of 
fading, are determined in our other papers where the results 
are shown graphically to highlight better performances of 

the SSC/SC combiner compared to classical SSC and SC 
combiners at one time instant. 
 

 
Figure 6. The probability density function of the combiner output signal at 

two time instants for 5.021 == γγ , 5.0=Tγ , q1=q2=0.5 

V. CONCLUSION 

The probability density function of the dual branches 
SSC combiner output signal at one time instant and the joint 
probability density function of the SSC combiner output 
signal at two time instants are determined in closed form. 
The obtained results are shown graphically for different 
variance values and decision threshold values. 

The bit error probability of digital telecommunication 
systems in the presence of Hoyt fading can be calculated by 
the probability density function. The system performances 
can be significantly improved using the sampling at two 
time instants. The authors showed in an other work, based 
on the results obtained in this paper, that the error 
probability is significantly reduced if the decision making is 
performed in two time instants. This fact shows that the 
results obtained in this study are very significant for further 
research and application in the designing of diversity 
receivers. 
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