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Abstract—Conventional blind beamforming algorithms have
no direct notion of the physical Direction of Arrival angle of an
impinging signal. These blind adaptive algorithms operate by
adjusting the complex steering vector in the case of changing
signal conditions and directions. This paper presents Angular
CMA, a blind beamforming method that calculates steering
angle updates (instead of weight vector updates) to keep
track of the desired signal. Angular CMA and its respective
steering angle updates are particularly useful in the context
of mixed-signal hierarchical arrays as means to find and
distribute steering parameters. Simulations of Angular CMA
show promising convergence behaviour, while having a lower
complexity than alternative methods (e.g., MUSIC).
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I. INTRODUCTION

Adaptive beamforming algorithms operate by adjusting
the beamformer steering vector in the case of changing
signal (conditions and) directions. A subclass of these adap-
tive algorithms is the subclass of the blind beamforming
algorithms. These algorithms use structural properties of
the desired signal as a reference to calculate appropriate
weight adjustments and have no direct notion of the physical
Direction of Arrival (DOA) angle of this signal [1].

Existing blind beamforming algorithms operate on all
antenna inputs and update the entire complex steering vector.
However, in mixed-signal hierarchical arrays this situation
is different. Here, beamforming is performed on multiple
levels, partly analog and partly digital. Spatial interference
is already being suppressed by the analog beamformers
before the signal is being digitized [2]. These analog beam-
formers decrease the dynamic range of the input signals to
the Analog-to-Digital Converters (ADCs), therefore require-
ments for the ADCs are lowered. The remaining interference
can be further suppressed or nulled in the digital domain.
Within this layered architecture, a classical digital blind
beamforming algorithm has merely the results of the analog
beamformers available and can only update its own digital
steering parameters. However, for deterministic steering of
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the complete hierarchical system a novel adaptive algorithm
is required that can efficiently track a desired signal and
distribute steering parameters throughout the complete array.

This paper presents a modified blind beamforming algo-
rithm that senses the presence of mispointing and calculates
the required steering angle updates (instead of weight vector
updates) to keep track of the desired signal. The desired
steering angle can now be calculated at the digital level of
the layered architecture and thereafter distributed to both
the analog and digital beamformers. This approach is based
on the conventional Constant Modulus Algorithm (CMA)
algorithm, but since it operates on the steering angle instead
of the steering vector, it is called Angular CMA.

Both CMA and Angular CMA use the Constant Modulus
(CM) property of the received signal as a reference to
calculate appropriate weight adjustments. The search space
of CMA constitutes of all complex weights that make up the
steering vector [3]. However, in Angular CMA this search
space is reduced to a single steering angle.
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Figure 1. Angular CMA based adaptive beamformer.

This work describes Angular CMA in the context of a
simplified (non-hierarchical) array architecture that is shown
in Figure 1. Herein, Angular CMA operates on narrowband
signals received by an N -element Uniform Linear Array
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(ULA). The output of the ULA at each sample instant is
a vector of N quadrature baseband samples and is indicated
by ~x. A changing DOA angle affects the antenna data ~x.
Traditional CMA compensates for these effects by updating
the steering vector ~w directly. Angular CMA first calculates
the desired steering angle θ and uses a Linear Phase Taper
(LPT) to find ~w. As shown in Figure 1, the steering angle
θ can also be used for steering analog beamformers and for
applications that require a notion of the physical DOA angle.

A basic classification of adaptive array algorithms can be
found in Section II, followed by a concise description of
CMA in Section III. Thereafter, the derivation of Angular
CMA is given in Section IV. Section V compares simulation
results of Angular CMA and traditional CMA with as
main point of comparison their convergence behaviour. The
computational complexity of Angular CMA is discussed in
Section VI. Advantages and disadvantages of Angular CMA
are discussed in Section VII. Finally, a short overview of the
most significant results and future work is given in Section
VIII.

