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Abstract—We present an efficient and self-stabilizing protocol for
computing the Voronoi region of a sensor node in a large wireless
sensor network deployed in the two dimensional plane. This
protocol surpasses the preceding ones in that it is fully distributed,
is self-stabilizing, and in particular, it moves away from the unit-
disk transmission model. That is, the topology induced by the
wireless communication links is assumed to be arbitrary. This
naturally incorporates the practical case of obstacles interfering
in the communication of some pairs of sensor nodes that are close
to each other. Due to being self-stabilizing, the protocol converges
to a normal operating state regardless of the initial value of
its variables. Because faults can be modeled as having variable
values that do not properly reflect the state of the network, the
protocol is resilient against all types of transient faults, provided
the network does not become partitioned.

Keywords–Stabilizing systems; Voronoi diagram; Delaunay tri-
angulation; Sensor networks.

I. INTRODUCTION

Wireless sensor networks are characterized by having a
limited number of resources. In particular, they operate on
battery power, and have reduced processing and transmission
capabilities. In order to preserve these critical resources, it
is of paramount importance that every task performed by the
sensors consumes the least amount of memory and energy [1].

Routing between nodes is a fundamental aspect of com-
puter networks. Due to the limited resources in a wireless
sensor network, it is desirable to use a routing protocol where
the routing state stored at each node is independent of the
network size; this is particularly important in a large-scale
sensor network. One such approach is greedy routing [2]–[5].
Greedy routing is also known as geographic routing because,
for a packet with destination d, a node u selects as the next
hop to d a neighbor that minimizes the physical distance from
u to d.

In general, greedy routing on an arbitrary graph may
become trapped at a local minimum and not reach the desti-
nation. However, on a Delaunay triangulation, greedy routing
is guaranteed to reach the destination. Hence, in the particular
context of network routing, Delaunay triangulations, and their
dual, the Voronoi diagram, are well suited for greedy routing
[6].

In this paper, we develop a distributed protocol where each
node can compute its Voronoi region, and thus, is able to
support greedy routing. Given that the objective is to support
greedy routing, the protocol does not require an additional
routing mechanism that can be used to aid in communication
between nodes. The only assumption is that each node is

initially only aware of those nodes with whom it can commu-
nicate in a single transmission hop. This is an extension to our
earlier work [7]. In [7], we assumed the unit-disk transmission
model. That is, there is a transmission radius r such that, if
any pair of nodes are within a distance of r of each other,
then they can communicate directly. In this paper, we relax
this model, and assume that the network topology induced by
the transmission links is arbitrary. This naturally incorporates
the practical case of obstacles interfering in the communication
of some pairs of sensor nodes that are close to each other.

In addition to being distributed, our solution is stabilizing
[8]–[11], i.e., starting from any state, a subsequent state is
reached and maintained where the sensors become aware of
their Voronoi region. A system that is stabilizing is resilient
against transient faults, because the variables of the system
can be corrupted in any way (that is, the system can be
moved into an arbitrary configuration by a fault), and the
system will naturally recover and progress towards a normal
operating state. Thus, stabilizing systems are resilient against
node failures, node additions, undetected corrupted messages,
and improper initialization states.

Distributed protocols exist in the literature that allow each
node to obtain its Voronoi region. However, they do not exhibit
all our desired features. Algorithms, such as those in [12],
are fully distributed, but they are not fault tolerant, and they
assume an underlying routing protocol exists. Works designed
for wireless greedy routing make no such assumption [13] [14],
but they have limited fault-tolerance, and, in particular, are not
stabilizing. Solutions that are distributed and stabilizing exist
[15], but they also assume an underlying routing protocol, and
are thus not suitable for greedy routing.

The paper is organized as follows. Section II presents
a review of Voronoi diagrams, Delanuay triangulations, and
also our network model. In Section III, we present the local
information that each node maintains about its Voronoi region,
and how this information can be used to forward messages
between distant Voronoi neighbors. In Section IV, we describe
the adaptations that have to be made in order to deal with
our general communication model. Section V presents the
different types of messages used in the protocol and how they
are used to route between nodes. Our protocol notation is
presented in Section VI. The techniques that make the protocol
stabilizing are reviewed in Section VII, and the specification
of the protocol itself is given in Section VIII. We argue the
correctness of the protocol in Section IX. Concluding remarks
and possible future work are given in Section X.
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II. VORONOI DIAGRAMS AND NETWORK MODEL

In this section, we review Voronoi diagrams and Delaunay
triangulations. In addition, we present our network model and
its relationship to Delaunay triangulations. This is similar to
the review we presented in [7].

A. Voronoi Diagrams and Delaunay Triangulations

As shown in Figure 1(i), consider two points, a and x, in
the two-dimensional Euclidean plane. The line segment from
a to x is shown with dots, and the solid line corresponds to
the perpendicular bisector of this line segment. Observe that
any point below the bisector is closer to a than to x. Similarly,
any point above the bisector will be closer to x than to a.

A Voronoi Diagram (VD) consists of a set of genera-
tor points P = p1, p2, . . . , pn and a set of regions R =
R1, R2, . . . , Rn. Each Ri consists of all points on the plane
that are closer to pi than to any other generator point in P . In
Figure 1(i), P = {a, x}, Ra are all points below the bisector,
and Rx are points above the bisector.

