

Reliability-aware Optimization of the Controller Placement and Selection in SDN

Large Area Networks

Eugen Borcoci, Stefan Ghita

University POLITEHNICA of Bucharest - UPB

Bucharest, Romania

Emails: eugen.borcoci@elcom.pub.ro, stalghita@gmail.com

Abstract — For large networks SDN-controlled, distributed

control plane solutions are proposed, to solve the scalability

problems generated by the SDN control centralization

principle. In a multi-controller environment, the Controller

Placement Problem (CPP) should be solved. Additionally, in a

dynamic networking context, including possible failures of

links or nodes, a forwarder node could try to select an

available and reachable controller among those alive. Although

several studies have been published, the above problems are

still open research issues, given the various network contexts,

providers’ policies and possible multiple optimization criteria.

Multi-criteria decision algorithms can provide valuable

solutions. This paper extends a previous work, considering in

the developed model some reliability aspects of the distributed

SDN control and an extension to a dynamic controller selection

method.

Keywords — Software Defined Networking; Multi-criteria

optimization; Controller placement; Controller selection;

Forwarder nodes assignment; Reliability;

I. INTRODUCTION

Software Defined Networking (SDN) has as basic

principles the decoupling of the architectural Control Plane

(CPl) w.r.t Data Plane (DPl) and also CPl centralization in

SDN controllers. In the case of large network environments,

scalability problems of the CPl appear [1]. The usual

solution for this is a distributed multi-controller

implementation of the SDN control plane. Different flat or

hierarchical organizations for a multi-controller SDN

control plane have been developed, e.g., in [2][3].

Note that in a basic approach, the SDN controller (SDN-

C) is understood as a control entity placed in a

geographically distinct location, i.e., a particular physical

network node. However, recently, the Network Function

Virtualization technologies [4] allow that several logical

SDN-Cs realized in a virtual manner (notation will be

vSDN-C) can be collocated in the same physical node. In

the following text we suppose the basic approach; however

the models developed in this paper can be as well applied

also to a virtualized environment.

Actually, several associated problems exist together with

controller placement problem (CPP) itself. Some examples

are: how the network topology is specified - flat or

clustered; what criteria are considered to solve the CPP;

number of controllers - predefined or not; failure-free or

failure-aware metrics (e.g., considering backup controllers

and node/link failures); how the DPl forwarders nodes are

assigned to controllers (in static or dynamic way, i.e.,

depending on actual network conditions and network

provider policies), and others. The evaluation of the degree

of optimality of different approach can be studied on some

simplified topologies – in order to compare the efficiency of

approaches or, on real specific network topologies. Several

studies [5-15] considered various aspects and solutions of

the CPP problem.
In a real network environment, it has been apparent that

there is no uniform and strict placement rule to be the best
for any SDN-controlled network. Dynamic nodes addition
and deletion can happen and, in such cases, a forwarder
could dynamically select an appropriate controller, if it has
enough pertinent and updated information. This is called
controller selection problem (CSP) and can be considered as
an extension of the CPP [11].

The CPP is a non-polynomial (NP) -hard problem [5];

therefore different pragmatic solutions have been proposed,

many of them with specific optimization criteria, targeting

performance in failure-free or failure-aware approaches.

Examples of specific, individual criteria could be: to

maximize the controller-forwarder or inter-controller

communication throughput; reduce the latency of the path

connecting them; limit the controller load imbalance; find

an optimum controllers’ placement and forwarder-to-

controller allocation, offering a fast recovery after failures

(controllers, links, nodes). Also, other specific optimization

goals could be added to the above list, depending on specific

context (wire-line, wireless/cellular, cloud computing and

data center networks) and on some specific business targets

of the Service Provider.

One main issue is that different optimization criteria

could lead to different solutions; so, a multi-criteria global

optimization could be a better approach.

The paper [12] provides a contribution on multi-criteria

optimization algorithms for the CPP not by developing

specific single-criterion algorithms (many other studies

already did that) but to achieve an overall optimization by

applying multi-criteria decision algorithms (MCDA) [16].

The input of MCDA is the set of candidates (an instance of

controller placement is called a candidate solution).

Examples have been analyzed, on some real network

topologies, proving the usefulness of the approach.

