
Net-Preflight Check:Using File Transfers to Measure
Network Performance before Large Data Transfers

Bashir Mohammed
Scientific Data Management(SDM)

Lawrence Berkeley National Lab
Berkeley,CA, USA

email:bmohammed@lbl.gov

Mariam Kiran
Energy Sciences Network(ESnet)
Lawrence Berkeley National Lab

Berkeley,CA, USA
email:mkiran@es.net

Bjoern Enders
Natl. Energy Research Sci.Comp.Center(NERSC)

Lawrence Berkeley National Lab
Berkeley, CA, USA

email:benders@lbl.gov

Abstract—During bulk data transfer for exascale scientific
applications, measuring the available throughput is very useful
for route selection in high-speed networks, Quality of service
verification, and traffic engineering. Recent years have seen
a surge in available throughput estimation tools, especially in
Research and Education (R&E) Networks. Some tools have
been proposed and evaluated in simulation and over a limited
number of Internet paths. However, there is still significant
uncertainty in the performance and flexibility of these tools at
large. Furthermore, some existing tools’ primary concern is the
lack of network performance history or a memory that stores
previous configurations and network measurements. This paper
introduces Net-PreFlight, a simple end-to-end, lightweight tool
for measuring available throughput, traceroute, and maintains
memory, compared to existing tools like Iperf. Our tool focuses
on throughput measurements, flexibility, a retentive memory,
security, and performance. We conduct experiments between
multiple Data Transfer Node (DTN) setups in isolated and public
network setups to measure how throughput measurements fare
in the two domains. In all scenarios, Net-Preflight produces
comparable results as established tools and hence positions itself
as a complementary tool for situations where the deployment of
Iperf or perfSONAR is not possible. In addition, Net-Preflight
features retentive memory to easily compare past and present
measurements. Our analysis reveals that using socket and file
transfer protocols performs well in initial measurements and also
indicates that parallel TCP streams are equivalent to using a large
maximum segment size on a single connection in the absence of
congestion. Here, we lay the foundation to build a new monitoring
system for DTN bulk transfers that target end-users who require
optimum network performance.

Keywords—Throughput measurement, Data Transfer, TCP,
Network performance monitoring

I. INTRODUCTION

Recent years have seen a strong interest in techniques
for estimating available throughput and bandwidth along an
Internet network path. The path diversity in R&E or overlay
networks creates a need for estimating the available throughput
over these paths as a method for choosing the best time
and network route before initiating a bulk data transfer [1].
However, in an overlay or traditional network, one can as-
sume the cooperation of both the sender and the receiver,
which is necessary for most probing techniques. Available
throughput measurement during bulk data transfer for exascale
scientific applications is very useful for route selection in
overlay networks, Quality of service verification and traffic

engineering [2]. A few tools have been proposed and evaluated
in simulation and over a limited number of internet paths, but
there is still great uncertainty in the performance of these tools
over isolated and public network, as well as R&E Networks
at large. For instance, Iperf is a popular network monitoring
tool for active measurements of the maximum achievable
bandwidth on IP networks, and it supports tuning of various
parameters related to timing, buffers and protocols, such as
TCP and UDP. For each test, Iperf3 reports the bandwidth,
loss, and other parameters. However, a major limitation with
iperf3 is lack of flexibility because you have to install it at
both ends of the measurement (Server-Client), and also lack
of retentive memory and performance history which stores
previous configurations and network measurements.

Another popular existing tool is the performance Service-
Oriented Network monitoring Architecture (perfSONAR) [3],
which is a network measurement toolkit designed to provide
federated coverage of paths and help to establish end-to-
end usage expectations. There are thousands of perfSONAR
instances deployed worldwide and many of which are available
for open testing of key measures of network performance. It is
an essential tool that ensures scientists can rely on networks to
get their data from end-to-end as quickly as possible. However,
even though perfSONAR provides a uniform interface that
allows for the scheduling of measurements, storage of data
in uniform formats, as well as scalable methods to retrieve
data and generate visualization, it has a similar limitation with
Iperf3 because you need to install a perfSONAR instance or
node, at both server and client-end, before you can run tests for
accurate measurements. It also does not have retentive memory
capability, which means users or network engineers are unable
to see previous configurations and network performances to
compare with current measurements [3].