II. RELATED WORK

Adaptive beamforming algorithms can be categorized in
three classes: temporal reference, spatial reference and blind
beamforming algorithms [1]. Temporal reference algorithms
use training sequences in the received signal to calculate
adjustments for the array steering vector. These algorithms
can only be used in case training sequences are available
and therefore their use is limited. We aim for a more generic
solution, e.g., to track Digital Video Broadcasting Satellite
(DVB-S) signals.

Spatial reference algorithms are based on the spatial
correlation characteristics of the received antenna signals. A
major application of these algorithms is DOA angle determi-
nation of the impinging signals. Some methods in this class
are: Multiple Signal Classification (MUSIC), Estimation of
Signal Parameters by Rotational Invariance Techniques
(ESPRIT) and Maximum Likelihood (ML) based techniques
[4][5][6]. Typically spatial reference algorithms have a high
computational complexity.

Blind beamforming algorithms, also known as blind de-
convolution algorithms, perform adaptive inverse filtering
in an unsupervised manner [7]. In this paper the CM
property of the received signal is exploited to perform blind
deconvolution. Originally, this idea was proposed by Godard
[8]. Independently of Godard, a special case of this idea
was published by Treichler and Agee [9]. They named
their algorithm the Constant Modulus Algorithm (CMA).
The algorithms from Godard and from Treichler and Agee,
minimize a nonconvex cost function by adapting complex
weights. In contrast to adapting all complex weights this
work introduces a special case of CMA that directly acts on
the array steering angle.

III. CONSTANT MODULUS ALGORITHM (CMA)
CMA penalizes deviation of the beamformer output from

a constant modulus. The cost function J is defined as
the expected deviation of the squared modulus beamformer
output y with respect to the constant R2 [7]:

J = E{(|y[k]|2 −R2)2} (1)

Herein, k is an index for different sampling instants
and ‘E’ represents expectation. R2 is chosen such that the
gradient of J is zero when minimum costs are reached and
is written as:

R2 =
E[|x[k]|4]

E[|x[k]|2]
(2)

For an ideal normalized CM beamformer output the con-
stant R2 is equal to one. Therefore, in our further analysis
of CMA and in the derivation of Angular CMA the constant
R2 is assumed to be one. The cost function J is illustrated
in Figure 2.

Minimum costs are reached when the beamformer out-
put y has unit modulus. The beamformer output can be
expressed as ~wH~x. The aim of CMA is to minimize J by
altering ~w. A stochastic gradient descent technique can be
used to attain this goal. The gradient of J with respect to ~w
is found as follows:

J = E
{

(|y|2 − 1)2
}

(3)

∇~wJ = 2 · E
{

(|y|2 − 1) · ∇~w(
∣∣~wH~x∣∣2 − 1)

}
(4)

∇~wJ = 2 · E
{

(|y|2 − 1) · ∇~w(~wH~x~xH ~w − 1)
}

(5)

Continue using the fact that ~x~xH is a Hermitian matrix and
∇~w ~w

HA~w = 2A~w holds for every Hermitian matrix A [10]:

∇~wJ = 4 · E
{

(|y|2 − 1) · ~x~xH ~w
}

(6)

∇~wJ = 4 · E
{

(|y|2 − 1) · y∗~x
}

(7)

Based on Equation 7 the minimizer for the stochastic
gradient descent version of CMA is found:

~w[k + 1] = ~w[k]− µ · (|y[k]|2 − 1) · y[k]∗~x[k] (8)

Herein, µ absorbs the factor 4 and determines the conver-
gence speed.
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Figure 2. Surface plot of the CMA cost function (R2 = 1).
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IV. ANGULAR CMA

The previous section mentions that the CMA minimizer
is found by expressing y in Equation 3 as ~wH~x, followed by
derivation of the gradient of J with respect to ~w. Angular
CMA is constructed by expressing y in Equation 3 as
~w(θ)H~x, followed by derivation of J with respect to θ.
The term ~w(θ) is called a Linear Phase Taper (LPT) and
is explained in the next section. Successively, the error-
performance surface and the derivation of Angular-CMA
minimizer are discussed.

