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Abstract — For large networks SDN-controlled, distributed 

control plane solutions are proposed, to solve the scalability 

problems generated by the SDN control centralization 

principle. In a multi-controller environment, the Controller 

Placement Problem (CPP) should be solved. Additionally, in a 

dynamic networking context, including possible failures of 

links or nodes, a forwarder node could try to select an 

available and reachable controller among those alive. Although 

several studies have been published, the above problems are 

still open research issues, given the various network contexts, 

providers’ policies and possible multiple optimization criteria. 

Multi-criteria decision algorithms can provide valuable 

solutions. This paper extends a previous work, considering in 

the developed model some reliability aspects of the distributed 

SDN control and an extension to a dynamic controller selection 

method. 
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I. INTRODUCTION 

Software Defined Networking (SDN) has as basic 

principles the decoupling of the architectural Control Plane 

(CPl) w.r.t Data Plane (DPl) and also CPl centralization in 

SDN controllers. In the case of large network environments, 

scalability problems of the CPl appear [1]. The usual 

solution for this is a distributed multi-controller 

implementation of the SDN control plane. Different flat or 

hierarchical organizations for a multi-controller SDN 

control plane have been developed, e.g., in [2][3]. 

Note that in a basic approach, the SDN controller (SDN-

C) is understood as a control entity placed in a 

geographically distinct location, i.e., a particular physical 

network node. However, recently, the Network Function 

Virtualization technologies [4] allow that several logical 

SDN-Cs realized in a virtual manner (notation will be 

vSDN-C) can be collocated in the same physical node. In 

the following text we suppose the basic approach; however 

the models developed in this paper can be as well applied 

also to a virtualized environment.  

Actually, several associated problems exist together with 

controller placement problem (CPP) itself. Some examples 

are: how the network topology is specified - flat or 

clustered; what criteria are considered to solve the CPP; 

number of controllers - predefined or not; failure-free or 

failure-aware metrics (e.g., considering backup controllers 

and node/link failures); how the DPl forwarders nodes are 

assigned to controllers (in static or dynamic way, i.e., 

depending on actual network conditions and network 

provider policies), and others. The evaluation of the degree 

of optimality of different approach can be studied on some 

simplified topologies – in order to compare the efficiency of 

approaches or, on real specific network topologies. Several 

studies [5-15] considered various aspects and solutions of 

the CPP problem. 
In a real network environment, it has been apparent that 

there is no uniform and strict placement rule to be the best 
for any SDN-controlled network. Dynamic nodes addition 
and deletion can happen and, in such cases, a forwarder 
could dynamically select an appropriate controller, if it has 
enough pertinent and updated information. This is called 
controller selection problem (CSP) and can be considered as 
an extension of the CPP [11]. 

The CPP is a non-polynomial (NP) -hard problem [5]; 

therefore different pragmatic solutions have been proposed, 

many of them with specific optimization criteria, targeting 

performance in failure-free or failure-aware approaches. 

Examples of specific, individual criteria could be: to 

maximize the controller-forwarder or inter-controller 

communication throughput; reduce the latency of the path 

connecting them;  limit the controller load imbalance;  find 

an optimum controllers’ placement and forwarder-to-

controller allocation, offering a fast recovery after failures 

(controllers, links, nodes). Also, other specific optimization 

goals could be added to the above list, depending on specific 

context (wire-line, wireless/cellular, cloud computing and 

data center networks) and on some specific business targets 

of the Service Provider. 

One main issue is that different optimization criteria 

could lead to different solutions; so, a multi-criteria global 

optimization could be a better approach.  

The paper [12] provides a contribution on multi-criteria 

optimization algorithms for the CPP not by developing 

specific single-criterion algorithms (many other studies 

already did that) but to achieve an overall optimization by 

applying multi-criteria decision algorithms (MCDA) [16]. 

The input of MCDA is the set of candidates (an instance of 

controller placement is called a candidate solution).  