To bridge this gap, this paper introduces Net-Preflight, a
tool intended to indicate the state of the network between
two nodes in an overlay, prior to performing large scale data
transfers. We summarize our contributions as follows:

• We develop and present Net-Preflight, a custom, sim-
ple end-to-end, light-weight tool for measuring available
throughput on a well provisioned network.

• We compare and verify Net-Preflight with Iperf focusing
on throughput measurement accuracy, security, retentive

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-895-2

ICSNC 2021 : The Sixteenth International Conference on Systems and Networks Communications

memory and performance issues, using different file
transfers and utilizing isolated networks as well as the
public internet network path for DTN-to-DTN testing.

Please note: the Net-Preflight tool is designed to help end-
users sending bulk transfers and need a quick network health
check to ensure quality of service. It is not designed to replace
Iperf or Perfsonar tools, but rather network checks especially
when root access at receiver end is not available.

In the last decade, the US Department of Energy experimen-
tal and observational user facilities have seen a huge increase
in the amount of data transferred across its science network
creating workflows that cross facility boundaries [4]. This has
increased the complexity of users successfully scheduling big
data transfers. Hence, this has necessitated the demand for a
tool that is generalizable, light weight, flexible and guarantees
quality-of-services. In addition, a tool that shows a prior
end-to-end throughput measurement that is attainable by an
application using systems located at different sites alongside
delivering other metrics relevant to the bulk data transfers and
saving the results in a retentive memory.

The rest of the paper is organized as follows: Section
2 presents our proposed approach. Section 3 presents the
description of Net-Preflight alongside it’s implementation and
use cases. Section 4 describes the experimental evaluation and
discussion of results. Section 5 presents some past related work
and finally, Section 6 presents conclusion and future work.

II. OUR APPROACH

We choose an experimental approach for our compari-
son using a dedicated isolated cloud network testbed and a
public internet network respectively. We conducted several
experiments using different configurations like single, parallel
and concurrent bulk data transfers between two endpoints.
Building on the method reported in [1]. The objective is to
measure the end-to-end bulk transfer throughput metrics. We
upload large files with several file sizes to the destination node
using the Secure File Transfer Protocol (SFTP) because it has
the ability to leverage a secure connection to transfer files and
traverse the file system on both the local and remote system.
We then initiate concurrent downloads of the large files over
and over again and record the total duration for the files to
be downloaded from the destination node to the source node.
With this time and known file sizes or bytes downloaded, we
calculate a relative aggregated throughput graph over time.
We then repeat the same set of experiments using different
TCP variants, then take the measurements and observe the
metrics and performance under different conditions. We then
provide a throughput comparison measurement of some widely
known TCP congestion control algorithms variants with dif-
ferent data transfer rates namely: TCP Reno [5], Hamilton
TCP [6], Binary Increase Congestion control (BIC) [7] and
Cubic [8]. We exposed our simulated network to a range of
congestion conditions and compared multiple TCP congestion
control algorithms in order to investigate the behavior of
the alternate congestion control algorithms under little to
modest congestion, which should reveal any differences in

user experience when large files are sent over between sources
and receivers with high-speed network interfaces. Different
algorithms respond differently to network loads, but are based
on the same principle to avoid congestion. So, we investigate
the different congestion control algorithms that are included
as loadable modules in the Linux kernel as reported in [9].

A. TCP Throughput Measurement and Socket buffersize using
SFTP

We perform TCP throughput measurement utilizing and
varying the socket buffersize and comparing it with default
settings. We consider a unidirectional TCP data transfer from
the source socket Sn to destination node Dn. TCP uses
window-based flow control, such that source is allowed to have
up to a certain number of transmitted unacknowledged bytes,
called window size Ws. Then, Wc is the sender’s congestion
window and Wr is the receive window advertised by the source
node Sn, and Bs is the size of the send socket buffer at
source node Sn. The destination window Wr is amount of
available receive socket buffer memory at source socket Sn,
and is limited by source socket buffersize Br.