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

This paper extends the model of [12]; several reliability
aware criteria have been added to the CPP solution. Also
the novel CSP extension is introduced, being appropriate for
a dynamic network context. It is shown that the same basic
MCDA can be applied in both static and dynamic context,
but with different sets of criteria. Simulation experiments and
novel results are presented.

The structure of the paper is described here. Section II is
a short overview of related work. Section III revisits several
metrics and optimization algorithms and presents some of
their limitations. Section IV revisits the framework for
MCDA-RL (the variant which is called “reference level”) as
a simple but powerful tool to solve the CPP and CSP
problems. Section V presents the implementation performed
to validate the MCDA proposed model in reliability-aware
approach, and outlines the simulation experiments
performed. Section VI offers few samples of simulation
results to illustrate the validity of the approach. Section VII
presents conclusions and future work.

II. RELATED WORK

This short section is included mainly for references.
More comprehensive overviews on published work on CPP
in SDN-controlled WANs are given in [10-13]. The goal is
to find those controller placements that provide high
performance (e.g., low delay for controller-forwarder
communications) and also create robustness to controllers
and/or network failures.

Heller et al. [5] have early shown that it is possible to
find optimal solutions for realistic network instances, in
failure-free scenarios, by analyzing the entire solution space,
with off-line computations (the metric is latency). Going
further, the works [6][7][8][9][14] additionally considered
the resilience as being important with respect to events like:
controller failures, network links/paths/nodes failures,
controller overload (load imbalance). The Inter-Controller
Latency is also important and, generally, it cannot be
minimized while simultaneously minimizing controller-
forwarders latency; a tradeoff solution could be the answer.

The works [6][8] developed several algorithms for real
topologies, considering reliability of SDN control, but still
keep acceptable latencies. The controller instances are
chosen as to minimize connectivity losses; connections are
defined according to the shortest path between controllers
and forwarding devices. Muller et.al. [9] eliminate some
restrictions of previous studies, like: single paths, processing
(in controllers) of the forwarders requests only on-demand
and some constraints imposed on failover mechanisms. Hock
et.al. [7] adopted a multi-criteria approach for some
combinations of the metrics (e.g., max. latency and controller
load imbalance for failure-free and respectively failure use
cases).

In a recent work [11], K.Sood and Y.Siang propose to
transform the CPP problem into Controller Selection
Problem (CSP), i.e., consider the dynamics of the network
and make controller selection. They explore the relationship
between traffic intensity, resources requirement, and QoS
requirements. It is claimed that to optimize the control layer
performance, the solutions must be topology-independent

and adaptive to the needs of the underlying network
behaviour. They propose a topology independent framework
to optimize the control layer, aiming to calculate the optimal
number of controllers to reduce the workload, and
investigate the placement/location of the controllers.
However, their first declared objective has been not to
determine the optimal placement of controllers in the
network, but to motivate the CSP.

In [12], a multi-criteria algorithm is used (applicable for

an arbitrary number of decision criteria) to solve the CPP;

validation of results have been presented for some real

network topologies [17][18].

This paper extends the [12] work, by adding new

reliability–aware metrics and also outlines the usage of the

multi-criteria method to solve the controller dynamic

selection problem (CSP).

III. EXAMPLES OF CONTROLLER PLACEMENT METRICS

AND ASSOCIATED ALGORITHMS

This section is a short presentation of a few typical
metrics and optimization algorithms for CPP and CSP. A
more detailed presentation of them can be found in [12].
Considering a particular metric (criterion) an optimization
algorithm can be run for a given metric, as in [5][6][7][9].

However, this paper goal is not to develop a new
particular algorithm based on a given single metric, but to
search for a global optimization. The individual metrics
presented in this section can be embedded in a multi-criteria
optimization algorithm.

The SDN-controlled network is abstracted by an
undirected graph G(V, E), with V - set of nodes, E – set of
edges and n=|V| the total number of nodes. The edges
weights represent an additive metric (e.g., propagation
latency [5]).

A basic metric is d(v, c): shortest path distance from a

forwarder node v∈V to a controller c∈V. We denote by Ci a

particular placement of controllers; Ci ⊆ V and |Ci| < |V|. The
number of controllers is limited to |Ci|= k for any particular
placement Ci. The set of all possible placements is denoted
by C = {C1, C2 …}. Some metrics are basic, i.e., failure-free;
others take into account failure events of links or nodes.