Examples have been analyzed, on some real network 

topologies, proving the usefulness of the approach. 
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This paper extends the model of  [12]; several reliability 
aware criteria have been   added to the CPP solution. Also 
the novel CSP extension is introduced, being appropriate for 
a dynamic network context. It is shown that the same basic 
MCDA can be applied in both static and dynamic context, 
but with different sets of criteria. Simulation experiments and 
novel results are presented. 

The structure of the paper is described here. Section II is 
a short overview of related work. Section III revisits several 
metrics and optimization algorithms and presents   some of 
their limitations.  Section IV revisits the framework for 
MCDA-RL (the variant which is called “reference level”) as 
a simple but powerful tool to solve the CPP and CSP 
problems. Section V presents the implementation performed 
to validate the MCDA proposed model in reliability-aware 
approach, and outlines the simulation experiments 
performed.  Section VI offers few samples of simulation 
results to illustrate the validity of the approach. Section VII 
presents conclusions and future work. 

II. RELATED WORK 

This short section is included mainly for references. 
More comprehensive overviews on published work on CPP 
in SDN-controlled   WANs are given in [10-13].  The goal is 
to find those controller placements that provide high  
performance (e.g., low delay for controller-forwarder 
communications) and also create robustness to controllers 
and/or network failures.  

Heller et al. [5] have early shown that it is possible to 
find optimal solutions for realistic network instances, in 
failure-free scenarios, by analyzing the entire solution space, 
with off-line computations (the metric is latency). Going 
further, the works [6][7][8][9][14] additionally considered 
the resilience as being important with respect to events like: 
controller failures, network links/paths/nodes failures, 
controller overload (load imbalance). The Inter-Controller 
Latency is also important and, generally, it cannot be 
minimized while simultaneously minimizing controller-
forwarders latency; a tradeoff solution could be the answer. 

The works [6][8] developed several algorithms for  real 
topologies, considering reliability of SDN control, but still 
keep acceptable latencies. The controller instances are 
chosen as to minimize connectivity losses; connections are 
defined according to the shortest path between controllers 
and forwarding devices. Muller et.al. [9] eliminate some 
restrictions of previous studies, like: single paths, processing 
(in controllers) of the forwarders requests only on-demand 
and some constraints imposed on failover mechanisms. Hock 
et.al. [7] adopted a multi-criteria approach for some 
combinations of the metrics (e.g., max. latency and controller 
load imbalance for failure-free and respectively failure use 
cases). 

In a recent work [11], K.Sood and Y.Siang propose to 
transform the CPP problem into Controller Selection 
Problem (CSP), i.e., consider the dynamics of the network  
and make controller selection. They explore the relationship 
between traffic intensity, resources requirement, and QoS 
requirements. It is claimed that to optimize the control layer 
performance, the solutions must be topology-independent 

and adaptive to the needs of the underlying network   
behaviour. They propose a topology independent framework 
to optimize the control layer, aiming to calculate the optimal 
number of controllers to reduce the workload, and 
investigate the placement/location of the controllers. 
However, their first declared objective has been not to 
determine the optimal placement of controllers in the 
network, but to motivate the CSP. 

In [12], a multi-criteria algorithm is used (applicable for 

an arbitrary number of decision criteria) to solve the CPP; 

validation of results have been presented for some real 

network topologies [17][18]. 

This paper extends the [12] work, by adding new 

reliability–aware metrics and also outlines the usage of the 

multi-criteria method to solve the controller dynamic 

selection problem (CSP).  

III. EXAMPLES OF CONTROLLER PLACEMENT METRICS 

AND ASSOCIATED ALGORITHMS 

This section is a short presentation of a few typical 
metrics and optimization algorithms for CPP and CSP. A 
more detailed presentation of them can be found in [12]. 
Considering a particular metric (criterion) an optimization 
algorithm can be run for a given metric, as in [5][6][7][9].  