Bottleneck Conditions: A link is said to be a bottleneck
when the current bandwidth is less than the available band-
width. Also, a link could be non-congested when its packet
loss rate due to congestion is practically zero or when the
current link capacity or bandwidth equals the available band-
width. For simplicity, we used traffic shaping [10] bandwidth
management technique to reduce the bandwidth of the link at
both endpoints. We did not consider packet loss during our
measurements hence it is out of scope. Equation (1) and (2)
are used to calculate the measured throughput, where, Tp =
Measured Throughput (mbps), B = Bytes downloaded, ∆T =
tn - ts, tn = current time, ts = time started.

Tp =
B

∆T
=

B

tn − ts
(1)

Tp(bps) =
WinSize(bits)

Latency(sec)
=

Bandwidth(bps) ∗ RTT

Latency(sec)
(2)

III. NET-PREFLIGHT TOOL DESCRIPTION AND USE CASES

In this section, we present Net-Preflight Tool Description
and explored different use cases both on isolated networks
and the public internet network path for DTN-to-DTN testing.
Please note that the source code and implementation of Net-
Preflight are available at [11].

A. Net-Preflight Tool Definition and End-to-End requirements

Net-PreFlight is a simple end-to-end, light-weight tool for
measuring available throughput, traceroute. Compared to ex-
isting tools like Iperf, It saves all the previous results and
configuration in its memory. It doesn’t require root access at
the destination node, which is one of the main contributions
of our tool and makes it Unique. In addition, It mainly
focuses on accurate throughput measurement, flexibility, a
retentive memory, security, and performance-related issues.

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-895-2

ICSNC 2021 : The Sixteenth International Conference on Systems and Networks Communications

Fig. 1. Throughput measurement for large data transfer over isolated Network (CHI@UC to CHI@TACC) and public Network (NERSC DTN - CHI@UC
DTN).

The main requirement of Net-Preflight is that you need to
have a source and a destination IP, and both should be able
to ping each other. Ideally, Net-Preflight was designed such
that Root access is not required in both locations, but in this
work, we have assumed we have files with different sizes
saved in the destination node. To use the tool, you log in
to your source node and run the command by specifying the
required arguments, such as the destination IP address, the
key file path, the target file, file size, and the number of
iterations, respectively as stated in [11]. This operation initiates
the download of the data from a destination to source over
and over again as quickly as possible, then records how long
it takes for the files to be downloaded alongside computing
the difference. Using the time and known file size, a relative
bandwidth graph is plotted over time, and the throughput is
measured with respect to time.

B. Use Cases

1) Isolated Network (Network Setup between (CHI@UC to
CHI@TACC): We present our first use case scenario, which is
an isolated network over Chameleon testbed [12]. Chameleon
is a large-scale, deeply re-configurable experimental platform,
which is built to support Computer Sciences systems research
with a wide variety of capabilities for researching systems,
networking, distributed and cluster computing across multiple
sites, such as the University of Chicago (CHI@UC) and Texas
Computing Center (CHI@TACC), connected by a shared
100Gbps network. Figure 1 shows the network topology
deployed on the isolated network over a dedicated 10Gbps
bandwidth link. The goal of the experiment is download data
from destination to source over and over again as quickly as
possible, then record how long it takes for the files to be
downloaded and compute the difference. Using the time and
known file size, a relative bandwidth graph is plotted over time
and the throughput is measured with respect to time.