Figure 1(ii) shows the region Ra after a few more gen-
erator points are added. Region Ra becomes the convex hull
obtained from the intersection of all the bisectors with all other
generator points. Finally, Figure 1(iii) shows the regions of all
five generator points.

An equivalent structure to the VD is the Delaunay Triangu-
lation (DT), shown in Figure 1(iv). Here, there is an edge be-
tween a pair of generator points pi and pj iff Ri and Rj share
a face. E.g., point x has three edges: (x, y), (x, a), (x,w),
because Rx shares a face with each of the regions Ra, Ry , and
Rw. Thus, both the VD and the DT have the same information,
but presented in different form.

B. Network Model and Connectivity

We consider a two-dimensional Euclidean space in which
a total of n sensor nodes have been placed. In [7], sensors are
assumed to have the same transmission radius, and hence, if the
distance between any pair of sensors is less than this radius,
then the pair is able to directly exchange data messages. In
this paper, we relax this assumption. We assume that obstacles
could exist between nodes, and thus, nodes may not be able to
communicate directly even though they are within transmission
range. We thus assume a very general and arbitrary topology,
in which the fact that a pair of nodes u and v can communicate
directly is independent of whether u can communicate directly
with another node w. This will have significant impacts on the
algorithm, as discussed in later sections.

Nodes u and v are joined by a physical link, 〈u, v〉, if they
can directly exchange messages. The set of nodes with whom
u has a physical link is denoted by Lphy(u). We assume that
the sensor network is connected. I.e., for every pair of nodes
u and v, there is a path of nodes w1, w2, . . . , wk, such that
w1 = u, wk = v, and for each i, 1 ≤ i < k, wi+1 ∈ Lphy(wi).

As discussed earlier, sensor nodes correspond to point gen-
erators, and each sensor node has the objective of identifying
each of its neighbors in the DT (equivalently, the VD). I.e.,
each sensor node must learn the location of all other sensor
nodes with whom it shares a DT edge. Throughout the paper,
we use DT and VD interchangeably.

Let V(u) be the set of neighbors of u in the DT. These are
referred to as the Voronoi neighbors of u. For each v in V(u),
we refer to pair (u, v) as a Voronoi edge.

In Figure 1(iv), V(x) = {a,w, y}. Some of the nodes
in V(u) will be able to exchange messages directly with
u, i.e., they are also contained in Lphy(u). The nodes in
V(u) ∩ Lphy(u) are said to be the physical Voronoi neighbors
of u.

Note that it is possible for w ∈ Lphy(u) but w /∈ V(u).
This is because other nodes can be in between u and w, and
thus, the Voronoi region of u does not overlap that of w. I.e.,
the fact that nodes can communicate directly does not imply
that they are Voronoi neighbors, and vice versa.

Without obstacles in the network, such as the model we
used in [7], between every pair of nodes there must exist a
path such that each hop along the path consists of physical
Voronoi neighbors. This allowed each node u to learn about
its Voronoi neighbors by only exchanging messages with their
physical Voronoi neighbors, i.e., nodes in V(u)∩ Lphy(u). As
we will show below, this is no longer the case if obstacles are
present in the network.

III. REGION CONSTRUCTION

We next describe the details of the information that a node
maintains about its region, and how it provides assistance in
building the regions of its neighbors.

A. Region Anatomy
Figure 2 depicts the region of u, consisting of eight Voronoi

neighbors. Of these, neighbors i, m, and o are physical, i.e.,
they are contained in Lphy(u). The set of physical Voronoi
neighbors of a node u will be denoted by core(u). The figure
consists of only the region of u; the whole network is not
shown.

Node u is aware of its core neighbors because it can
communicate directly with them. On the other hand, consider
node n. It must be that either o, m, or perhaps both, are able
to communicate with n (recall that the network is connected),
and inform u about n. Node u will remember which node
informed it of the Voronoi edge (u, v). We will refer to this
node as the origin of the edge.

In addition, each node keeps track of the number of
transmission hops necessary to cross the link; this is known
as the label of the link. E.g., if the origin of (u, n) is m, then
label(u, n) = label(m,n) + 1. Both o and m report to u the
expected number of hops to cross edge (u, v) through them.
Node u chooses as origin the neighbor providing the least
number of hops (a final tie-breaker is made using the node
identifier). In the figure, o is the origin of (u, n), as indicated
by the small arrow.

Consider now core nodes i and m, and the nodes in
between them, j, k, and l. Node i is the origin of edge
(u, j), and j is the origin of (u, k). We denote by segment the
sequence of nodes starting at a core node where each node is
the origin of the previous edge. The clockwise segment starting
at i is (i, j, k). The counter-clockwise segment starting at m
is (m, l), while the counter-clockwise segment starting at i is
simply i itself.

Consider next nodes k and l. They are not aware of each
other, and thus they do not report each other to u. In this case,
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u must introduce them to each other, and u becomes the origin
of edge (k, l). Similarly, it introduces i and p to each other,
and becomes the origin of edge (i, p).

We next describe the notion of a segment more formally
[7]. For terseness, we use the terms right and left instead of
clockwise and counter-clockwise, respectively. Additionally,
we use dir to represent either right or left, and ¬dir to represent
the opposite direction of dir.

Let v be any Voronoi neighbor of u. Let next(u, v, dir) be
the next node along direction dir on region R(u). For example,
in Figure 2, next(u, i, right) = j, and next(u,m, left) = l. Also,
for any pair of neighbors v and w of u, let bet(u, v, w, dir)
denote the sequence of nodes found in R(u) along direction
dir starting from v and ending in w.