However, this paper goal is not to develop a new 
particular algorithm based on a given single metric, but to 
search for a global optimization. The individual metrics 
presented in this section can be embedded in a multi-criteria 
optimization algorithm. 

The SDN-controlled network is abstracted by an 
undirected graph G(V, E), with  V - set of nodes, E – set of 
edges and  n=|V| the total number of nodes. The edges 
weights represent an additive metric (e.g., propagation 
latency [5]).    

A basic metric is d(v, c): shortest path distance from a 

forwarder node v∈V to a controller c∈V. We denote by  Ci a 

particular placement of controllers; Ci ⊆ V and |Ci| < |V|. The 
number of controllers is limited to |Ci|= k for any particular 
placement Ci. The set of all possible placements is denoted 
by C = {C1, C2 …}. Some metrics are basic, i.e., failure-free; 
others take into account failure events of links or nodes.  

An important metric for SDN control is the latency 
between nodes. Note that, while it has a dynamic nature, in 
some simplified assumptions it is estimated as a static value.  

A. Failure-free scenarios 

• Forwarder-to-controller latency 
 In Heller’s work [5], two (failure-free) metrics are 

defined for a given placement Ci: Worst_case_latency and 
Average_latency between a forwarder and a controller. An 
optimization algorithm should find a placement Copt, where 
either average latency or the worst case latency is minimized.  

The work [15] proposes an algorithm  to maximize the 
number of nodes within a latency bound, i.e., to find a 
placement of k controllers, such that they cover a maximum 
number of forwarder nodes, but with an upper latency bound 
of each forwarder latency to its controller.  

• Inter-controller latency  
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The SDN controllers should inter-communicate and 
therefore the inter-controller latency is important. For a given 
placement Ci, one can minimize the maximum latency 
between two controllers. Note that this can increase the 
forwarder-controller distance (latency).Therefore, a trade-off 
is necessary, thus justifying the necessity to apply some 
multi-criteria optimization algorithms, e.g., like Pareto 
frontier - based ones [7]. 

B. Failure-aware scenarios 

In such scenarios controller and/or network failures 
events are considered. The optimization process aims now to 
find trade-offs to preserve a convenient behavior of the 
overall system in failure cases (controllers, or nodes, or 
links). 

• Multiple-path connectivity metrics  
If multiple paths are available between a forwarder node 

and a controller [9], this can exploited in order to reduce the 
occurrence of controller-less events, in cases of failures of 
nodes/links. The goal in this case is to maximize connectivity 
between forwarding nodes and controller instances. A special   
metric can be  defined as: 

 
∈∈

=
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)(                     (1) 

The ndp(v,c) is the number of disjoint paths between a 
node v and a controller c, for an instance placement Ci. An 
optimization algorithm should find the placement Copt which 
maximizes M(Ci). 

• Controller failures 
To minimize the impact of such failures, the latency-

based metric should consider both the distance to the 
(primary) controller and the distance to other (backup) 
controllers. For a total number of k controllers, the failures 
can be modeled [7],  by constructing a set C of scenarios, 
including all possible combinations of faulty controller 
number, from 0 of up to k - 1. The Worst_case_latency_cf  
will be: 

 ( )cvdL
ii CcCCVv

cfwc ,minmaxmax
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The optimization algorithm should find a placement 
which minimizes the expression (2).  

Note that in failure-free case, the optimization algorithm 
tends to rather equally spread the controllers in the network, 
among the forwarders. To minimize (2), the controllers tend 
to be placed in the center of the network, such that in a worst 
case, a single controller can take over all control. However, 
the scenario supposed by the expression (2) is very 
pessimistic; a large network could be split in some 
regions/areas, each served by a primary controller; then some 
lists of possible backup controllers can be constructed for 
each area, as in [9]. The conclusion is that an optimization 
trade-off should be found, for the failure-free or failure cases. 
A multi-criteria approach can provide the solution. 