An important metric for SDN control is the latency
between nodes. Note that, while it has a dynamic nature, in
some simplified assumptions it is estimated as a static value.

A. Failure-free scenarios

• Forwarder-to-controller latency
 In Heller’s work [5], two (failure-free) metrics are

defined for a given placement Ci: Worst_case_latency and
Average_latency between a forwarder and a controller. An
optimization algorithm should find a placement Copt, where
either average latency or the worst case latency is minimized.

The work [15] proposes an algorithm to maximize the
number of nodes within a latency bound, i.e., to find a
placement of k controllers, such that they cover a maximum
number of forwarder nodes, but with an upper latency bound
of each forwarder latency to its controller.

• Inter-controller latency

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

The SDN controllers should inter-communicate and
therefore the inter-controller latency is important. For a given
placement Ci, one can minimize the maximum latency
between two controllers. Note that this can increase the
forwarder-controller distance (latency).Therefore, a trade-off
is necessary, thus justifying the necessity to apply some
multi-criteria optimization algorithms, e.g., like Pareto
frontier - based ones [7].

B. Failure-aware scenarios

In such scenarios controller and/or network failures
events are considered. The optimization process aims now to
find trade-offs to preserve a convenient behavior of the
overall system in failure cases (controllers, or nodes, or
links).

• Multiple-path connectivity metrics
If multiple paths are available between a forwarder node

and a controller [9], this can exploited in order to reduce the
occurrence of controller-less events, in cases of failures of
nodes/links. The goal in this case is to maximize connectivity
between forwarding nodes and controller instances. A special
metric can be defined as:

 
∈∈

=

VvCc

i cvndp
V

CM

i

),(
||

1
)((1)

The ndp(v,c) is the number of disjoint paths between a
node v and a controller c, for an instance placement Ci. An
optimization algorithm should find the placement Copt which
maximizes M(Ci).

• Controller failures
To minimize the impact of such failures, the latency-

based metric should consider both the distance to the
(primary) controller and the distance to other (backup)
controllers. For a total number of k controllers, the failures
can be modeled [7], by constructing a set C of scenarios,
including all possible combinations of faulty controller
number, from 0 of up to k - 1. The Worst_case_latency_cf
will be:

 ()cvdL
ii CcCCVv

cfwc ,minmaxmax
∈∈∈

− = (2)

The optimization algorithm should find a placement
which minimizes the expression (2).

Note that in failure-free case, the optimization algorithm
tends to rather equally spread the controllers in the network,
among the forwarders. To minimize (2), the controllers tend
to be placed in the center of the network, such that in a worst
case, a single controller can take over all control. However,
the scenario supposed by the expression (2) is very
pessimistic; a large network could be split in some
regions/areas, each served by a primary controller; then some
lists of possible backup controllers can be constructed for
each area, as in [9]. The conclusion is that an optimization
trade-off should be found, for the failure-free or failure cases.
A multi-criteria approach can provide the solution.

• Nodes/links failures

For such cases, the objective could be to find a controller
placement that minimizes the number of nodes possible to
enter into controller-less situations, in various scenarios of
link/node failures. A realistic assumption is to limit the
number of simultaneous failures at only a few (e.g., two [7]).
If more than two arbitrary link/node failures happen
simultaneously, then the topology can be totally
disconnected and optimization of controller placement would
be no longer useful.

For a placement Ci of the controllers, an additive integer
value metric Nlf(Ci) could be defined, as below: consider a

failure scenario denoted by fk, with fk∈F, where F is the set
of all network failure scenarios (suppose that in an instance
scenario, at most two link/nodes are down); initialize

Nlfk(Ci) =0; then for each node v∈V, add one to Nlfk(Ci) if

the node v has no path to any controller c∈Ci and add zero
otherwise; compute the maximum value (i.e., consider the
worst failure scenario).

 () ()iki CNlfCNlf max= (3)

The optimization algorithm should find a placement to
minimize (3), where k should cover all scenarios of F. It is
expected that increasing the number of controllers, will
decrease the Nlf value. However, the optimum solution based
on the metric (3) could be very different from those provided
by the algorithms using the latency-based metrics.

