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Abstract—We use an application scenario that collects, transports
and stores sensor data in a database. The data is gathered with
a high frequency of 1000 datasets per second. In the context of
this scenario, we analyze the performance of multiple popular
database systems. The benchmark results include the load on the
system writing the data and the system running the database.
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I. INTRODUCTION

Recently popular media are heralding the advent of a
new age with buzzwords like Internet of Things” (IoT) or
“Industry 4.0” (I4.0). One of the popular mantras is “data is
the new oil”. This claim is surely true for applications like
predictive maintenance where data gathered during operation
of a production machine is mined for wear indicators. Many
papers address the “refining process” (e.g. [1]-[3]) and propose
data-mining algorithms that extract said indicators from a
database or a data lake.

In this paper, however, we focus on collecting and storing
time series data as integral part of the industrial data analytics
process [4]. This can be very challenging both in terms of
engineering the instrumentation and in implementing fast data-
acquisition and data-handling software. In one of our research
projects, we collect and store =~ 4%.

Standard databases can be tuned towards high performance
reading or writing of data, but often not towards both at once.
Especially when a fast retrieval of time series data is of interest,
for example in predictive analytics, relational databases rely
on B-tree indexes that permit a fast search for data. These
indexes are a huge performance bottleneck if frequent updates
are made. This stems from B-trees being optimized for random
fills and not for updates only coming from one side of the
tree. [S] propose structures like the B(x)-tree to overcome this
problem. Nevertheless, standard databases do not implement
specialized index structures in most cases. Instead, specialized
“time-series” databases for this use case exists (e.g. [6]-[9]).

To verify whether these databases are more suitable for
our application, we use the benchmark scenario presented in
Section II that generates a standard load on all subsystems
of the setup, to compare relational, NoSQL and specialized
time-series databases. Section III presents our test candidates.

In Section IV, we describe the different implementations
we developed for writing to the databases. We evaluated
several ideas from [10], such as time series grouping.

To evaluate the database performance we measure the load
on the involved infrastructural components, i.e., CPU, memory,
network and hard disk, and perform the benchmarking, as
described in Section V. Section VI discusses our findings.
Section VII summarizes the paper and gives a brief outlook
on our future work.
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Figure 1. The test setup

II. BENCHMARK APPLICATION

One of our currrent projects is using predictive maintenance
for analyzing data stemming from a complex tool operating
within an industrial machine. The tool is equipped with 13
analog and 37 digital sensors recording mechanical parameters
during operation of the tool. The machine tool opens and closes
the tool ~ 3 times per second, i.e., 3 working cycles per
second. Our application records ~ 300 samples per cycle from
the sensors and stores them in a database for later analysis.

For the tests in this paper, we substitute tool and machine
tool with electronic function generators as shown in Figure
1. One function generator is set to make a sinus wave. It is
wired to a divider circuit, which accepts one input and divides
it into four outputs of different amplitudes. The other generator
creates a sawtooth wave. The resulting five analog outputs are
wired to GPIO-Inputs of a STM32F4-Discovery board.

In total, we sample 5 analog channels with a resolution
of 12 Bit (represented using 2 bytes) and a sample rate of
1000%. This corresponds to a data rate of 10,0002

sec

Figure 2 shows the flow of the data through our setup. The
sensor data is gathered by a microcontroller which sends it
to a single board computer via a parallel interface. The single
board computer is running two separate applications: one reads
from the parallel interface and adds a timestamp to the sensor
data. The second application receives the data and writes it
to the database on our server. These applications are linked
via a Linux message queue. If the second application is not
reading fast enough to keep the buffered data in the queue
below =~ 16kByte data is lost.

We use a STM32F407 on a STM32F4Discovery evaluation
board to convert the sensor data from analog to digital. The
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Figure 2.

embedded application is written in C and does not use any
operating system.

The Single-board-Computer is a Banana Pi M3 running
the Linux distribution CentOS 7 without an X.Org-Server.
This system uses an ARM Cortex A7 Octa-Core with 2 GB
RAM and has GigaBit Ethernet on board. The two applications
running on this system are written in C and C++.

The database is run on a dedicated server running Linux
with an AMD Phenom(tm) II X6 1055T Processor, 16GB
RAM (4 x 4GB, DDR3, 1333 MHz) and a 128GB SSD running
on a ASRock 880G Extreme 3 mainboard. It also runs CentOS
7 as distribution.

Banana Pi and server are linked via fast ethernet.

The parts of Figure 2 shown with gray background are
database specific. We use high-level libraries to access the
database and provide three different implementations and
server installations.

I11.

Various publications like [7] or [11] list an huge num-
ber of different databases. They distinguish three categories:
Relational Database Management Systems (RDBMS), NoSQL
Database Management Systems (DBMS), and the more spe-
cialized Time Series Databases (TSDB). For our benchmark,
we chose one system for each category. For the selection
we focus on mature (stable releases available for at least 3
years) and free software with options for enterprise support.
‘We mainly consulted the database ranking website [11] as basis
for selecting databases for our comparison.

