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Abstract—A wireless sensor network consists of an area of
interest in which a group of nodes have been randomly located.
Furthermore, each node is able to sense activity in the area
surrounding it, and thus, the network can be used for intrusion
detection. Due to the limited lifetime of sensors, the network
lifetime is maximized by organizing sensors into barriers, where
each barrier is a subset of sensors that prevents the intruder
from crossing the area. However, if not carefully chosen, sensor
barriers can have a breach, i.e., there is a location between two
barriers that are scheduled consecutively that allows the intruder
to cross the area undetected. Given a set of barriers, deciding if
there is a breach-free schedule of these barriers is intractable,
which has led to the development of several heuristics. In earlier
work, we introduced reinforced sensor barriers, which prevent
the crossing of the area of interest in more than one direction,
and presented heuristics for obtaining the maximum number
of breach-free reinforced barriers. However, the computational
complexity of this heuristic is high. In this paper, we present two
additional heuristics with lower computational complexity, and
compare their performance with our initial heuristic.

Keywords–Sensor networks; Barrier coverage; Security
breaches.

I. INTRODUCTION

A wireless sensor network consists of a collection of
computing nodes that may communicate wirelessly and are
able to sense the area around them. The sensor nodes are
typically spread randomly over an area of interest, such as
a battlefield. Furthermore, since they are wireless, we assume
they are battery operated, and thus have a limited lifetime [1].

An obvious possible function of a sensor network is
intrusion detection, in which the objective of the sensor nodes
is to detect an intruder that is attempting to cross the area of
interest. Usually, sensors have a sensing range that is smaller
than the area of interest. This requires multiple sensing nodes
to be operating at the same time.

To maximize the lifetime of the network, the sensors can
be divided into disjoint groups. These are then organized in
a sleep-wakeup schedule, where one group is active while
the remaining groups are in sleep mode. Once the battery is
exhausted in the active group, another group is activated. This
continues until the battery is exhausted in all nodes.

The amount of coverage of the area of interest is typically
divided into two categories: full coverage and partial coverage.
In full coverage, every group of sensor nodes must have a
collective sensing coverage of the entire area of interest [2]–
[5]. In partial coverage, each sensor group may only cover
part of the area of interest. In this case, the objective is not to
detect the presence of an intruder, but instead the movement

of the intruder as it crosses the area [6]–[8]. Our focus is in
partial coverage.

A popular form of partial coverage is barrier coverage.
In this case, each group of sensors forms a continuous bar-
rier from side-to-side across the area such that intruders are
prevented from crossing undetected. Sensor barriers have been
studied extensively due to their many applications [9]–[16].

In Fig. 1(a), we show four sensor barriers, B1 through
B4, that prevent an intruder from crossing the rectangular area
of interest from top to bottom. Only one of the barriers will
be active at any moment, and thus the network lifetime is
about four-times that of a sensor node. Typically, a schedule
is formed in which the barriers are scheduled consecutively,
and a barrier is activated only after the previous barrier is
totally devoid of power.

The problem of dividing the sensors into the maximum
number of disjoint barriers has been solved in polynomial
time [11]. The approach is based on transforming the sensor
connectivity graph into a maximum-flow problem.

However, care must be taken when choosing the order
in which barriers are activated, because some orderings may
expose a vulnerability known as a barrier breach [17] [18].
For some barrier sleep-wakeup schedules, it is possible for an
intruder to cross the area of interest after activating one barrier
and deactivating the previous one. The following example
illustrates this.

Consider again the four barriers in Fig. 1(a), and consider
scheduling the barriers in order of their number, i.e., B1, B2,
B3, and finally B4. Consider the point highlighted by the dark
star. An intruder can remain at the top of the area while barriers
B1 and B2 are active. Once barrier B3 becomes active (and the
former barriers inactive), the intruder moves to the dark star
position. Note that the sensors of B4 are not yet active. When
B4 is activated and B3 deactivated, the intruder can cross the
area and reach the users undetected. A similar situation occurs
if B4 is scheduled first before B3.