A. Linear Phase Taper (LPT)

A LPT is a linear phase variation across the array aperture,
which produces a beamshift of the main beam without any
change in sidelobe structure [11]. Figure 1 shows that given
a desired steering angle θ the LPT calculates the required
output steering vector ~w. If one of the outer array element
acts as a phase reference then the LPT for an N -element
ULA can be written as:

~w(θ) = eφ(θ)·~n, ~n = [0 . . . (N − 1)]T (9)

With φ(θ) defined as:

φ(θ) =
j2π · d sin(θ)

λ
(10)

Herein, d represents the spacing of the antenna elements and
λ the wavelength of the desired signal.

B. Error-performance surface

The dependence of the cost function J on the weights
~w is called the error-performance surface [7]. For CMA
this dependence is an (N + 1)-dimensional surface with
N degrees of freedom, where N is the number of antenna
elements. In the case of more than two degrees of freedom
such a surface is hard to visualize.

The error-performance surface of Angular CMA is two-
dimensional with only one degree of freedom (the steering
angle θ). Therefore, its error-performance surface can be
visualized using a two-dimensional plot. Mathematically,
this surface can be written as:

J(θ) = (
∣∣~w(θ)H~x

∣∣2 − 1)2 = (
∣∣∣(e j2π·d sin(θ)

λ ·~n)H~x
∣∣∣2 − 1)2

(11)
Herein, the expectation operator ‘E’ is dropped because
noiseless antenna data is taken for plotting.

Figure 3 shows the error-performance surface of Angular
CMA for a λ

2 element spacing and signals arriving from
broadside (θ = 0). The surface is drawn for a two-, four-
and eight-element array. For all three array configurations
holds that a steering angle θ of zero degrees has the lowest
costs. This behaviour is expected because the signals arrive
from the broadside direction.

Note that, based on Figure 3 (and Equation 11), the error-
performance surface of Angular CMA has the appearance of
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Figure 3. Error-performance surface of Angular CMA.

a vertically flipped beam pattern. An increase in the number
of antenna elements results in a smaller angular range where
convergence to the global minimum can be guaranteed. This
region corresponds to the Inter-Null Beamwidth (INBW) of
an array pattern. The INBW is defined as the difference
between the nearest two nulls around a given angle [1]. If
this given angle is the center of the main beam then the
INBW can be expressed as follows:

INBW = 2 sin−1(λ/(dN)) (12)

Thus, for an eight element array with λ
2 element spac-

ing Angular CMA has a convergence region width of
2 sin−1( 1

4 ) ≈ 29◦.
DOA estimation algorithms, such as MUSIC, can be used

to provide an initial steering angle for Angular CMA [4].
The accuracy of this estimate should be within the angular
range of Angular CMA that provides convergence to the
global minimum.

C. Derivation of the minimizer

The minimizer of Angular CMA can be found by express-
ing y in Equation 3 as ~w(θ)H~x = (eφ(θ)·~n)H~x. Thereafter,
the first derivative of J with respect to θ is determined:

J(θ) = E{(
∣∣∣(eφ(θ)·~n)H~x

∣∣∣2 − 1)2} (13)

∂

∂θ
J = E{2(|y|2 − 1) · ∂

∂θ
((eφ·~n)H~x~xHeφ·~n − 1)} (14)

∂

∂θ
J = 2E{(|y|2 − 1) · ∂

∂θ
(~xHeφ·~n(e−φ·~n)T~x− 1)} (15)

Continue by writing eφ·~n(e−φ·~n)T as matrix B:

∂

∂θ
J = 2E{(|y|2 − 1) · ∂

∂θ
(~xHB~x− 1)} (16)

B =

 1 · · · eφ·(n0−nN−1)

... 1
...

eφ·(nN−1−n0) . . . 1

 (17)
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The derivative of J with respect to θ is written in Equation
18. Note that φ is dependent on θ.