CHOICE OF DATABASES

As a representative RDBMS we selected the open source
database MariaDB [12]. It is a fork of the popular MySQL
database and widely used in Web-Applications and relational
scenarios. [13] lists MySQL and its more recent fork MariaDB
combined as top RDBMS.

We selected MongoDB [14] as a DBMS advertised ex-
pressly for its usefulness in an IoT context with a lot of sensor
data. It is also the most promising document store [15].

As TSDB we chose InfluxDB [16] which claims to be
highly specialized in sensor data. This claim is confirmed by
the score in [17].

IV. THE DIFFERENT IMPLEMENTATIONS

Every millisecond the Database Writer application running
on the single-board computer receives a new datapoint. Listing
1 shows the structure of the datapoint: It contains a timestamp
and a set of five analog values. The timestamp has a resolution
of one nanosecond and uses 12 bytes of memory. The analog
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values are represented as 16-bit integers. Thus one datapoint
uses 22 bytes of memory.

Depending on the architecture of the database, we im-
plemented different ways of storing the data detailed in the
following sections. Each implementation itself is optimized
concerning runtime complexity for reduced influence on the
benchmarks by using memory usage techniques (i.e. stack
memory allocation), database specific techniques (i.e. prepared
statements), and general algorithmic design principles. This
way, we are able to receive optimal database performance
results. It is, however, possible, that non-optimized client
implementations negatively impact the throughput. This is not
covered by this paper for now.

A. MariaDB — Individual datapoints

This is a straightforward maybe even naive implementation
of the data structure. We sequentially store each datapoint
in the database. This results in a high rate of operations on
the database (5000%). Table I shows the structure of the
data. A compound index is set on second and nanosecond.
number describes the index of the sensor, measurement the

corresponding sensor value.

TABLE 1
MARIADB - TABLE STRUCTURE OF INDIVIDUAL DATAPOINTS

Field ‘Type
second bigint(20)
nanosecond int(11)
number smallint(5) unsigned
measurement smallint(5) unsigned
Our implementation of the algorithm based on
libmariadb uses prepared statements and struct

data binding for higher performance. Our performance
optimizations because of the creation of tables and the
explicit transaction preparation and commitment make the
MariaDB code the largest and most complicated of all our
implementations.

B. MariaDB — Bulk Datapoints

This implementation collects all data from one machine
cycle at once (in our test scenario: one cycle per second)

Listing 1.
struct data_point
{
int64_t s;
int32_t ns;
uintl6_t measurements[5];

bi

One datapoint
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and writes out one row per cycle. Therefore, we can store
the data in bigger units, which reduces the load dramatically.
In MariaDB, the JSON field is an alias for longtext field. Yet,
the specialized JSON query commands in MariaDB work for
such fields, which allows to later query the denormalized data
saved. Table II shows the used structure. second is an index,
measurements contains a JSON document built according to
the example in Listing 2. The document contains the measure-
ments and its time in nanoseconds in relation to the second of
the table. Thus, the rate of index updates is reduced to 1 per
second.

TABLE 11
MARIADB - TABLE STRUCTURE OF DATAPOINTS IN BULK

Field

second

size
measurements

‘ Type
bigint(20)
int(10) unsigned
json

Listing 2. MariaDB - JSON Documents

{

"measurements": [
"ns":346851124,"m":[389,792,1202,315,552}}
; "ns":346933204,"m":[516,794,634,317,559]}

1}

The difficulty of this adaption is similar to the original
“naive” approach , but in one detail even more complicated: As
it is theoretically impossible to know how many measurements
one cycle will have (most of the time the stated 5000 measure-
ments per second in our case, but this is not guaranteed), we
needed to implement a dynamically growing character field for
the JSON data. We also needed to change the struct binding in
the transaction commitment for honoring the dynamical length
of the JSON data.

C. MongoDB — Individual Datapoints

As a document-orientated database, MongoDB allows for
flexible schemata. Data is organized internally in BSON
(Binary JSON) documents, which are in turn grouped in
collections.

Saving the individual datapoints according to Listing 1
each measurement would be a document with the time of
measurement and the values organized as a JSON-array.

The database supports setting an index on a field of
a document. To support further searching of measurements,
an index is set on time. With such a structure, numerous
documents are created per second. After each document, the
index needs to be updated, which results in high computational
effort.

The software for the MongoDB Database Writer is writ-
ten in C++ and uses mongocxx in conjunction with the
bsoncxx library. The document orientated approach of Mon-
goDB makes designing data structures very flexible. However,
the freedom leads to more work on the initial programming
approach. Also the need to link two libraries creates additional
effort.
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D. MongoDB — Bulk Datapoints

As stated in Section IV-B we can store a bigger number of
datapoints at once. In MongoDB, we can implement this with
the structure shown in Listing 3.