2) Public Internet (Network Setup between (NERSC DTN
- CHI@UC DTN): We present our second use case scenario

experiment, which is a transfer from a DTN at the National En-
ergy Research Scientific Computing Center (NERSC) to one
of the nodes on the isolated network CHI@UC DTN. NERSC
is a high performance computing (supercomputer) user facility
operated by Lawrence Berkeley National Laboratory for the
United States Department of Energy Office of Science. The
DTN are NERSC servers dedicated to performing transfers
between NERSC data storage resources such as HPSS and the
NERSC Global File System (GFS), and storage resources at
other sites. These nodes are being managed (and monitored
for performance) as part of a collaborative effort between
Energy Sciences Network (ESnet) and NERSC to enable high
performance data movement over the high-bandwidth 100Gb
ESnet wide-area network (WAN). All DTNs have two 100-
gigabit ethernet links for outgoing connections and two 10-
gigabit ethernet links to transfer to NERSC internal resources
(HPSS). We repeat the same set of experiments similar to the
isolated network scenario.

IV. EXPERIMENTAL EVALUATION
We conducted five experiments with respect to buffersize,

file size, TCP congestion algorithm variant, limiting bandwidth
and window size respectively.

A. Experiment 1 - Measurement w.r.t Buffersize and Filesize
at 10Gbps link Capacity (Isolated network):

This experiment was setup with the aim of evaluating
the performance of the tool when data is transferred using
different file sizes and buffersize. It was set-up on an isolated
network using a 10Gbps link capacity between source and
destination node. We performed the experiment varying the
file transfer sizes between 5MB - 100MB along side using
different buffersizes respectively.

B. Experiment 2 - Measurement w.r.t different TCP conges-
tion algorithm with 10Gbps link Capacity(Isolated network):

In this experiment, our aim was to evaluate the performance
of the tool using different TCP congestion algorithm along side

20Copyright (c) IARIA, 2021. ISBN: 978-1-61208-895-2

ICSNC 2021 : The Sixteenth International Conference on Systems and Networks Communications

(a) (b) (c)

Fig. 2. Comparison of TCP congestion control algorithm comparison.

utilizing different file transfer sizes and buffersize. We started
with Cubic, which is the current default TCP algorithm in
most Linux operating systems, followed by Reno, Hamilton
and BIC. The experiment was setup on an isolated network
using a 10Gbps link capacity as shown in Figure 2.

C. Experiment 3 - Aggregated Throughput Measurement
limiting bandwidth w.r.t congested vs Non-congested links
(Isolated Network):

In this experiment, we used the 10Gbps link capacity only.
Several file transfers were tested at different congestion link
capacity but keeping the buffersize constant. The aim was to
introduce a bottleneck on the 10Gbps dedicated network link
and observe the effect. The traffic at both source at destination
node was limited using traffic shaping as reported in [10]. We
start with the default link capacity of 10Gbps and then limit
down to 5Gbps, 2Gbps and 1Gbps respectively as shown in
Figure 3a.

D. Experiment 4 - Tool Comparison w.r.t Window size, Iperf
vs Net-Preflight:

Here, we tested measurements at window sizes from 8K -
1024k as shown in Figure 3b. We observed that there is a
significant difference in network performance depending on
the window size, with 128K window size being the most per-
formed. This might be as result of the underlying background
traffic condition, which resulted to a drop in throughput at
512K, 1024K and 2048K respectively.

E. Experiment 5 - Large file Aggregated Throughput Mea-
surement w.r.t Concurrent transfers via Public Network from
NERSC DTN - CHI@UC DTN:

In this experiment, the aim was to evaluate the performance
using huge concurrent file transfers with multiple streams (1, 2,
4, 6, and 8-Streams) with respect to 100MB, 200MB, 500MB
1GB and 2GB respectively (as shown in Figure 5). We show
aggregated throughput keeping the buffersize constant and
observing the effect of concurrent transfers on the aggregated
throughput across a public network from NERSC DTN to
CHI@UC DTN.