Let segment(u, v, dir) be the longest sequence of nodes,
w0, w1, . . . , wj , along the periphery of R(u), starting from
core node v, v ∈ core(u), such that:

• w0 = v,
• for each i, 0 ≤ i < j, wi+1 = next(u,wi, dir), and
• for each i, 0 ≤ i < j, origin(u,wi+1) = wi.

In addition, node wj is denoted by last(u, v, dir).

B. Forwarding of Control Messages
In [7], we adopted the following general strategy. There is

a single type of control message, namely edge, whose purpose
is to inform a node that it has a Voronoi neighbor. Consider
node u: it has to inform k and l of each other. To send an
edge message to k, the destination field in the message is set
to k, the direction is set to right, and the message is given to
i. The message will then traverse the entire segment (reaching
i, j, and k).

The reason the whole segment is traversed is the way
in which nodes forward messages that are not addressed to
them: the message is forwarded to the adjacent core node. For
example, assume node u receives an edge message from m and
the destination is not u. If the direction is right, it forwards
the message to i, and if the direction is left, it forwards the
message to o.

As another example, assume node l wants to send an edge
message to k to inform it of a potential neighbor. Because u
is the origin of (k, l), the message will arrive to u (via m).
Node u is oblivious to the source, and it simply forwards it to
the adjacent core node, i.e., i, and the message traverses the
segment and arrives at k. Even further, the message may not
even originate at l, it may simply need to traverse edge (l, k),
and the source is not in the region of u. Nonetheless, since
the message is received from m, it is forwarded to i, and the
message arrives at k, as desired.

C. Obstacle Pitfalls
As discussed in Section II-B, we assume that, due to

obstacles, the physical links form an arbitrary graph. Consider
Figure 3(a), where the physical links are shown as dashed lines.
Without obstacles, there would be a physical link between
every pair of nodes. However, due to obstacles, the physical
links 〈t, v〉, 〈t, w〉, and 〈v, w〉 are not present.

In Figure 3(b), the Voronoi edges computed are shown as
solid lines. Node u is aware of its neighbors v and w, and
thus it considers them part of its region, and sends an edge
message to each of them, which makes them aware of each
other. However, since t is not in the region of u, u ignores
t. Thus, node t is not aware of v and w, and it thus cannot
compute its own region. We address a mechanism to correct
this below.

IV. EXTENDED LINKS

In order to fix the problem described above, node t must
be made aware that, if it were not for the obstacles, it would
actually have a physical link with v and w. We can accomplish
this by node u extending the link 〈u, t〉 to v and w. That is,
to make v and w aware that they should have a link with t.

To become aware of this need, node u notices that its
physical link 〈u, t〉 intersects its Voronoi edge (v, w). Thus, u
notifies both v and t that they have an extended link between
them. This link is shown as a gray dotted line in Figure 3 (c).
Thus, v and t consider this link as an ordinary physical link,
and add it to their set L of links. The extended link 〈t, v〉 is
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treated in the algorithm like any other link, e.g., it could be
part of the core of t and the core of v. The difference only
lies in that for t to send a message to v (and viceversa) the
message has to be sent through u.

Once v and t are aware of each other, they add link 〈t, v〉
to their region. Node v then becomes the origin of edge (t, w),
and it sends an edge message to both t and w making them
aware of edge (t, w). The final results is shown in Figure 3(d).

Note that u does not need to extend the link 〈u, t〉 to w.
Although possible, it is not necessary, since v will become the
origin of the edge and join t with w. Thus, u will extend the
link towards the neighbor that is closest of the two.

The extension of a link can become more complex, re-
quiring the same link to be extended multiple times. This is
illustrated in Figure 4. Part (a) of the figure indicates the
physical links as dashed lines, and the solid lines correspond to
the desired Voronoi edges. Without extending physical links,
the Voronoi edges found are in part (b) of the figure. Part
(c) shows the extension of edge 〈p, t〉 into edge 〈q, t〉. Node
t disregards this edge since it is not part of its region (the
Voronoi face with q is blocked by the faces of nodes s and
u). Node q, however, will try to join t and r. This may be
accepted by r, but t will reject it since edge (t, r) is not part
of its region. The nodes will not learn the correct edges shown
in part (a).

Note, however, that the extended link 〈q, t〉 crosses the
Voronoi edge (s, u) of the region of t. Thus, t could extend
it even further, by notifying s that it should have an extended
link 〈s, q〉, as shown in part (d). Node s thus adds this link
to its region, and joins q and u. This makes node q desist in
attempting to join t with r, and instead joins u and r, yielding
the correct result.

V. MESSAGE TYPES AND ROUTING

We discussed above the need for extended links. In this
section, we discuss the method for creating them and for
sending messages across them. Our objective is to modify the
method we presented in [7] the least possible, and still account
for extended links. For example, consider again Figure 2, and
assume node u receives a message from core node m, which
is not destined for u. Thus, u forwards it to i. This should
remain in effect even if the link 〈i, u〉 is an extended link, as
opposed to a physical link. Thus, note that the core of a node
may now consist of a mixture of physical links plus extended
links.