• Load balancing for controllers
It is desired a good balance of the node-to-controller

distribution is desired. A metric Ib(Ci) will measure the
degree of imbalance of a given placement Ci as the difference
between the maximum and minimum number of forwarders
nodes assigned to a controller. If the failure scenarios set S
is considered, then the worst case should evaluate the
maximum imbalance as:

 }minmax{max)(
s
c

Cc

s
c

CcSs
i nnCIb

ii ∈∈∈
−= (4)

where
s

cn is the number of forwarder nodes assigned to a

controller c. Equation (4) takes into account that in case of
failures, the forwarders can be reassigned to other controllers
and therefore, the load of those controllers will increase. An
optimization algorithm should find that placement which
minimizes the expression (4).

IV. MULTI-CRITERIA OPTIMIZATION ALGORITHMS

SDN controllers’ placement and/or selection may involve
several particular metrics (as summarized in Section III). If
optimization algorithms for particular metrics are applied,
then one can obtain different non-convergent solutions.
Actually the CPP and CSP problems have naturally multi-
criteria characteristics; therefore MCDA is a good way to
achieve a convenient trade-off solution.

This paper uses the same variant of MCDA
implementation as in [12], i.e., the reference level (RL)
decision algorithm [16] as a general way to optimize the

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

controller placement, and controller selection, for an
arbitrary number metrics. The MCDA-RL selects the optimal
solution based on normalized values of different criteria
(metrics).

The MCDA considers m objectives functions (whose
values, assumed to be positive should be minimized). A
solution of the problem is represented as a point in a space
R

m
of objectives; the decision parameters/variables are: vi, i

= 1, ..m, with ∀i, vi ≥ 0; so, the image of a candidate
solution is Sls=(vs1,vs2, ..,vsm), represented as a point in R

m
.

The number of candidate solutions is S. Note that the value
ranges of decision variables may be bounded by given
constrains. The optimization process consists in selecting a
solution satisfying a given objective function and
conforming a particular metric.

The basic MCDA-RL [16], defines two reference
parameters: ri =reservation level=the upper limit, not allowed
to be crossed by the actual decision variable vi of a solution;
ai=aspiration level=the lower bound beyond which the
decision variables (and therefore, the associate solutions) are
seen as similar (i.e., any solution can be seen as “good”-
from the point of view of this variable). Applying these for
each decision variable vi, one can define two values named ri
and ai, i= 1, ..m, by computing among all solutions s = 1, 2,
..S:

, ..S, , s = v = a

, ..S, s = v r

isi

isi

21][min

21],[max =
 (5)

An important modification is proposed in [16], aiming to
make the algorithm agnostic versus different nature of
criteria. The absolute value vi of any decision variable is
replaced with distance from it to the reservation level: ri-vi;
(so, increasing vi will decrease the distance); normalization is
also introduced, in order to get non-dimensional values,
which can be numerically compared despite their different
nature. For each variable vsi, a ratio is computed:

 is)-a)/(r-v' = (rv iisiisi ,, ∀ (6)

The factor 1/(ri-ai) - plays also the role of a weight. A
variable for which the possible dispersion of values is high
(max – min has a high value in formula (6)) will have lower
weight and so, greater chances to be considered in
determination of the minimum in the next relation (7). On
the other side, if the values min, max are rather close to each
other, then any solution could be enough “good”, w.r.t. that
respective decision variable.

The basic MCDA-RL algorithm steps are (see also [12]):
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m

Step 1. Compute for each candidate solution s, the minimum

among all its normalized variables vsi':

 ...m'}; i={v = sis 1minmin (7)

Step 2. Select the best solution:

 , ..S}, s= { = v sopt 1minmax (8)

Formula (7) selects for each candidate solution s, the

worst case, i.e., the closest solution to the reservation level

(after searching among all decision variables). Then the

formula (8) selects among the solutions, the best one, i.e.,

that one having the highest value of the normalized

parameter. One can also finally select more than one

solution (quasi-optimum solutions in a given range). The

network provider might want to apply different policies

when deciding the controller placement; so, some decision

variables could be more important than others. A simple

modification of the algorithm can support a variety of

provider policies. The new normalized decision variables

will be:

)-a)/(r-v(r' = wv iisiiisi (9)

where wi ∈ (0,1] is a weight (priority), depending on policy
considerations. Its value can significantly influence the final
selection. A lower value of wi represents actually a higher
priority of that parameter in the selection process.