F. Discussion of Results

We collected throughput measurement for different data
transfers sizes performed some experiments to observe the
effect of different TCP congestion control variants on the
throughput measurement. Figure 2 shows the comparison of
various TCP congestion control algorithms. We conducted dif-
ferent experiments between buffersize S=512K and S=3072K
while varying the data transfer files sizes between 5MB to
100MB, alongside comparing four TCP congestion control al-
gorithm namely Reno, Hamilton, BIC, and Cubic, respectively.
We observed that while keeping the buffersize constant at
S=512K and S=1024K, a decrease in throughput was measured
with increasing file size where BIC came out on top followed
by Hamilton, BIC and Cubic. But as the buffersize increases
between S=2048K and S=3072K, it was observed that it has
less effect on the throughput measurement, which indicates
that as we max out the buffersize, changes were not noticed
between the TCP congestion control algorithms and hence
becomes insensitive. However, on comparing all the four
scenarios side-to-side, it was observed that an increase in the
data transfer sizes results in a decrease in measured throughput
while the opposite is true for the buffersize. But in all cases,
BIC’s performed best, followed by Hamilton and Cubic, then
Reno.

Figure 3a shows a comparison of the congested link vs
the non-congested link. We conducted this experiment in an
isolated network between source node at Chicago and destina-
tion node and Texas. The default link capacity is 10Gbps, and
several bulk file transfers were tested at different congestion
link capacity but keeping the buffersize constant. The aim
was to introduce some bottleneck on the network and observe
the effect on the measure aggregated throughput. In order to
introduce a bottleneck in the setup, the traffic at both source at
destination node was limited using traffic shaping as reported
in [10]. We started with the default link capacity of 10Gbps
and then reduced it down to 5Gbps, 2Gbps, and 1Gbps,
respectively. We observed that decreased in the link capacity
result to a decrease in measure aggregated Throughput. A clear
difference was observed in the measured throughput when the
data transfer file was increased at different link capacities. The
default link capacity of 10Gbps showed the highest throughput

21Copyright (c) IARIA, 2021. ISBN: 978-1-61208-895-2

ICSNC 2021 : The Sixteenth International Conference on Systems and Networks Communications

(a)

(b)

Fig. 3. (a)Testing Congestion Link vs non-congested links (b) Window Size
Iperf vs Net-Preflight comparison.

while the 1Gbp congested link capacity showed the least
aggregated throughput, which shows a good performance of
Net-Preflight measurement tool.

Figure 3b shows the comparison between iperf vs Net-
Preflight at different window sizes respectively. We further
compared the performance of the throughput measurement
between Iperf and Net-preflight as shown in Figure 4, where
we kept the file transfer sizes between 20MB to 100MB.
We observed that in both scenarios, while we keep the data
transfer sizes constant, an increase in buffersize results to an
increase in throughput. Overall Net-Preflight provided mea-
surements largely in agreement with established tools. Figure
5 shows results of the experiments using large data transfers
using concurrent and multiple streams of transfers. In this
experiment, the aim was to evaluate the performance using
huge concurrent file transfers of 100MB, 200MB, 500MB
1GB and 2GB, respectively. We performed the experiments
over 30 iterations. We show aggregated throughput keeping
the buffersize constant and observing the effect of concurrent
transfers on the aggregated throughput. This time we started
with a large buffersize S = 2048K. We kept the buffersize
constant and varied the file transfer size starting from 100MB
to 2GB. We then compare different streams of transfers from
1-stream to 8 streams respectively. It was observed that as
we increase the file sizes the aggregated throughput increases,
however a change is only noticed between the 1-stream and
2-streams. But, between 4-stream, 6-stream and 8-streams
a significant change was not noticed. In addition, we also
observed that an increase in buffersize from 2048k to 4096k

corresponds to an increase in total aggregated throughput. Why
does Net-Preflight perform similar to Iperf? Our results show
a throughput measurement that is comparable to Iperf, which
requires further exploration, since Net-Preflight also includes
storage I/O in addtion to network characteristics. Upon further
investigation, it is found that because Chameleon architecture
has been optimized for I/O writes, hence we do not see it
affecting the Net-Preflight results. Further analysis on a wide
range of network infrastructure will be conducted in future.