Before discussing creating an extended link, we recall
that in [7] we had only one message type, edge, to inform
two nodes that there should be joined by a Voronoi edge.
For example, in Figure 2, node u would send the following
message to node k via link 〈i, u〉.

(ttl, edge, dir, dst, src, nbr, lbl)

where dir = right, dst = k, src = u, nbr = l, and
lbl = label(u, k) + label(u, l). Also, the time to live, ttl, is
the number of physical links traversed by the message. It is
initially equal to one, and is incremented by one per physical
link traversed. The message is discarded if it reaches an upper
bound discussed in Section VII-A.

A. Creating an Extended Link
Consider now creating an extending a link, such as Figure

3(c), where node u wants to extend its physical link 〈u, t〉 to
create the link 〈v, t〉. To do so, it sends a link message to both
v and t, as follows:

(ttl, link, dir, dst, src, nbr, lbl).

For v, dst = v, src = u, nbr = t, and lbl = label(u, v) +
label(u, t). Similarly for t, we have dst = t and nbr = v.

In general, one of the endpoints (i.e., v) is a Voronoi
neighbor, and the other (i.e., t) is a physical link. To send the
message to the Voronoi neighbor, we simply send it as before,
by sending it to the core neighbor of the segment containing the
destination, and the message will traverse the whole segment
until it is removed at the destination. In the case of v, v itself
is the core node, and the message arrives in just one hop. For
t, it is a physical link, so the message is sent directly.

A more interesting scenario occurs Figure 4(d), where node
t is extending its link, 〈t, q〉 to create the link 〈s, q〉. In this
case, neighbor s is a Voronoi neighbor, as expected, but node
q is not a physical link, it is an extended link. Thus, the link
message has to be routed in a manner that is different from
routing around a segment of the region of node t. This is
because extended links bypass Voronoi edges, in particular,
link 〈t, q〉 crosses over Voronoi edges (s, u), (q, u), and (q, r).
We discuss this next.

B. Transferring Messages Across an Extended Link
As mentioned at the beginning of the section, we need a

general mechanism by which any message can be tunneled
across an extended link. To send an arbitrary message over
the extended link 〈t, q〉, node t must remember the source of
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the link, in this case node p, and send the message to it. Node
p cannot handle this message in the normal way, since the
message is not being routed along Voronoi edges. We thus
need a new message type to indicate to p that the message
is being thrown across network, and that p should then find a
way to forward it to the other end point q.

We introduce two additional message types, throw and
catch, to tunnel the message across the extended link. For the
specific case above, t sends the following message to p:

(ttl, throw, dir, dst, src, nbr, (msg)),

where dst = p (p should process and not just forward this
message), src = t, and nbr = q. Node p then retrieves the
encapsulated message msg, notices that it should be sent to q,
and sends the following message to q:

(ttl, catch, dir, dst, src, (msg))

where dst = q, and src = t, which allows q to learn that msg
originated at t.

Note that, given that q is a Voronoi neighbor of p, p will
use normal Voronoi routing to route the catch message. I.e.,
it will find the core node of the segment containing q, and
forward the catch message to this node.

C. Generalized Send Operation
Sending a message across a link can become more com-

plex, and it requires an iterative approach as follows. Consider
Figure 4(d) again, and assume node q needs to route a message
msg to node s along the extended link. To do so, it has to
encapsulate msg in a throw message and send it to the source
of the link, i.e., t. To send the message to t it has to encapsulate
it in another throw message and send it to the source of that
link, i.e., p. In the figure, p is a physical neighbor, so the
message could be sent directly. However, it is easy to extend
the network so that p is a Voronoi neighbor of q, but not a
physical neighbor. This would then require q to find the core
node of the segment of p, and then send the message to this
core neighbor, etc..

VI. PROTOCOL NOTATION

Before presenting the protocol in detail, we overview our
notation. The notation used originates from [10] [11], and is
typical for specifying stabilizing systems. The behavior of each

node is specified by a set of inputs, a set of variables, a set of
parameters, and a set of actions.

The inputs declared in a node can be read, but not written,
by the actions of that node. The variables declared in a node
can be read and written by the actions of that node. For
simplicity, a shared memory model is used, i.e., each node u
is able to read the variables of nodes in Lphys(u). To maintain
a low atomicity, and thus a possible transition to a message-
passing model, each action is able to read the variables of a
single neighbor.

Every action in a node u is of the form:

<guard> → <statement>.

The <guard> is a boolean expression over the inputs, vari-
ables, and parameters of the node, and also over the variables
declared in a single node in Lphy(u). The <statement> is a
sequence of assignment, conditional, and iteration statements
that change some of the variables of the node.

The parameters declared in a node are used to write a set of
actions as one action, with one action for each possible value
of the parameters. For example, if the following parameter
definition is given,

par g : 1 .. 2

then the following action

x = g → x := x+ g

is a shorthand notation for the following two actions.

x = 1 → x := x+ 1

x = 2 → x := x+ 2

An execution step consists in evaluating the guards of
all the actions of all nodes, choosing an action whose guard
evaluates to true, and executing the statement of this action.
An execution consists of a sequence of execution steps, which
either never ends, or ends in a state where the guards of all
the actions evaluate to false. All executions are assumed to be
weakly fair, that is, an action whose guard is continuously true
must be eventually executed.

In order to simplify the presentation and proofs, we assume
a shared memory model with low atomicity. In particular, a
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node is able to read the variables of its neighbors. However,
in any action, it is only allowed to read the variables of a single
neighbor. This will allow for an easy transformation into the
message passing model.