It is known that, given a set of disjoint barriers, finding
the longest breach-free schedule of the given barriers is NP-
complete [19]. This has prompted several heuristics to be de-
veloped [17]–[21], including a probabilistic algorithm in [19].
The complexity of finding the longest breach-free schedule of
barriers from a random placement of nodes remains an open
problem.

In earlier work, we introduced a stronger form of a barrier,
called reinforced barrier [22]. To illustrate this barrier, con-
sider Fig. 1(b), in which the area of interest is a rectangle. The
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Figure 1. Sensor Barriers and Breaches.

objective is to prevent an intruder from crossing the area by
entering from any of its sides and exiting via another side. For
example, intrusion I1 is a vertical intrusion, intrusion I2 is an
horizontal intrusion, while I3 is a corner intrusion (by turning
from vertical to horizontal).

To prevent these intrusions, consider Fig. 1(c), where two
reinforced barriers are depicted: the first barrier is depicted
with solid lines and the second with dashed lines. Note that
each reinforced barrier consists of two diagonal barriers, one
barrier from corner U1 to corner V1, and another barrier from
corner U2 to corner V2. Note also that the two diagonal barriers
need not be disjoint. By combining two diagonal barriers, none
of the above intrusions are possible.

Note that barrier breaches are still possible, as shown in
Fig. 1(c). If we schedule the solid line barrier first, then an
intruder can arrive to the location marked by the star. Once
the next barrier is activated and the first barrier deactivated,
the intruder can cross the area and exit via the right side.

Although heuristics to obtain the longest schedule of re-
inforced barriers were presented earlier in [22], a heuristic
for a breach-free schedule of reinforced barriers was not ad-
dressed until our recent work [23]. However, the computational
complexity of this heuristic is high. In this paper, we present
two additional heuristics with lower computational complexity,
and compare their performance with our initial heuristic via
simulations.

The rest of this paper is organized as follows. Section II
presents background and definitions. In Section III, we present
our heuristics. Simulation results are presented in Section IV.
The conclusion is given in Section V.

II. BACKGROUND

In this section, we present definitions and discuss earlier
methods, before we present our heuristic in Section III.

A. Barrier Schedules
We consider a set S containing n sensor nodes that

have been deployed randomly over a rectangular area. A
barrier consists of a subset B of S arranged in a sequence,
s1, s2, . . . , s|B|, such that the sensor ranges of si and si+1,
1 ≤ i < |B|, overlap with each other, and furthermore, the

sensing range of s1 overlaps one of the sides of the rectangle,
while the sensing range of s|B| overlaps the opposite side of
the rectangle.

In Fig. 1(a), four barriers are shown, B1 through B4. These
barriers are horizontal. A barrier is horizontal if the sides being
overlapped are the left and right sides, and is vertical otherwise.
We focus first on horizontal barriers; reinforced barriers are
presented further below.

A barrier schedule of length k consists of a sequence of
barriers, B1, B2, . . . , Bk, such that no two pairs of barriers in
the schedule have sensors in common.

Finding the longest barrier schedule has been solved in
polynomial time by Kumar et al. [11] with their algorithm
known as Stint. The method builds a flow graph F consisting
of all sensor nodes in S plus two fictitious nodes, u and v.
Node u has an edge with all nodes overlapping the left border
of the area, while v has an edge with all the nodes overlapping
the right area.

Graph F is constructed in such a way that the maximum
flow from u to v corresponds to the number of sensor barriers,
and a path with non-zero flow corresponds to a barrier.

B. Barrier Breaches
An ordered pair (B1, B2) of horizontal barriers forms a

breach if there is a point p not covered by either barrier such
that a line can be drawn from the top of the area to p without
overlapping the sensing area of B1, and furthermore, a line can
be drawn from p to the bottom of the area without overlapping
the sensing area of B2. A barrier schedule B1, B2, . . . , Bk is
breach-free if every pair of consecutive barriers in the sequence
does not form a breach.