∂

∂θ
J = 2E{(|y|2 − 1) · (~xHB′(θ)~x)} (18)

Where B′(θ) = ∂
∂θB(θ) can be written as:

0 · · · (n0 − nN−1)φ′e(n0−nN−1)φ

... 0
...

(nN−1 − n0)φ′e(nN−1−n0)φ . . . 0


(19)

Herein, φ′(θ) is ∂
∂θφ(θ):

φ′(θ) =
j2π · d cos(θ)

λ
(20)

The use of an instantaneous gradient estimate of Equation
18 yields the following algorithm:

θ[k + 1] = θ[k]− µ(|y[k]|2 − 1) · (~x[k]HB′(θ[k])~x[k])
(21)

Herein, the value 2 is absorbed in the convergence factor µ.

V. SIMULATION RESULTS

In this section, the convergence of Angular CMA is ex-
amined by looking at the cost and Mean Square Error (MSE)
behaviour during adaptation. Simulations are performed for
both Angular CMA and traditional CMA to provide means
for comparison.

For simulation the adaptive beamformer architecture pre-
sented in Figure 1 is implemented. An eight element ULA
with λ

2 element spacing is assumed. The baseband samples
are Quadrature Phase-Shift Keying (QPSK) modulated and
have a Signal-to-Noise Ratio (SNR) of 16 dB. Note that
QPSK signals possess the CM property, which is required
by both Angular CMA and CMA.

A. Learning curve

The performance of an adaptive algorithm is often studied
by looking at the ‘learning curve’ of the cost function J . As
mentioned in the theoretical analysis, an eight element array
running Angular CMA should be able to converge to the
correct array steering angle if the initial steering angle stays
within the 29◦ wide convergence region. Validity of this
statement is checked in simulation. This is done by setting
the DOA angle to broadside (0◦), while having the initial
steering angle set to one of the extremes of the convergence
region (0◦ ± 29

2 ≈ ±14◦). Figure 4 shows that Angular
CMA rapidly convergences to the correct steering angle and
consequently minimizes the costs.

The previous simulation uses a convergence factor µ of
5 · 10−2, in contrast to 5 · 10−3 typically used for CMA.
Angular CMA is still robust with a large convergence factor,
because the gradient descent ensures global minimization if
the steering angle is initially within the convergence region.

In an attempt to compare the convergence properties of
Angular CMA and CMA, the cost behaviour of CMA is
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Figure 4. Convergence behaviour of Angular CMA (µ = 5 · 10−2).

plotted in Figure 5 using the same simulation parameters
as in Figure 4. Clearly, CMA takes more samples to con-
vergence than Angular CMA. The rapid convergence of
Angular CMA is caused by its drastic search space reduction
from N complex weights to one real value. A theoretical
analysis on the convergence properties of Angular CMA and
choosing the factor µ is beyond the scope of this paper.
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Figure 5. Convergence behaviour of CMA (µ = 5 · 10−2).

B. Mean Square Error (MSE)

A common method to evaluate an equalizer is to deter-
mine the MSE of its output signal (predetection error). Both
CMA and Angular CMA do not correct phase offsets in
the beamformer output signal. This phase blindness should
not affect the MSE of their output signals, therefore the
following method is used to calculate the MSE:

MSE ∆
= min

α
E{
∣∣~w[k]H~x[k]− ejαs[k]

∣∣2} (22)

Herein, s[k] represents the (noiseless) transmitted signal
at sample instant k. This unconventional method of MSE
calculation is introduced by Treichler and Agee [9].

Estimates for the MSE of the CMA and Angular CMA
outputs can be seen in Figure 6. The estimates are based on

45

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-140-3



-40

-35

-30

-25

-20

-15

-10

-5

0

0 400 800 1200 1600 2000

M
S

E
(d

B
)

Sample

Angular CMA
CMA

Figure 6. MSE comparison (µ = 5 · 10−2).

the same scenario as in the previous simulation. The results
are smoothed by a moving average filter to reveal trends.