• Nodes/links failures  

For such cases, the objective could be to find a controller 
placement that minimizes the number of nodes possible to 
enter into controller-less situations, in various scenarios of 
link/node failures. A realistic assumption is to limit the 
number of simultaneous failures at only a few (e.g., two [7]). 
If more than two arbitrary link/node failures happen 
simultaneously, then the topology can be totally 
disconnected and optimization of controller placement would 
be no longer useful. 

For  a placement Ci of the controllers, an additive integer 
value metric Nlf(Ci) could be defined,  as below: consider a 

failure scenario denoted by fk, with fk∈F, where F is  the set 
of all network failure scenarios (suppose that in an instance 
scenario, at most two link/nodes are down); initialize  

Nlfk(Ci) =0; then for each node v∈V, add one to Nlfk(Ci) if 

the node v has no path to any controller c∈Ci and add zero 
otherwise; compute the maximum value (i.e., consider the 
worst failure scenario).  

 ( ) ( )iki CNlfCNlf max=                  (3) 

The optimization algorithm should find a placement to  
minimize (3), where k should cover all scenarios of F. It is 
expected that increasing the number of controllers, will 
decrease the Nlf value. However, the optimum solution based 
on the metric (3) could be very different from those provided 
by the algorithms using the latency-based metrics.  

•  Load balancing for controllers  
It is desired a good balance of the node-to-controller 

distribution is desired. A metric Ib(Ci) will measure the 
degree of imbalance of a given placement Ci as the difference 
between the maximum and minimum number of forwarders 
nodes assigned to a controller. If the failure scenarios set S 
is considered, then the worst case should evaluate the 
maximum imbalance as: 

 }minmax{max)(
s
c

Cc

s
c

CcSs
i nnCIb

ii ∈∈∈
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where 
s

cn  is the number of forwarder nodes assigned to a 

controller c. Equation (4) takes into account that in case of 
failures, the forwarders can be reassigned to other controllers 
and therefore, the load of those controllers will increase. An 
optimization algorithm should find that placement which 
minimizes the expression (4). 

IV. MULTI-CRITERIA OPTIMIZATION ALGORITHMS 

SDN controllers’ placement and/or selection may involve 
several particular metrics (as summarized in Section III). If   
optimization algorithms for particular metrics are applied, 
then one can obtain different non-convergent solutions. 
Actually the CPP and CSP problems have naturally multi-
criteria characteristics; therefore MCDA is a good way to 
achieve a convenient trade-off solution.  

This paper uses the same variant of MCDA 
implementation as in [12], i.e., the reference level (RL) 
decision algorithm [16] as a general way to optimize the 
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controller placement, and controller selection, for an 
arbitrary number metrics. The MCDA-RL selects the optimal 
solution based on normalized values of different criteria 
(metrics).  

The MCDA considers m objectives functions (whose 
values, assumed to be positive should be minimized). A 
solution of the problem  is represented  as a point in a space 
R

m 
of objectives;  the  decision parameters/variables are: vi, i 

= 1, ..m,  with ∀i, vi ≥ 0; so, the  image of a candidate 
solution is Sls=(vs1,vs2, ..,vsm), represented as a point in R

m
. 

The number of candidate solutions is S. Note that the value 
ranges of decision variables may be bounded by given 
constrains. The optimization process consists in selecting a 
solution satisfying a given objective function and 
conforming a particular metric. 

The basic MCDA-RL [16], defines two reference 
parameters: ri =reservation level=the upper limit, not allowed 
to be crossed by the actual decision variable vi of a solution; 
ai=aspiration level=the lower bound beyond which the 
decision variables (and therefore, the associate solutions) are 
seen as similar (i.e., any solution can be seen as “good”- 
from the point of view of this variable). Applying these for 
each decision variable vi, one can define two values named ri 
and ai, i= 1, ..m, by computing among all solutions s = 1, 2, 
..S: 

 
, ..S, , s = v  = a

, ..S, s = v r

isi

isi

21][min

21 ],[max  =
                (5) 