To distinguish between variables of different nodes, the
variable name is prefixed with the node name. For example,
variable u.v corresponds to variable v in node u. If no prefix
is given, then the variable corresponds to the node whose code
is being presented.

The main inputs and variables of each node are as follows.
Each node has a unique identifier from the set ID. Each node
u receives as input the set Lphys consisting of the identifiers
of all neighbors with whom it shares a physical link.

In order to represent the exchange of messages, each node
has the following array.

send : array[Lphy] of set of (ID,message) (*)

Element send[v] contains the set of messages that node u
wishes v to read. The purpose of the identifier attached to
the message will be made clear in the next section. Each node
u also has a variable, rcvd, as follows.

rcvd : set of message

To read the messages of a neighbor v, node u copies v.send[u]
into u.rcvd (discarding the identifiers coupled with each
message).

VII. STABILIZATION

We next describe the changes that are necessary to
strengthen our protocol and achieve stabilization. We begin
with a formal definition of stabilization.

A predicate P of a network is a boolean expression over
the variables in all nodes of the network. A network is called
P -stabilizing iff every computation has a suffix where P is
true at every state of the suffix [9] [11].

Stabilization is a strong form of fault-tolerance. Normal
behavior of the system is defined by predicate P . If a fault
causes the system to a reach an abnormal state, i.e., a state
where P is false, then the system will converge to a normal
state where P is true, and remain in the set of normal states
as long as the execution remains fault-free.

In a stabilizing system, we assume each node can be in
an arbitrary initial state, where its variables can have corrupt
and misleading information. To ensure stabilization, the system
must eliminate information which is not consistent with the
current network state. Below, we describe how to eliminate
non-existent nodes, stale edges, and stale messages.

A. Eliminating Ghost Nodes
Due to faults, information about nodes that have died may

still exist in the data structures of a node, or perhaps a fault
introduced information about non-existent nodes. We discuss
below how this extraneous information is eliminated, provided
nodes are aware of the number of nodes, N , that are in the
system.

Obtaining N can be easily achieved by running a self-
stabilizing leader election protocol, such as the one in [16],
which builds a spanning tree in the network without knowledge
of the network size. A simple diffusing computation allows

the root to compute the number of nodes in the network, and
report this value to all other nodes. This can be accomplished
by periodically exchanging a constant-sized packet over each
physical link.

Armed with the knowledge of N , no node will forward a
message whose ttl is greater than N . Thus, any message in
the network with a non-existing source will be removed from
the network within N execution rounds.

Consider again Figure 2. Assume u receives an edge
message from j joining k and u. If node j does not exist,
as mentioned above, due to the ttl, messages from j will
disappear and never be reintroduced. On the other hand, if
j does exist, does k exist? Note that k may not be a physical
neighbor of j, and hence, does not have immediate access to
it. Nonetheless, the label assigned to (k, u) by j will be less
than the label of (j, k), and as we approach closer to node
k (by following the origin node of edge (j, k), which is not
drawn in the figure), the labels continue to decrease. Since the
smallest possible label is one, which is the case of a physical
link, node k must exist.

B. Eliminating Stale Edges, Links, and Messages
Voronoi edges and extended links are created at a node after

receiving a message of the appropriate type. If these messages
cease to exist, then the corresponding edge/link is stale, and
should be removed. Thus, we maintain the following array:

inc : array[Lext

⋃
Vjoin] element of Lphy

Entry u.inc[v] stores the incoming physical link over which
the message that created the edge/link (u, v) was received.
Whenever u copies into u.rcvd the messages from v.send[u],
all edges and links in inc[v] are marked as stale. If an edge or
link is not refreshed by any of the messages in u.rcvd, then
it is discarded.

Similarly, as mentioned in Section III-B, node u forwards
messages that are not destined for it, and places them in the
appropriate entry in array send. Note that, as indicated in (*),
each message is associated with an ID. This is the ID of the
physical link over which the message was received. Thus, to
prevent stale messages, whenever node u copies into u.rcvd
the messages from v.send[u], it removes all messages in array
send whose ID is v.

VIII. PROTOCOL SPECIFICATION

We next present the specification of our protocol for an
arbitrary node u. As discussed before, its inputs consists of
the total number of nodes in the system, N , and the set of
physical links, Lphy . It also contains several parameters to
expand an action into multiple actions.

In terms of variables, Lext contains the set of extended
links. At all times, Lext ∩ Lphy = ∅. For conciseness, we
define L = Lext

⋃
Lphy . In addition, V contains the Voronoi

neighbors found thus far.
We reuse the definitions related to a region R(u), such as

segment, last, and next, but instead based on the neighbors V
found so far by node u, rather than the actual region R(u)
defined by the network topology.

Also, since node u is understood, we omit it from some
definitions. E.g., core is the set of core nodes of u, which we
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define as core = V ∩ L, and (last(v, dir) is the last node of
the segment of u starting at core node v in the direction dir.
Finally, we define Vjoin = V − core.

The node contains three arrays not yet discussed. The first
is origin, in which the origin of each link in Lext and each
edge Vjoin is stored. As discussed in Section VII, stale edges
are marked in array stale. Finally, array label stores the label
of each edge in V that is not a direct edge. By definition,
label[v] = 1 for all v, v ∈ Lphy .