Consider the two points marked in Fig. 1(a): the diamond
between B1 and B2, and the star between B3 and B4. Note that
the pair (B3, B4) forms a breach since the intruder can reach
the star from the top side while B3 is active, and switching to
B4 allows the intruder to reach the users at the bottom of the
area. Note also that pair (B1, B2) does not form a breach, but
pair (B2, B1) does.

Given a set of sensors and their location, finding the longest
breach-free barrier schedule is desirable. It is known that, given
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a set of barriers, obtaining the longest breach-free schedule of
the given barriers is NP-complete [19]. Thus, it is likely that
the general problem where only the sensors are given is also
NP-complete.

Some heuristics, such as those presented in [17] [18], create
their schedule of barriers by first obtaining a set of barriers
from the Stint algorithm, followed by selecting a subset of
these barriers that do not cross each other. Others try all
possible schedules obtained from the Stint barriers, or try them
at random [19].

Note that Stint is not guaranteed to provide as output a set
of barriers that is breach free even though one exists [17].

In [20], we presented another approach to obtain breach-
free schedules based on ceilings and floors of barriers, as
follows.

A sensor barrier, as shown in Fig. 2(a), divides the area of
interest into an upper region and a lower region. The ceiling
of a barrier B consists of all points p along the border of the
sensing radius of each sensor in B such that one can travel
from p to any point in the upper region without crossing the
sensing area of any sensor. The floor is defined similarly.

In Fig. 2(b), we show three barriers. For the schedule B1,
B2, B3, a breach-point is marked by a star. Note that the floor
of B3 crosses over the ceiling of B2, which cases the breach.
The approach to build the barriers is thus illustrated in Fig.
2(c), where the barrier construction begins at the top of one
side of the area, following the ceiling obtained from the top
most nodes until the opposite side is reached. The process is
then repeated to obtain subsequent barriers in the schedule.

C. Reinforced Barriers

A reinforced barrier R is a set of sensors such that a line
cannot be drawn starting from a side of the rectangle and
ending at a different side without crossing the sensing area
of a sensor. Note that this requires each of the corners to be
covered by at least one sensor, and it also implies that there
is a subset R′ of R such that R acts both as a horizontal and
vertical barrier (i.e., a diagonal barrier). By symmetry, R is
the union of two diagonal barriers.

Similarly, an ordered pair (R1, R2) of reinforced barriers
forms a breach if there is a point p not covered by either barrier
such that a line can be drawn from some side of the area to p
without overlapping R1, and furthermore, a line can be drawn
to p to a different side of the area without overlapping R2. A
reinforced-barrier breach is shown in Fig. 1(c).

III. BREACH-FREE REINFORCED BARRIERS HEURISTICS

In this section, we present three heuristics for obtaining
the longest breach-free schedule of reinforced barriers. We
introduced the first one in [23], in which all possible com-
bination of barriers are explored. Due to its complexity, we
present below two additional heuristics. One of these is similar
to our first heuristic, but uses instead a random walk to find
the schedule of barriers. The other is based on a geometrical
flooding similar to the one we proposed in [20] for simple
horizontal barriers. All three heuristics are then compared via
simulations in Section IV.

A. Diagonal Barriers Scheduling
In this sub-section, we present the heuristic that we intro-

duced in [23]. As shown in Fig. 1(b), two diagonal barriers are
needed to form a reinforced barrier. Note that this is always the
case even when the diagonal barriers are not apparent, which
we argued in [23].

Our approach consists in first obtaining the maximum
number of disjoint diagonal barriers from U1 to V1, and then
combining them with the maximum number of disjoint barriers
from U2 to V2. This is illustrated in Fig. 1(c).

Let D1 be a maximal set of disjoint barriers from U1 to V1.
Similarly, let D2 be a maximal set of disjoint barriers from U2

to V2. To obtain the set of barriers D1 and D2, we can take
advantage of Stint by running it twice: the first time to obtain
D1, and the second time to obtain D2, as shown in [23].

The union of any two barriers B1 and B2, where B1 ∈ D1

and B2 ∈ D2, forms a reinforced barrier, R. Note in particular
that B1 and B2 do not need to be disjoint; this is because
they will be activated simultaneously. We denote the set of all
reinforced barriers with R, i.e., R = D1 ×D2.