An important modification is proposed in [16], aiming to 
make the algorithm agnostic versus different nature of 
criteria. The absolute value vi of any decision variable is 
replaced with distance from it to the reservation level: ri-vi; 
(so, increasing vi will decrease the distance); normalization is 
also introduced, in order to get non-dimensional values, 
which can be numerically compared despite their different 
nature. For each variable vsi, a ratio is computed: 

 is)-a)/(r-v' = (rv iisiisi ,, ∀                 (6) 

The factor 1/(ri-ai) - plays also the role of a weight. A  
variable for which  the possible  dispersion of values is high  
(max – min has a high value in formula (6)) will have lower 
weight and so, greater chances to be considered in 
determination of the minimum in the next relation (7). On 
the other side, if the values min, max are rather close to each 
other, then any solution could be enough “good”, w.r.t. that 
respective decision variable.  

The basic MCDA-RL algorithm steps are (see also [12] ): 
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m 

Step 1. Compute for each candidate solution s, the minimum 

among all its normalized variables vsi': 

 ...m'}; i={v = sis 1minmin                     (7) 

Step 2. Select the best solution: 

 , ..S}, s= {  = v sopt 1minmax               (8) 

Formula (7) selects for each candidate solution s, the 

worst case, i.e., the closest solution to the reservation level 

(after searching among all decision variables). Then the 

formula (8) selects among the solutions, the best one, i.e., 

that one having the highest value of the normalized 

parameter. One can also finally select more than one 

solution (quasi-optimum solutions in a given range).  The 

network provider might want to apply different policies 

when deciding the controller placement; so, some decision 

variables could be more important than others. A simple 

modification of the algorithm can support a variety of 

provider policies. The new normalized decision variables 

will be: 

 )-a)/(r-v(r' = wv iisiiisi                          (9) 

where wi ∈ (0,1] is a weight (priority), depending on policy 
considerations. Its value can significantly influence the final 
selection. A lower value of wi represents actually a higher 
priority of that parameter in the selection process. 

V. MCDA-BASED IMPLEMENTATION FOR SDN 

CONTROLLER PLACEMENT 

A proof of concept simulation program (written in 
Python language [12]) has been constructed by the authors, 
to validate the MCDA–RL based CPP problem and 
allocation of forwarders to controllers. The program has been 
extended in this work with reliability evaluation features.  

The simplifying assumptions (they could be also seen as   
limitations) of the model studied here, are:  the network 
architecture is flat, i.e.,  no disjoint regions are defined;  the 
network graph is undirected; any network node can be a 
forwarder but also can collocate a controller;  when 
computing paths or distances, the metrics are additive; the 
number of controllers is predefined; the data traffic aspects 
and signaling interactions are not considered yet.   

 A. The MCDA basic model  

The basic model to solve the CPP problem considered in 
this paper has two working modes:  

a. static mode - the input data are: network graph 
(overlay or physical), link costs/capacities, shortest path 
distances between nodes (e.g., computed with Dijkstra 
algorithm based on additive metric), desired number of 
controllers, etc.).  

Two phases are defined: 
 (1)Phase 1:  
1.1. Define the criteria (i.e., the parameters of interest) 

and their priorities. The decision variables could be anyone, 
among those of Section III.  

1.2. Compute all controller placements C1, C2, …. (i.e. 
the set of candidate solutions). The number of placements is 
Cn

k 
(n= total number of network nodes;  k= number of 

controllers). 
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1.3. Compute the values of the normalized metrics for 
each possible controller placement ( i.e. future MCDA 
candidate solution), by using specialized algorithms and 
metrics like those defined in Section III.  

The Phase 1 phase has as outputs the set of candidate 
solutions (i.e., placement instances) and values to fill the 
entries of the matrix M defined in Section IV. The Phase 1 
computation could be time consuming (depending on 
network size) and therefore, could be performed off-line [5].  
For instance, in a real network, a master SDN controller 
having all these information can perform these computations.  