The complete specification is below, followed by a descrip-
tion of each action.

node u
inp

N : integer {number of nodes}
Lphys : set of ID {physical links}

param
t, t′, i : ID {any node}
dir : element of left . . right {direction}

var
Lext : set of ID {extended links}
V : set of ID {Voronoi neighbors}
inc : array [Lext ∪ Vjoin] element of Lphy

{incoming physical link announcing the link/edge}
origin : array [Lext ∪ Vjoin] element of V

{Voronoi neighbor announcing the link/edge}
stale : array [Lext ∪ Vjoin] of boolean

{stale links/edges}
label : array [Lext ∪ Vjoin] of 2 . . N

{hops needed to traverse edge/link}
rcvd : set of message
send : array [Lphy] of set of

(element of Lphy ∪ u, message)
begin

{extend a link}
t ∈ L ∧ t /∈ V ∧ outside(t, V ) →

(q, r) := closest(t, V );
dir := direction(core(q), q);
msg := (1, link, dir, q, u, t,

max(label[q], label[r]) + label[t]);
sendmsg(u, core(q),msg)

{join an edge}
t ∈ core ∧ t′ = next-core(t, dir) →

x := last(t, dir);
y := last(t′,¬dir);
msg := (1, edge, dir, x, u, label[x] + label[y]);
sendmsg(u, t,msg);
msg := (1, edge,¬dir, y, u, label[x] + label[y]);
sendmsg(u, t′,msg)

{receive a message}
i ∈ Lphy →

rcvd := i.send[u];
clear(send, i);
for each v ∈ (Lext ∪ Vjoin) do

if inc[v] = i then
stale[v] := true;

for each msg ∈ rcvd do
process-msg(msg);

for each v ∈ (Lext ∪ Vjoin) do
if stale[v] then

V := V − {v};
Lext := Lext − {v};

clean(V );
end

In the first action, a link to a node t is extended via a
Voronoi neighbor q. Node t should be outside of the region
defined by V . If so, the Voronoi edge in V , namely (q, r),
crossed by t, such that t is closer to q than r, is found, and a
link message is sent to the core node of the segment containing
q. Note that the label in the message is max(label[q], label[r])+
label[t] rather than simply label[q] + label[t]. The reason for
this will be made clear in Section IX.

In the second action, the nodes at the end of two segments
are joined together by sending an edge message to them. The
core nodes are t and t′, without any core nodes between
them. An edge message is sent to the two endpoints of the
corresponding segments to indicate to them that they are
potential neighbors. Function next-core is defined as follows:

next-core(v, dir) = w ⇔
〈∀x : (x ∈ bet(v, w, dir) ∧ x /∈ {v, w})⇒ x /∈ core〉

Also, the sendmsg routine, as described in Section V-C, is
as follows.

sendmsg(in, out,msg)
h := msg.ttl + 1;
if h > N then return;
if out ∈ Lphys then

send[out] := send[out] ∪ (in,msg)
if out ∈ Lext then

or := origin[out];
out′ := core(or);
dir := direction(out′, or);
msg′ := (h, throw, dir, or, u, out′,msg);
send(in, out′,msg′)

In the third action, a message is received from a physical
link, by copying the appropriate contents of the send array
of physical neighbor i. Then, the send array is cleared of
all earlier messages that were received from neighbor i, and
every edge and link whose message that created them was
received along link i are marked stale. If these edges and
links are refreshed by messages from i, then their staleness is
removed at the end of the action. In addition, routine clean(V )
removes from V edges that are inconsistent with each other.
It’s objective is to remove all nodes in V that violate the
following clean consistency requirement between successive
nodes of a segment:

〈∀x, dir, v, w,
(x ∈ core ∧ w ∈ segment(x, dir) ∧ v ∈ segment(x, dir)∧
v 6= w ∧ w = next(v, dir))
⇒
(label[w] > label[v] ∧ origin[w] = v)
〉

That is, every neighbor should have as origin the previous
neighbor on its segment, and furthermore, its label should
be also greater than that of the previous neighbor. Routine
clean(V ) is as follows.
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clean(V )
V := convex-hull(V ∪ Lphy);
clean := core;
for each i ∈ Lphy do
label[i] := 1;

for each i ∈ core do
for dir ∈ {left, right}
v := i;
while (next(v, dir) 6= nil,∧

origin(next(v, dir)) = v ∧
label(v) < label(next(v, dir))) do
clean := clean ∪ {v};

V := clean

Each received message is processed according to its mes-
sage type. The code for routine process-msg is as follows.

process-msg(msg)
if msg.dst 6= u ∧ i ∈ V ∧msg.ttl < N then

dir := msg.dir;
sendmsg(i, next-core(i, dir)), dir);

if msg.dst = u ∧msg.ttl < N
if msg.type = edge then

process-edge-msg;
if msg.type = link then

process-link-msg;
if msg.type = throw then

process-throw-msg;
if msg.type = catch then

process-catch-msg

We next discuss the processing of each message type. The
processing of an edge message is as follows.

process-edge-msg
nbr := msg.nbr;
src := msg.src;
l := msg.lbl;
if src ∈ V ∧ nbr /∈ Lphy ∧

nbr ∈ convex-hull(V ∪ {nbr})∧
(nbr /∈ V ∨ l < label[nbr]∨
(l = label[nbr] ∧ src < origin[nbr])) then

V := V ∪ nbr;
origin[nbr] := src;
inc[nbr] := i;
label[nbr] := l;
stale[nbr] := false

An edge is added to V under certain conditions. First, the
origin of the edge, i.e., the source of the message, must already
be in V . Next, it should not be a physical neighbor because
these neighbors are always present and considered for V . Also,
the node will only be added to V if it takes part in the convex-
hull, i.e., the region, of the node. Finally, either the node is
a new addition to V , or it provides a better label than before
(ties broken in favor of smaller origin ID).