V. MCDA-BASED IMPLEMENTATION FOR SDN

CONTROLLER PLACEMENT

A proof of concept simulation program (written in
Python language [12]) has been constructed by the authors,
to validate the MCDA–RL based CPP problem and
allocation of forwarders to controllers. The program has been
extended in this work with reliability evaluation features.

The simplifying assumptions (they could be also seen as
limitations) of the model studied here, are: the network
architecture is flat, i.e., no disjoint regions are defined; the
network graph is undirected; any network node can be a
forwarder but also can collocate a controller; when
computing paths or distances, the metrics are additive; the
number of controllers is predefined; the data traffic aspects
and signaling interactions are not considered yet.

 A. The MCDA basic model

The basic model to solve the CPP problem considered in
this paper has two working modes:

a. static mode - the input data are: network graph
(overlay or physical), link costs/capacities, shortest path
distances between nodes (e.g., computed with Dijkstra
algorithm based on additive metric), desired number of
controllers, etc.).

Two phases are defined:
 (1)Phase 1:
1.1. Define the criteria (i.e., the parameters of interest)

and their priorities. The decision variables could be anyone,
among those of Section III.

1.2. Compute all controller placements C1, C2, …. (i.e.
the set of candidate solutions). The number of placements is
Cn

k
(n= total number of network nodes; k= number of

controllers).

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

1.3. Compute the values of the normalized metrics for
each possible controller placement (i.e. future MCDA
candidate solution), by using specialized algorithms and
metrics like those defined in Section III.

The Phase 1 phase has as outputs the set of candidate
solutions (i.e., placement instances) and values to fill the
entries of the matrix M defined in Section IV. The Phase 1
computation could be time consuming (depending on
network size) and therefore, could be performed off-line [5].
For instance, in a real network, a master SDN controller
having all these information can perform these computations.

 (2) Phase 2: MCDA-RL: define ri and ai, for each
decision variable; eliminate those candidates having
parameter values out of range defined by ri; define – if
wanted – convenient weights wi for different decision
variables; compute the normalized variables (formula (6));
run the MCDA Step 0, 1 and 2 of the (formulas (7) and (8)).

The Phase 2 provides the CPP solution.

b. dynamic mode – the input information is the total

number of network nodes and desired number of controllers.

The graph (which could be full-mesh or not) and costs of the

links are randomly generated by a simulation program. The

desired total number of nodes and the number of controllers

should be specified as inputs in the program.

B. Reliability aware model

As shown in Section III, more realistic scenarios consider
the possible occurrence of controller and/or network failures
events. The optimization process aims now to find trade-offs
to preserve a convenient behavior of the overall system in
failure cases.

• Backup controllers
A simple static solution for assignment of forwarders to

primary and backup controllers is presented below. We
assume that CPP has been solved for a given network.
Therefore the identities of controller nodes are known. The
simplest assignment of forwarders to controllers is to
consider the shortest paths between a forwarder to a
controller. So, an algorithm computes all distances from a
forwarder Fi to each controller CTk and selects the closest
CTm as primary controller (based on shortest path between
Fi and any controller) and the next (let it be CTn in the
ordered list of distances) as a backup controller.

However, while the primary controller placement after
first run of the MCDA) is a global trade-off optimum, there
is no guarantee that in case of node/link failures the
placement of the backup controller is optimum, given the
individual choice of the secondary/backup controller for each
forwarder node.A natural solution is to add a novel criterion
to the MCDA set of decision parameters.

An auxiliary algorithm is used to compute a simple
metric (mean distance to a backup controller) to be added to
MCDA. We introduce a novel decision variable dist_backup
and perform the following computation (for each possible
controller placement Ci containing the controllers CT1, CT2,
….CTk):
For each forwarder Fi, i=1..N

 Do

Dist_backup = 0;

 Compute dist. from Fi to any CTj, j=1..k;

 Dist_backup=Dist_backup + second_shortest_cost;

 Od

 Dist_backup_avg = Dist_backup/N;

This Dist_backup_avg can be added as a new decision
variable to MCDA (maybe with appropriate wight)
Therefore, the optimization will select a solution which
considers also the backup controller nodes in the factors
influencing the selection. Note that the inclusion of the
backup controllers will increase the number of computations
in the Phase 1.2 from Cn

k
 to Cn

2k
.