 (2) Phase 2: MCDA-RL: define ri and ai, for each 
decision variable; eliminate those candidates having 
parameter values out of range defined by ri; define – if 
wanted – convenient weights wi for different decision 
variables; compute the normalized variables (formula (6)); 
run the MCDA Step 0, 1 and 2 of the (formulas (7) and (8)).  

The Phase 2 provides the CPP solution. 

b. dynamic mode – the input information is the total 

number of network nodes and desired number of controllers. 

The graph (which could be full-mesh or not) and costs of the 

links are randomly generated by a  simulation program. The 

desired total number of nodes and the number of controllers 

should be specified as inputs in the program. 

B. Reliability aware model 

As shown in Section III, more realistic scenarios consider 
the possible occurrence of controller and/or network failures 
events. The optimization process aims now to find trade-offs 
to preserve a convenient behavior of the overall system in 
failure cases. 

• Backup controllers 
A simple static solution for assignment of forwarders to 

primary and backup controllers is presented below. We 
assume that CPP has been solved for a given network. 
Therefore the identities of controller nodes are known. The 
simplest assignment of forwarders to controllers is to 
consider the shortest paths between a forwarder to a 
controller. So,  an algorithm  computes all  distances from  a 
forwarder Fi to each controller CTk and selects the closest 
CTm as primary controller (based on  shortest path between 
Fi and any controller) and the next (let it be CTn in the 
ordered list of distances) as a backup controller.  

However, while the primary controller placement after 
first run of the  MCDA) is a global trade-off optimum, there 
is no guarantee that in case of node/link failures the 
placement of the backup controller is optimum, given the 
individual choice of the secondary/backup controller for each 
forwarder node.A natural solution is to add a novel criterion 
to the MCDA set of decision parameters.  

An auxiliary algorithm is used to compute a simple 
metric (mean distance to a backup controller) to be added to 
MCDA. We introduce a novel decision variable dist_backup 
and perform the following computation (for each possible 
controller placement Ci containing the controllers CT1, CT2, 
….CTk): 
For each forwarder Fi, i=1..N 

 Do 

Dist_backup = 0; 

   Compute dist. from Fi to any CTj, j=1..k; 

   Dist_backup=Dist_backup + second_shortest_cost; 

  Od 

   Dist_backup_avg = Dist_backup/N; 
 

This Dist_backup_avg can be added as a new decision 
variable to MCDA (maybe with appropriate wight) 
Therefore, the optimization will select a solution which  
considers also the backup controller nodes in the factors 
influencing the selection. Note that the inclusion of the 
backup controllers will increase the number of computations 
in the Phase 1.2 from Cn

k 
 to Cn

2k
.  

• Load balancing for controllers  
As shown in Section III, a good balance of the node-to-

controller distribution is desired. If the number of nodes is N 
and the number of controllers is k, then the average number 
of nodes allocated to a controller is N/k. A simple new 
metric can be added to the set of MCDA criteria. This 
decision variable D_avg will  measure the deviation of the 
number of nodes allocated to a controller CTi, i.e., ni from 
the average value N/k, and averaging this for all controllers. 

D_avg = (1/N) Sum |(ni – N/k)|, i= 1…k           (13) 
Again, this variable can get an appropriate weight in the 
optimization process. 

• Nodes and link failures  

Nodes and link failures could appear in the network. 

Evaluation of effects of such events could be taken into 

account by adding new decision appropriate parameters in 

the set of MCDA input multi-criteria. Here, we adopted a 

different approach. Given that most important metrics are 

forwarder-controller latency, inter-controller latency, load 

balancing of the controllers, optimization of the placement 

of the primary and backup controllers, the MCDA has been 

first run to produce controllers’ placement optimization 

based on these important parameters. Then the simulation 

program allows some events to happen (e.g., nodes or link 

failures). The MCDA has been run again and produce a new 

placement after removing the entities in failure. Finally the 

placement produced in the updated conditions can be 

compared with the initial one, to evaluate if significant 

changes appeared. In such a way one can evaluate the 

robustness of the initial placement, and decide if that can be 

preserved or must be changed. 