Listing 3. Datapoints in bulk
{
"time" ISODate ("2018-02-12T19:56:492"),
"measurements" : [
{ "time" ISODate ("2018-02-12T19:56:49.13
5z"), "sensors" : [ 0, 0, 0, 9, 347 1 }
{ "time" ISODate ("2018-02-12T19:56:49.13
6z"), "sensors" : [ 0, 2, 4, 10, 351 ]
i
]
}

The time value of the top-level document has a precision of
a second. This document holds all datapoints sampled during
this second in an array. Every nested document contains the
exact time of its measurement and the actual sensor-values.
With this approach, the index has to be updated only once per
second resulting in optimized write performance. Nevertheless,
it must be considered that in this case only a whole second but
no parts of it can be retrieved efficiently. However, because of
the high increase in write throughput, we accept this drawback.

The application creates a document for a whole second
and fills it until the second has passed. Accordingly one such
document is inserted per second.

The documentation for MongoDB provides examples for
the use of streams and basic builders consisting of function
calls. Yet the use of nested structures and the nature of C+4++-
streams is poorly documented in the doxygen-based manuals,
increasing the implementation effort.

E. InfluxDB

As a time-series database InfluxDB has a strict schema
design. Every series of data consists of points. Each point has a
timestamp, the name of the measurement, an optional tag, and
one or more key-values fields. Timestamps have an accuracy
of up to one nanosecond and are indexed. The name of the
measurement should describe the data stored. The optional tags
are also indexed and used for grouping data. Data is retrieved
with InfluxQL, a SQL-like query language. Data is written
using the InfluxDB line-protocol (Listing 4). The first string
is the name of the measurement, here simply measurement.
Subsequently following the key-values with five measurements
and finally a timestamp in nanosecond precision.

Listing 4. InfluxDB Line-Protocol example
measurement m0=0, ml=0, m2=0, m3=9, md4=347
1518465409001000000

The Database Writer for InfluxDB is written in C. The
default API for InfluxDB is HTTP. For our high-frequency
write access however, we haven chosen the UDP protocol
which is also supported. In this case, the data is composed into
a line-protocol with simple C-String functions and sent with
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the Unix function sendto. Since no external code is required
and a custom design of the data structure is not possible, using
the database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not necessary,
which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData [18].

V. TESTING

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The system load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

L¢py indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be Lo py = 800%. On the server the absolute maximum
value is 600%.

Lyyer indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ' {if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Lg;si. shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also, we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du —sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ~ 53MByte of raw data during the one hour of
our test.

L;o shows the average disk input output in k?b caused

by the database writing operation. This was measured via
pidstat command.

L,.; shows the average bandwidth used. We obtain that
value with the command nload. We run our test in the uni-
versity network and therefore have additional external network
load. However before each test, we observed the additional
network load and as it was always smaller than 1kt;3ézes,
neglected it.

To put L;o and L, in perspective: In our benchmark we
transfer 10.000% from the microcontroller to the single-
board computer.

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
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both systems ~ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VI. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criterion.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the disk
was significantly higher when using MariaDB compared to the
others. InfluxDB and the bulk implementation of MongoDB
got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step, before we add them up, we
assign each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with 10, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criterion and ag-
gregated, resulting in points. High point values indicate high
resource usage according to weighting. For scoring we “invert”
the points with the formula

Score = max(Points) — Points

and normalize the scores relative to the maximum score.

Figure 4 shows the scores without aggregation, where the
components forming the final results are outlined. For the final
ranking shown in Table III we aggregated all scores by adding
the non normalized values.

48



ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

TABLE III
SCORED RANKING

Implementation
MariaDB — bulk 1
MongoDB — bulk 2
InfluxDB 3 64
a1
5

[ Rank [ Score

MongoDB - individual
MariaDB — individual

VII. CONCLUSION AND FUTURE WORK

Generally speaking, MongoDB is a good choice. Due to
the open structure, additional information can also be stored if
required and it performs quite well on both implementations.

However, the optimized MariaDB implementation that
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Figure 3. Overview of all Benchmark Values (normalized to respective Maximum)

100,00%
90,00%
80,00%
70,00%
60,00%
50,00%
40,00%

30,00%
MariaDB_Bulk

MongoDB_Bulk
InfluxDB

20,00%

10,00% MongoDB_Single

A A A— — A— MariaDB_Single
0,00%
LCPUSer‘ver LmemSewer Lo LCPUClient Lmemclient Lnet Laisk Difficulty

Figure 4. Weighted scores (normalized to maximum score)

Copyright (c) IARIA, 2018.  ISBN: 978-1-61208-669-9 50