Our objective is to find the maximum breach-free schedule
using the reinforced barriers in R. To accomplish this, we build
a graph G whose nodes are elements of R. A directed edge
(R1, R2) exists in G if the pair (R1, R2) does not constitute a
breach. In this way, obtaining the longest breach-free schedule
is equivalent to the problem of finding the longest simple
path in G. Finding the longest path in a directed graph is
an NP-Complete problem. Thus, all possible paths have to be
examined.

The above approach is similar to the one used in [19],
except that the problem considered in [19] is obtaining a
maximum breach-free schedule of horizontal barriers.

However, there is a significant difference between rein-
forced barriers and horizontal barriers: reinforced barriers are
not independent of each other. If a barrier R = B1

⋃
B2,

where B1 ∈ D1 and B2 ∈ D2, is used in the schedule, then
for any B′ ∈ D2, R′ = B1

⋃
B′ cannot appear in the same

schedule. This is because the diagonal barrier B1 takes part
in both reinforced barriers. We refer to the pair R and R′ as
being incompatible.

Note that, because incompatible barriers cannot appear in
a schedule, then the length of the schedule is upper bounded
by λ = min(|D1|, |D2|). This limits the search for paths of
length at most λ.

B. Randomized Diagonal Barriers
Exploring all possible paths in the above heuristic is of the

order of |R|λ. Given that |R| = |D1| · |D2|, this is at least
λλ, which grows quite quickly with λ. To help mitigate this
complexity, we propose a random search of graph G in order
to find its longest path. We based our method in the random
algorithm from [24] to find the longest path in directed graphs.
A similar method is used in [19] to find the longest path for
horizontal barriers.

Consider searching for a simple path of length L, L ≤ λ,
in G. First, randomly color the nodes of G using L colors.
The existence of a path where all nodes have distinct colors,
i.e., a monochromatic path, can be obtained using dynamic
programming as follows. Let C be a subset of the L colors,
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Figure 2. Barrier Breach Avoidance.

and R be a reinforced barrier, i.e., R is a node in G. Let
path(C,R) be a boolean function that returns true if there is
at least one monochromatic path of length |C| using exactly
the colors in C whose last node is R. Let c be a color, c /∈ C.
Then,

path(C ∪ {c}, R) =
⟨∃R′, (R′, R) ∈ G ∧ path(C,R′)⟩∧color(R) = c.

One issue remains to be addressed: incompatible barriers.
It is possible that the path found for path(C,R′) contains
diagonal barriers that are part of R. To remedy this, we change
path(C,R) from type boolean to type set, and it contains the
set of diagonal barriers that have been used in creating the
path found for path(C,R). Thus, if R = ⟨B1, B2⟩, where B1

and B2 are its diagonal barriers, then

path(C ∪ {c}, R) = path(C,R′) ∪ {B1, B2}
for some R′ if
(R′, R) ∈ G∧path(C,R′) ̸= ∅∧ color(R) = c,

path(C ∪ {c}, R) = ∅ otherwise.

Finally, since λ is an upper bound on the size of the breach-
free schedule, the actual schedule may be smaller. Hence, we
begin searching with L = λ, and decrease L if no path is
found. In addition, since the search is random, it has to be run
multiple times for each value of L to increase the likelihood
of success. We chose to run the algorithm 2 ·L times whenever
we search for a path of length L. This generated good results
during our evaluations.

C. Flooding
Our final heuristic is based on the ceiling heuristic that we

presented in [20], and is illustrated in Fig. 2(c). Recall that
we begin at the top-most node, and follow the ceilings of the
sensors until the opposite side of the area is reached. Since we
are doing reinforced barriers, this is not sufficient. We therefore
continue following the ceilings, all around the area, until we
reach the original node. This is illustrated in Fig. 3. The first
barrier consists of the dark circles (sensor areas). These nodes
are then removed, and the process is repeated to obtain the
next barrier, shown as gray circles.