Two input parameters have been defined in the model:  

nf- number of nodes supposed to fail  

ef – number of links supposed to fail. 

The specific nodes and links which will fail will be 

selected as to to simulate the “worst case”, i.e., those nodes 

having the lowest cost of the adjacent links and, respectively 

those links having the least costs. If after second run of the 

MCDA, the initial placement of the controllers does not 

change, this means that initial placement has enough good 

robustness properties. Of course, this result will depend on 

selection of nf and ef values, for a given N nodes of the 

graph.  
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C. Controller placement optimization- Simulation program 

      The user interface of the simulation program is 

presented in Figure 1.   
 

stefan@mint ~/Desktop/simulator_mcda $ python mcda.py -h 

usage: mcda.py [-h] [-a [A]] [-w [W]] [-i [I]] [-b [B]] [-l [L]] [--dynamic] [-n N] [-c C] [-nf NF] [-ef 

EF] [--debug] 

 

Multi-criteria optimization algorithm 

Optional arguments: 

  -h, --help  show this help message and exit 

  -a [A]      Average latency - failure free scenario. Expects a weight (priority) in interval (0, 1]. 

  -w [W]      Worst case latency - failure free scenario. Expects a weight (priority) in interval (0, 1]. 

  -i [I]      Inter controller latency. Expects a weight (priority) in interval (0, 1]. 

  -b [B]      Average latency - failure scenario. Expects a weight (priority) in interval (0, 1]. 

  -l [L]      Controller load-balancing. Expects a weight (priority) in interval (0, 1]. 

  --dynamic   Generate dynamic undirected graph 

  -n N        Number of graph nodes. Valid only in dynamic mode. 

  -c C        Number of controllers in graph. Valid only in dynamic mode. 

              Allowed values are between N/3 and N/7 

  -nf NF      Number of nodes that fail. Valid only in dynamic mode. Allowed  values: 1.. N-C. 

  -ef EF      Number of edges that fail. Valid only in dynamic mode. Allowed  values: 1 ..N-C. 

  --debug     Prints some computing results for debugging purposes. 

 

Figure 1. The interface of the MCDA CPP simulation program 

The decision parameters considered have been: average and 

worst latency between a forwarder and controller, inter-

controller latency and load balancing related parameter. 

The program can be run isn static or dynamic mode, with 

any number and set of criteria among those presented in the 

interface.  Note that if wanted, the set of decision parameter 

can be enriched; the only needed modification is the number 

of columns of the matrix M. 

    Several numerical examples and results of the basic CPP 

solutions have been already presented in the work [8]. The 

current version of the implementation added reliability 

feature presented in Section IV.B. 

      

     The pseudo-code of the simulation program for dynamic 

mode is presented below,  in high level view.  
Start 

   Generate the random graph; 

   Generate all controlers’ placements; 

   Run MCDA; 

   If link_failures specified then eliminate from 

the graph a number of ef links having the minimum 

costs;  

   If node_failures specified then eliminate from 

the graph a number of nf nodes; 

   If failures_produced  

      Then {generate modified graph; Run MCDA;} 

   Display the graphs; 

Stop 

D. Dynamic controller selection 

In a dynamic network context, the controller choice 
(CSP) can be performed in a dynamic way. The multi-criteria 
algorithm can be as well applied in such cases. We consider 
here only the situations in which controller/node/link – 
related occur.  

In the static approach the backup controllers are 
predefined; the placement is selected by the optimization   

algorithm. For a real network, the algorithm can be run 
offline in a management center (in a hierarchical 
organization of the control plane, this could be a master SDN 
controller). This center is supposed to know all information 
in order to run MCDA-RL algorithm. The aspects related of 
providing these information constitute a separate problem, 
which is not studied  in this paper. 