The processing of a link message is as follows.

process-link-msg
ngh := msg.ngh;
src := msg.src;

or := origin[ngh];
if src ∈ V ∧

(ngh /∈ Lext ∨ label[src] < label[or]∨
(label[or] = label[src] ∧ src < or)

then
Lext = Lext ∪ {ngh};
origin[ngh] := src;
inc[ngh] := i;
stale[ngh] := false

In order to add a node as an extended link, the origin of
the link (i.e., the source of the message), must already be a
Voronoi neighbor. Also, either it is a new extended link, or
the origin of the link has a better label than the origin of the
current extended link. If so, the node is added to the extended
link set and the book-keeping arrays are updated accordingly.

The processing of a throw message is as follows.

process-throw-msg
m′.type := catch;
m′.ttl := msg.ttl;
m′.msg := decap(msg);
dst := msg.ngh;
src := msg.src;
if dst ∈ Vjoin ∧ src ∈ Lext then

msg.dir := direction(core(dst), dst);
sendmsg(i, core(dst),m′)

if dst ∈ Lext ∧ src ∈ Vjoin then
dir := nil;
sendmsg(i, dst,m′)

The original message is retrieved from decapsulation of
the catch message. If the destination of the message, i.e., the
origin of the extended link, is a Voronoi neighbor, then the
core node associated with this Voronoi neighbor is found, and
the message is sent to it. On the other hand, if the destination
of the message is the endpoint of an extended link, then the
message is sent directly over the link.

The processing of a catch message is as follows. The
original message is simply retrieved from the catch message,
and then processed like a normal message.

process-catch-msg
msg′ := decap(msg);
msg′.ttl := msg.ttl;
process-msg(msg′)

IX. CORRECTNESS

We show that regardless of the initial state of the system,
R(u) = V will hold permanently for every u.

We define an execution round to be a subsequence of
an execution in which every action of every node has either
been executed or its guard is not enabled. A round captures
the notion of taking enough execution steps guaranteeing that
every node makes progress.

Note that after executing the third action to receive mes-
sages, the clean requirement on V is satisfied due to the
clean(V ) routine. We thus assume that this always holds in
between action executions.
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A. Eliminating Non-Existing Nodes
If there is a message msg in a send queue that is paired

with a neighbor v in Lphys, then, the next time node u reads
messages from v, msg is removed from the send queue. I.e.,
after each execution round, all messages disappear unless being
received again from the corresponding neighbor.

Consider first all messages whose src value is a non-
existent node. No new messages with a non-existing node as a
src field can be created, because the value of src is set to the
node creating the message, i.e., a valid live node. Any of these
messages with ttl = N − x will disappear within x execution
rounds, because in a round all existing messages are deleted,
and the forwarded messages have their ttl increased by one,
and are discarded when it reaches N .

We next argue that all messages with a non-existent ngh
disappear. We do so in conjunction with showing that these
nodes disappear from Vjoin ∪Lext. We do a combined induc-
tion over the label values and the ttl.

Consider first messages with lbl = 1. No new message can
be created with this label since new messages have a label
equal to the sum of two other labels, all of which are at least
1 (i.e., Lphy neighbors). Thus, by induction on the ttl, these
messages will disappear. Note that label[v] is defined to be
at least 2, and thus any non-existent neighbor in Vjoin ∪ Lext

must have a label of at least 2.
Consider next that all messages with a non-existent ngh

have a label of at least x, permanently, and all nodes in Vjoin∪
Lext have a label at least x, permanently. Similarly, any new
message with label x is obtained by adding the labels of two
nodes. Since non-existing nodes have a label of at least x, no
such message can be created. Hence, by a simple induction on
the ttl, all messages with non-existent ngh and a label of x
will disappear permanently. Also, in the next execution round,
edges and links in Vjoin ∪ Lext with a non-existent ngh and
a label of x will be marked as stale and not be refreshed, and
thus removed. Hence, all messages with a non-existent ngh
will have a label of at least x+ 1, permanently, and all nodes
in Vjoin ∪ Lext will have a label at least x+ 1, permanently.
The desired result follows by induction.

B. Constructing R(u)

Due to lack of space, we present an overview of the proof.
We begin by observing that if a node v is in R(u), and if it
is also in V , then v ∈ convex-hull(V ). That is, no existing
node can block v. Since non-existing nodes have been shown
to disappear, v cannot be blocked by any other node. Thus,
the only reason v could be removed from V is if v does not
satisfy the clean condition that is required of V . We will show
by induction that this is not the case.

Also, similar to the first argument in Section IX-A, an
induction argument can show that if a message is not recreated
at its source node, then, due to the ttl, all copies of the message
will be removed from the network. This observation will be
used throughout.