• Load balancing for controllers
As shown in Section III, a good balance of the node-to-

controller distribution is desired. If the number of nodes is N
and the number of controllers is k, then the average number
of nodes allocated to a controller is N/k. A simple new
metric can be added to the set of MCDA criteria. This
decision variable D_avg will measure the deviation of the
number of nodes allocated to a controller CTi, i.e., ni from
the average value N/k, and averaging this for all controllers.

D_avg = (1/N) Sum |(ni – N/k)|, i= 1…k (13)
Again, this variable can get an appropriate weight in the
optimization process.

• Nodes and link failures

Nodes and link failures could appear in the network.

Evaluation of effects of such events could be taken into

account by adding new decision appropriate parameters in

the set of MCDA input multi-criteria. Here, we adopted a

different approach. Given that most important metrics are

forwarder-controller latency, inter-controller latency, load

balancing of the controllers, optimization of the placement

of the primary and backup controllers, the MCDA has been

first run to produce controllers’ placement optimization

based on these important parameters. Then the simulation

program allows some events to happen (e.g., nodes or link

failures). The MCDA has been run again and produce a new

placement after removing the entities in failure. Finally the

placement produced in the updated conditions can be

compared with the initial one, to evaluate if significant

changes appeared. In such a way one can evaluate the

robustness of the initial placement, and decide if that can be

preserved or must be changed.

Two input parameters have been defined in the model:

nf- number of nodes supposed to fail

ef – number of links supposed to fail.

The specific nodes and links which will fail will be

selected as to to simulate the “worst case”, i.e., those nodes

having the lowest cost of the adjacent links and, respectively

those links having the least costs. If after second run of the

MCDA, the initial placement of the controllers does not

change, this means that initial placement has enough good

robustness properties. Of course, this result will depend on

selection of nf and ef values, for a given N nodes of the

graph.

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

C. Controller placement optimization- Simulation program

 The user interface of the simulation program is

presented in Figure 1.

stefan@mint ~/Desktop/simulator_mcda $ python mcda.py -h

usage: mcda.py [-h] [-a [A]] [-w [W]] [-i [I]] [-b [B]] [-l [L]] [--dynamic] [-n N] [-c C] [-nf NF] [-ef

EF] [--debug]

Multi-criteria optimization algorithm

Optional arguments:

 -h, --help show this help message and exit

 -a [A] Average latency - failure free scenario. Expects a weight (priority) in interval (0, 1].

 -w [W] Worst case latency - failure free scenario. Expects a weight (priority) in interval (0, 1].

 -i [I] Inter controller latency. Expects a weight (priority) in interval (0, 1].

 -b [B] Average latency - failure scenario. Expects a weight (priority) in interval (0, 1].

 -l [L] Controller load-balancing. Expects a weight (priority) in interval (0, 1].

 --dynamic Generate dynamic undirected graph

 -n N Number of graph nodes. Valid only in dynamic mode.

 -c C Number of controllers in graph. Valid only in dynamic mode.

 Allowed values are between N/3 and N/7

 -nf NF Number of nodes that fail. Valid only in dynamic mode. Allowed values: 1.. N-C.

 -ef EF Number of edges that fail. Valid only in dynamic mode. Allowed values: 1 ..N-C.

 --debug Prints some computing results for debugging purposes.

Figure 1. The interface of the MCDA CPP simulation program

The decision parameters considered have been: average and

worst latency between a forwarder and controller, inter-

controller latency and load balancing related parameter.

The program can be run isn static or dynamic mode, with

any number and set of criteria among those presented in the

interface. Note that if wanted, the set of decision parameter

can be enriched; the only needed modification is the number

of columns of the matrix M.

 Several numerical examples and results of the basic CPP

solutions have been already presented in the work [8]. The

current version of the implementation added reliability

feature presented in Section IV.B.

 The pseudo-code of the simulation program for dynamic

mode is presented below, in high level view.
Start

 Generate the random graph;

 Generate all controlers’ placements;

 Run MCDA;

 If link_failures specified then eliminate from

the graph a number of ef links having the minimum

costs;

 If node_failures specified then eliminate from

the graph a number of nf nodes;

 If failures_produced

 Then {generate modified graph; Run MCDA;}

 Display the graphs;

Stop

D. Dynamic controller selection

In a dynamic network context, the controller choice
(CSP) can be performed in a dynamic way. The multi-criteria
algorithm can be as well applied in such cases. We consider
here only the situations in which controller/node/link –
related occur.