We refer to this method as the flood method, in the sense
that if we picture the sensor areas as being sandbags and
the surrounded area flooded with water, then the sensor areas

U1

U2 V1

V2

Figure 3. Flood Reinforced Barriers.

in contact with the water will form the initial barrier. These
sensors are removed and the next sensor areas in contact with
the water form the next barrier, and so on.

A couple of observations must be highlighted.

• The resulting barrier must cover all four corners of the
area of interest. If this is not the case, then the barrier
has to be discarded.

• It is possible to optimize the resulting barrier by
removing some sensor nodes in a manner similar
to what we proposed in [21]. For example, if three
consecutive sensors in the barrier, s1, s2, s3, are such
that the sensing areas of s1 and s3 overlap, then s2 is
redundant and can be removed. As mentioned in [21],
care must be taken that by removing sensor nodes we
do not cause the next barrier to cause a breach with
the previous one.
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Figure 4. Number of sensors vs schedule length in square area.

IV. SIMULATION RESULTS

In this section, we compare the performance of the three
heuristics: Diagonal Barriers Scheduling (DBS), Randomized
Diagonal Barriers (RDB), and Flooding (FL). Because the
RDB and FL heuristics have lower complexity than the DBS
heuristic, our objective is to determine if these lower com-
plexity heuristics are capable of providing results that are
similar to the higher-complexity DBS heuristic. In addition,
we compare all of these against the upper bound λ, where
λ = min(|D1|, |D2|).

The area of interest is a square of size 500× 500 meters.
We also simulated a rectangular area of 400 × 600 meters.
Sensor nodes are randomly deployed in each area, ranging
from 100 to 260. In addition, the radius of the sensing area
of sensors ranges from 60 to 120 meters. Every point in our
plots corresponds to the average of 100 simulations.

We start with a sensing area of 500×500 meters. Figure 4
plots the number of sensors vs. the resulting reinforced breach-
free schedule length. The sensor radius is maintained at 90
meters. As the number of sensors increases, the size of D1

and D2 also increase, along with the upper bound λ. Note
that the upper bound is oblivious to the existence of barrier
breaches, and the maximum breach-free schedule is expected
to be less than this.

Heuristic DBS is able to generate schedules close to the
upper bound. This is at the expense of significant computation
time, in the order of several days for the largest case of 250
sensors, vs. just a few hours for RDB, and a few minutes for
FL. RDB matches closely the results of DBS, and thus the
random algorithm is able to find schedules close to those of a
full search of all paths. Heuristic FL, on the other hand, returns
significantly smaller barrier schedules.

In the next figure, we plot the sensor radius vs. the resulting
reinforced breach-free schedule length. The number of sensors
is maintained constant at 250. As the radius increases, the
diagonal barrier sets D1 and D2 increase in size, and therefore,
so does the total number of reinforced barriers from which a
schedule can be obtained. The results are similar to those of
the previous figure. That is, DBS is close to the upper bound,
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Figure 5. Radius vs. schedule length in square area.
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Figure 6. Number of sensors vs schedule length in rectangular area.

and RDB closely matches DBS. Also, FL is unable to obtain
schedules of significant size.

The scenarios in Fig. 6 and 7 are similar to those in Fig. 4
and 5, except that the area is now a 400×600 meters rectangle.
A similar behavior as before is observed in these scenarios.

V. CONCLUSION

We have presented two new heuristics to obtain the longest
breach-free schedule of reinforced barriers in a sensor network.
These were compared against the heuristic with high complex-
ity, DBS, that we introduced in [23]. Of the two new heuristics,
one clearly outperforms the other, and performs very closely
to the DBS heuristic.

We have several directions for possible future work. We
have used sensor ranges that are uniform in size. As mentioned
earlier, using Stint as a foundation for our heuristics does not
guarantee that the barriers obtained will include those of the
optimal schedule. Having different sensor ranges may have an
impact on this, and result on schedules of smaller size. Finally,
we will also consider studying scenarios in which sensors are
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placed in more strategic locations rather than randomly. For
example, a large number of sensor nodes could be located
near the corners of the area and also in the center of the area,
which presumably would increase significantly the number of
reinforced barriers.
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