Supposing that a forwarder looses its connectivity with 
its controller, it can act in two ways; a. try to connect to a 
known backup controller; b. select among several by running 
a MCDA algorithm. The input information for MCDA 
(decision criteria) could be : identities/addresses of possible 
SDN controllers; degree of load for those controllers (this 
could be periodically communicated to the forwarder by a 
master SDN controller);  local information  observed by the 
forwarder, like connectivity to different nodes/controllers, 
etc. So, the forwarder can select based on MCDA-RL a novel 
controller.   

VI. SAMPLES OF RESULTS 

This section will shortly present samples of results, in 
order to prove the validity of approach. The experiments are 
reliability feature related. 

• Load balancing for controllers  
Figure 2 shows an example in which the network graph 

has been dynamically generated with N=6 nodes and k= 2 
controllers. The decision criteria have been inter-controller 
latency (weight = 1) and balancing criterion ( weight = 0.5, 
i.e. twice higher priority).  The MCDA program is run   with 
parameters : 

stefan@mint$ python mcda.py -i 1 -l 0.5 --

dynamic -n 6 -c 2 

The results obtained are: controllers in  CT0 and CT3. The 
allocation of forwarders are : 
   Controller 0 has allocated node(s): 0, 2, 4. 

   Controller 3 has allocated node(s): 1, 3, 5. 
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       One can see that while the inter-controller latency is not 
minimum, the allocation of the forwarders to controllers is 
balanced (3 forwarders per each controller). 

• Links and node failures  

       If the unique parameter considered in MCDA would be 

the average latency of the forwarders to backup controllers, 

then one would expect that the resulting placement could be 

enough resilient to a low number of nodes and/or link 

failures. 
 

 

 
Figure 2. Simple example of a balanced allocation of the forwarders to 

controllers (after MCDA run) 

 

 

 
 

 Figure 3. Example of  placement resilient to link failures 

Left: placement before link failures; Right: placement after some links failures. 

 

 

 
 

Figure 4. Example of  placement non-resilient  to link failures 

Left: placement before link failures; Right: placement after some links failures. 
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     Figure 3 shows such an example, by presenting the 

graphs resulted after running the program with the 

command: 
  python mcda.py -b --dynamic -n 8 -c 3 -ef 2 

      In this example, we have N=8 nodes and c= 3 

controllers; the number of failure links ef=2. 

    One can see that after some links failure  ( 1-6, 3-7) still 

the controller placement ( after running MCDA on the 

reduced graph) is the same, i.e., 3,4,5. 
On the other side, if the initial criterion of MCDA is the 

to minimize the average latency between the forwarders and 
controllers (parameter introduced with weight = 1) the 
optimum placement after some link/nodes failures will be 
different  (Figure 4). The command for such a run is: 
   python mcda.py -a --dynamic -n 8 -c 3 -ef 2 

These examples illustrate the power of the MCDA 
algorithm where various sets of criteria and different 
priorities (driven by policies) can be considered. 

VII. CONCLUSIONS AND FUTURE WORK  

This paper extended the study [12], on using multi-
criteria decision algorithms (MCDA) to optimally place the 
controllers in large SDN, based networks.  The MCDA 
advantage is that it can produce a tradeoff (optimum) result, 
while considering several weighted criteria, part of them 
even being partially contradictory.  

In this study, a previous simulation program has been 
extended to include reliability aware metrics in the multi-
criteria optimization algorithm. The optimum controller 
placement has been found, while different weights policy-
driven have been introduced. Also, forwarder-controller 
mapping optimization and backup controller selection have 
been also considered. The examples given demonstrate the 
flexibility of the approach in selecting the best solution while 
considering various criteria. 

Future work will be done to a more deep study of the 
dynamic possibilities to apply the multi-criteria based 
selection of the SDN controllers and to consider also aspects 
of signaling traffic (inter-controller). Hierarchically 
organized  SDN control planes are also open research topics 
for CPP and CSP problems. 
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