V. RELATED WORK

Past research has explored tools for network measurement,
monitoring, available throughput estimation and bandwidth
measurement [13]–[15], as well as analysis of TCP through-
put and socket buffer auto-sizing for high-performance data
transfers [16], [17]. The authors developed a simple analytic
characterization of the steady state throughput as a function
of loss rate and Round Trip Time(RTT) for a bulk transfers
[2]. For instance the authors in [16] proposed a technique
called SOBAS, their strategy was based on automatic socket
buffer sizing at the application layer. Their results show that
SOBAS provides consistently a significant throughput increase
compared to TCP transfers that use the maximum possible
socket buffersize. In a similar scenario, while the authors
in [18] analyzes the Incast problem, the authors in [19]
examined the effects of using parallel TCP flows to improve
end-to-end network performance for distributed data intensive
applications. While the authors in [20] describes the analysis
of TCP/IP socket buffer length in Local Area Network (LAN)
and Wide Area Network (WAN), authors in [21] presented
a MPT-GRE software, which is a two multipath commu-
nication systems based on different technologies. Following
from various traditional approaches, a lot of existing network
monitoring tools lack the capability of retaining all previous
measurements, flexibility and security in terms of having root
access to both ends. Hence this paper propose Net-Preflight,
a tool intended to bridge the gap by indicating the state of the
network between two nodes in an overlay, prior to initiating
large data transfers.

VI. CONCLUSION AND FUTURE WORK

This paper presents Net-Preflight, a tool intended to indicate
the state of the network between two nodes in an overlay,
prior to performing large scale data transfers. It was compared
with existing tools using different metrics and utilizing isolated
networks, like Chameleon testbed and public internet transfers.
The comparison focused on throughput accuracy, flexibility
and performance history, which stores previous configurations
and network measurements. Net-Preflight addresses questions
of how concurrent stream connections can improve aggregate
TCP throughput measurement. It also addresses the question
of how to select the maximum number of sockets necessary
to maximize TCP throughput while simultaneously avoiding
congestion. Our results show that the use of parallel TCP
streams is equivalent to using a large maximum segment size
on a single connection. In the future, we will continue to

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-895-2

ICSNC 2021 : The Sixteenth International Conference on Systems and Networks Communications

(a) (b) (c)

Fig. 4. Iperf and Net-Preflight data transfer comparison.

(a) (b) (c)

Fig. 5. Large file concurrent transfers.

improve the performance of the tool and explore the possibility
of applying learning techniques to predict the future end-to-
end throughput and latency that is attainable by the tool.

REFERENCES

[1] M. Allman, “Measuring end-to-end bulk transfer capacity,” in Proceed-
ings of the 1st ACM SIGCOMM Workshop on Internet Measurement,
pp. 139–143, 2001.

[2] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp through-
put: A simple model and its empirical validation,” in Proceedings
of the ACM SIGCOMM’98 conference on Applications, technologies,
architectures, and protocols for computer communication, pp. 303–314,
1998.

[3] J. Zurawski et al., “perfsonar: On-board diagnostics for big data,” in 1st
Workshop on Big Data and Science, pp. 1–6, Citeseer, 2013.

[4] B. Enders, D. Bard, C. Snavely, L. Gerhardt, J. Lee, B. Totzke, K. An-
typas, S. Byna, R. Cheema, S. Cholia, M. Day, A. Gaur, A. Greiner,
T. Groves, M. Kiran, Q. Koziol, K. Rowland, C. Samuel, A. Selvara-
jan, A. Sim, D. Skinner, R. Thomas, and G. Torok, “Cross-facility
science with the superfacility project at lbnl,” in 2020 IEEE/ACM 2nd
Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing
(XLOOP), pp. 1–7, 2020.

[5] Y. Nishida, “The newreno modification to tcp’s fast recovery algorithm,”
Standards Track, PP, pp. 1–16, 2012.

[6] D. Leith and R. Shorten, “H-tcp: Tcp for high-speed and long-distance
networks,” in Proceedings of PFLDnet, vol. 2004, pp. 1–6, 2004.

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(bic) for fast long-distance networks,” in IEEE INFOCOM 2004, vol. 4,
pp. 2514–2524, IEEE, 2004.