Figure 6 reveals that the MSE for both algorithms drop,
as expected, on the same time scale as the costs in Figure 4
and Figure 5. Interestingly, the MSE level of Angular CMA
after convergence is below that of CMA.

VI. COMPLEXITY ANALYSIS

A short analysis on the complexity of Angular CMA
is given to assess scalability and implementability. The
computational complexity of Angular CMA is compared
with that of CMA and MUSIC. MUSIC is included in
the comparison because it provides DOA estimates of all
impinging signals. Therefore, repeated execution of MUSIC
could be used for tracking. However, this requires a method
to identify the DOA of the desired signal out of all angles
found by MUSIC.

The computational order of complexity of the algorithms
is determined by counting the number of complex Multiply-
Accumulate (MAC) operations. The complexity of Angular
CMA is determined based on Equation 21. Calculation of
matrix B′(θ[k]) is kept out of the complexity analysis since
we expect that, by exploiting its Hermitian symmetry, this
can be done very efficiently. Therefore, not taken calculation
of B′(θ[k]) into account, the order of Angular CMA is
dominated by the matrix-vector multiplication B′(θ[k])~x[k]
and is for that reason Θ(N2). Herein, N is the number of
antenna elements.

The stochastic gradient descent version of CMA, often
referred to as Stochastic Gradient CMA (SG-CMA), is of
order Θ(N) [12]. MUSIC is computationally much more
expensive with a complexity of order Θ(N3) [13]. Thus, the
complexity of Angular CMA is in between that of CMA and
MUSIC.

VII. DISCUSSION

The reduction of the CMA search space from N complex
weights to a single steering angle has certain important

implications. The main advantages and disadvantages of
Angular CMA are discussed in this section.

Traditional CMA is attractive for application in array
architectures because of its insensitivity to array imperfec-
tions [3], low complexity and because training sequences
are not required. Since Angular CMA controls steering by
distributing only a single steering parameter, it can not
correct for small array imperfections.

Despite the fact that a single steering parameter cannot
cope with array imperfections, it is advantageous in systems
where the dynamics of the source can be expressed by a
Linear Time-Invariant (LTI) system. When dealing with such
a system the notion of a physical DOA angle can be input to
a state estimation technique, such as the Kalman filter [7].
Erratic behaviour in the steering angle can then be corrected
and most likely the update rate of Angular CMA can be
further reduced.

CMA minimizes the effect of interferers by placing nulls
at their respective DOA angles. Angular CMA is restricted
to array responses that can be generated by a LPT. There-
fore, it cannot place nulls as CMA can. Nonetheless, after
correct convergence of Angular CMA, exact numbers on the
suppression of other directions can be given. These numbers
are found by evaluating the LPT array response based on the
steering angle output from Angular CMA. In hierarchical
arrays exact directivity properties for each array level ease
design choices for the aggregate structure.

VIII. CONCLUSION AND FUTURE WORK

Angular CMA, a modified version of CMA, is presented
in this work. The algorithm calculates steering angle updates
to keep track of the desired signal. Within the context
of hierarchical arrays it provides a means for efficiently
tracking and distributing steering parameters. The cost be-
haviour of Angular CMA is compared with that of CMA.
Angular CMA provides faster convergence and a lower MSE
floor. The complexity of the algorithm is of order Θ(N2).
Compared to the complexity of other methods for steering
angle calculation (e.g., MUSIC), our method is favorable.

Angular CMA is investigated within the context of a
simplified non-hierarchical beamformer. Further research
should look at the applicability of the algorithm in a hier-
archical setup in simulation and in practice. The algorithm
cannot correct for small array imperfections. Whether these
influence the convergence of Angular CMA should be
examined. Our current work is focused at extending the
angular convergence region by exploiting other optimization
techniques and incorporating other cost functions to deal
with phase blindness [14].
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