We define the notion of the DTlabel of an edge (u, v) in
the DT of the network in a similar way as was done in [7].
Our induction will be over the DTlabel. The DTlabel of edge
(u, v) is the smallest positive integer such that:

(i) If (u, v) is a direct physical link between u and v, then
DTlabel(u, v) = 1.

(ii) If (u, v) is not a physical or an extended link, then note
that (u, v) can be involved it at most two triangles in
the DT. Let those triangles be (x, u, v) and (y, u, v), i.e.,
either x or y is the origin of edge (u, v) (x = y in
the case of only one triangle). Then, DTlabel(u, v) =
min(label(x, u) + label(x, v), label(y, u) + label(y, v)).

(iii) If (u, v) is an extended link formed by extending an-
other link (p, v) that crosses an edge (u,w) in R(p),
then DTlabel(u, v) = max(label(p, u), label(p, w)) +
label(p, v).

The reason for (iii) above being max(label(p, u), label(p, w))
rather than simply label(p, u) is that our induction will be
based on DTlabel, and both edges/links (p, u) and (p, w) must
exist and be stable before the link (u, v) can be created (or
considered stable).

We require one additional finding. By following the routing
along Voronoi edges as described in Section III-B, if u sends
a message to a neighbor v, v ∈ V , then the message will only
traverse along edges that have a DTlabel value smaller than
that of (u, v), as shown earlier in [7].

We need to show by induction that, for all h, 1 ≤ h ≤ N ,

(i) For every message of type edge or link with label h,
the message will arrive at its destination and always be
available at the destination.

(ii) For every message of type catch or throw that encapsu-
lates a message with label h or less, the message will
arrive at its destination.

(iii) For every node u and every v, v ∈ u.V , if u.label[v] ≤ h,
then DTlabel(u, v) = u.label[v], and v ∈ R(u).

(iv) For every node u and every v, v ∈ R(u), if
DTlabel(u, v) ≤ h, then u.label[v] = DTlabel(u, v),
and v ∈ V .

(v) For each extended link (u, v), if DTlabel(u, v) ≤ h,
then v ∈ u.Lext, u.label[v] = DTlabel(u, v), and
u.origin[v] = origin(u, v).

(vi) For every node u and every node v, v ∈ u.Lext, if
u.label[v] ≤ h, then DTlabel(u, v) = u.label[v] and
u.origin[v] = origin(u, v).

Consider first h = 1. Extended links and non-direct
Voronoi edges have a DTlabel greater than one. Only direct
physical links can have a label of one, which is hard-coded in
the protocol. Also, routine clean(V ) ensures that the physical
links in R(u) are included in V . The origin value of a physical
link is nil since it does not depend on other links. Furthermore,
any message created has as label the sum of two other labels,
and thus, its label is at least two. Any existing messages that
have a label of one will not be recreated by their sources, and
thus, by the ttl, they will be permanently removed.

Assume the induction hypothesis is correct for all labels
at most h. We now consider labels at most h + 1. Consider
first a message with label h+ 1 whose (src, dst, nbr) do not
correspond to a triangle in the DT. In order for a message of
label h+1 to be recreated, both edges (src, dst) and (src, nbr)
must have a label at node src of at most h. But, by the
induction hypothesis, these would correspond to real edges in
the DT, and hence, this message cannot be recreated. By the
ttl, the message will disappear permanently from the network.

Consider now a Voronoi edge (u, v) in the DT with
DTlabel(u, v) = h + 1 and origin x. This implies
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DTlabel(x, u) ≤ h and DTlabel(x, v) ≤ h. By the induction
hypothesis, u and v are in x.V with the correct label and origin,
and also in R(x). Thus, no node can be in between u and v
in x.V , and in consequence, x will send an edge message of
label h + 1 to both u and v. From the induction hypothesis,
these messages will be delivered to u and v. Since edge (u, v)
belongs to both R(u) and R(v), no node can block the edge
from being added to u.V and v.V , as desired.

The argument that extended links will be created from link
messages follows a similar argument. Likewise, if a throw or
catch message contains a message with label h+1, it implies
that both the link and the edge that join the extended link
have labels at most h, and thus, the contained message will be
delivered correctly.

X. CONCLUSION AND FUTURE WORK

We presented an efficient and self-stabilizing protocol for
computing the Voronoi region of a sensor node in a large
wireless sensor network. In particular, it departs from the unit-
circle communication model. Because faults can be modeled
as making arbitrary changes to the network state, any self-
stabilizing protocol is resilient against all type of transient
faults, provided the network does not become partitioned.
There is no assumption of having an underlying routing proto-
col to aid in routing control messages. Thus, the protocol can
successfully communicate with any Voronoi neighbor without
any additional aid, and can be used as the foundation for a
geographic routing protocol.

If nodes are distributed in the plane according to a Poisson
process with constant intensity, then each node in the DT of
these nodes has on average six neighbors [17]. In general, a
node u receives messages from a source s to destination d if
s and d are Voronoi neighbors and their Voronoi path crosses
u. Given the small number of surrounding neighbors, if the
deployment area is regular, as opposed to a long linear shape,
then we expect the number of such pairs to be small, even
of constant size. Thus, the overhead in most networks will
be small, even smaller than O(N). In our future work, we
will perform simulations over randomly generated networks
to measure the worst and average node overhead over various
topologies and node densities.

REFERENCES
[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network

survey,” Computer Networks, vol. 52, no. 12, 2008, pp. 2292 – 2330.

[2] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with
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