[8] S. Ha and I. Rhee, “Taming the elephants: New tcp slow start,” Computer
Networks, vol. 55, no. 9, pp. 2092–2110, 2011.

[9] A. Esterhuizen and A. Krzesinski, “Tcp congestion control comparison,”
SATNAC, September, pp. 1–6, 2012.

[10] P. Kanuparthy and C. Dovrolis, “Shaperprobe: end-to-end detection
of isp traffic shaping using active methods,” in Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference,
pp. 473–482, 2011.

[11] B. Mohammed, M. Kiran, and B. Enders, “Net-Preflight Github repos-
itory: https://github.com/esnet/netpreflight-performancetest.” Accessed:
2021-09-26.

[12] K. Keahey et al., “Lessons learned from the chameleon testbed,” in Pro-
ceedings of the 2020 USENIX Annual Technical Conference (USENIX
ATC ’20), USENIX Association, July 2020.

[13] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pp. 39–44, 2003.

[14] A. Tirumala, L. Cottrell, and T. Dunigan, “Measuring end-to-end band-
width with iperf using web100,” in In Web100, Proc. of Passive and
Active Measurement Workshop, Citeseer, 2003.

[15] D. Kaur, B. Mohammed, and M. Kiran, “Netgraf: A collaborative
network monitoring stack for network experimental testbeds,” arXiv
preprint arXiv:2105.10326, 2021.

[16] R. S. Prasad, M. Jain, and C. Dovrolis, “Socket buffer auto-sizing for
high-performance data transfers,” Journal of GRID computing, vol. 1,
no. 4, pp. 361–376, 2003.

[17] M. Jain, R. S. Prasad, and C. Dovrolis, “The tcp bandwidth-delay
product revisited: network buffering, cross traffic, and socket buffer auto-
sizing,” tech. rep., Georgia Institute of Technology, 2003.

[18] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis of tcp
throughput collapse in cluster-based storage systems.,” in FAST, vol. 8,
pp. 1–14, 2008.

[19] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end performance
effects of parallel tcp sockets on a lossy wide-area network,” in Proceed-
ings 16th International Parallel and Distributed Processing Symposium,
pp. 10–pp, IEEE, 2002.

[20] L. Mazalan, S. S. S. Hamdan, N. Masudi, H. Hashim, R. Abd Rahman,
N. M. Tahir, N. M. Zaini, R. Rosli, and H. A. Omar, “Throughput
analysis of lan and wan network based on socket buffer length using
jperf,” in 2013 IEEE International Conference on Control System,
Computing and Engineering, pp. 621–625, IEEE, 2013.

[21] S. Szilágyi, F. Fejes, and R. Katona, “Throughput performance compar-
ison of mpt-gre and mptcp in the fast ethernet ipv4/ipv6 environment,”
Journal of Telecommunications and Information Technology, 2018.

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-895-2

ICSNC 2021 : The Sixteenth International Conference on Systems and Networks Communications

	Introduction
	Our Approach
	TCP Throughput Measurement and Socket buffersize using SFTP

	Net-Preflight Tool Description and Use Cases
	Net-Preflight Tool Definition and End-to-End requirements
	Use Cases
	Isolated Network (Network Setup between (CHI@UC to CHI@TACC)
	Public Internet (Network Setup between (NERSC DTN - CHI@UC DTN)

	EXPERIMENTAL EVALUATION
	Experiment 1 - Measurement w.r.t Buffersize and Filesize at 10Gbps link Capacity (Isolated network):
	Experiment 2 - Measurement w.r.t different TCP congestion algorithm with 10Gbps link Capacity(Isolated network):
	Experiment 3 - Aggregated Throughput Measurement limiting bandwidth w.r.t congested vs Non-congested links (Isolated Network):
	Experiment 4 - Tool Comparison w.r.t Window size, Iperf vs Net-Preflight:
	Experiment 5 - Large file Aggregated Throughput Measurement w.r.t Concurrent transfers via Public Network from NERSC DTN - CHI@UC DTN:
	Discussion of Results

	Related Work
	Conclusion and Future Work
	References