In the static approach the backup controllers are
predefined; the placement is selected by the optimization

algorithm. For a real network, the algorithm can be run
offline in a management center (in a hierarchical
organization of the control plane, this could be a master SDN
controller). This center is supposed to know all information
in order to run MCDA-RL algorithm. The aspects related of
providing these information constitute a separate problem,
which is not studied in this paper.

Supposing that a forwarder looses its connectivity with
its controller, it can act in two ways; a. try to connect to a
known backup controller; b. select among several by running
a MCDA algorithm. The input information for MCDA
(decision criteria) could be : identities/addresses of possible
SDN controllers; degree of load for those controllers (this
could be periodically communicated to the forwarder by a
master SDN controller); local information observed by the
forwarder, like connectivity to different nodes/controllers,
etc. So, the forwarder can select based on MCDA-RL a novel
controller.

VI. SAMPLES OF RESULTS

This section will shortly present samples of results, in
order to prove the validity of approach. The experiments are
reliability feature related.

• Load balancing for controllers
Figure 2 shows an example in which the network graph

has been dynamically generated with N=6 nodes and k= 2
controllers. The decision criteria have been inter-controller
latency (weight = 1) and balancing criterion (weight = 0.5,
i.e. twice higher priority). The MCDA program is run with
parameters :

stefan@mint$ python mcda.py -i 1 -l 0.5 --

dynamic -n 6 -c 2

The results obtained are: controllers in CT0 and CT3. The
allocation of forwarders are :
 Controller 0 has allocated node(s): 0, 2, 4.

 Controller 3 has allocated node(s): 1, 3, 5.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 One can see that while the inter-controller latency is not
minimum, the allocation of the forwarders to controllers is
balanced (3 forwarders per each controller).

• Links and node failures

 If the unique parameter considered in MCDA would be

the average latency of the forwarders to backup controllers,

then one would expect that the resulting placement could be

enough resilient to a low number of nodes and/or link

failures.

Figure 2. Simple example of a balanced allocation of the forwarders to

controllers (after MCDA run)

 Figure 3. Example of placement resilient to link failures

Left: placement before link failures; Right: placement after some links failures.

Figure 4. Example of placement non-resilient to link failures

Left: placement before link failures; Right: placement after some links failures.

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

 Figure 3 shows such an example, by presenting the

graphs resulted after running the program with the

command:
 python mcda.py -b --dynamic -n 8 -c 3 -ef 2

 In this example, we have N=8 nodes and c= 3

controllers; the number of failure links ef=2.

 One can see that after some links failure (1-6, 3-7) still

the controller placement (after running MCDA on the

reduced graph) is the same, i.e., 3,4,5.
On the other side, if the initial criterion of MCDA is the

to minimize the average latency between the forwarders and
controllers (parameter introduced with weight = 1) the
optimum placement after some link/nodes failures will be
different (Figure 4). The command for such a run is:
 python mcda.py -a --dynamic -n 8 -c 3 -ef 2

These examples illustrate the power of the MCDA
algorithm where various sets of criteria and different
priorities (driven by policies) can be considered.

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the study [12], on using multi-
criteria decision algorithms (MCDA) to optimally place the
controllers in large SDN, based networks. The MCDA
advantage is that it can produce a tradeoff (optimum) result,
while considering several weighted criteria, part of them
even being partially contradictory.

In this study, a previous simulation program has been
extended to include reliability aware metrics in the multi-
criteria optimization algorithm. The optimum controller
placement has been found, while different weights policy-
driven have been introduced. Also, forwarder-controller
mapping optimization and backup controller selection have
been also considered. The examples given demonstrate the
flexibility of the approach in selecting the best solution while
considering various criteria.

Future work will be done to a more deep study of the
dynamic possibilities to apply the multi-criteria based
selection of the SDN controllers and to consider also aspects
of signaling traffic (inter-controller). Hierarchically
organized SDN control planes are also open research topics
for CPP and CSP problems.

REFERENCES

[1] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On

Scalability of Software-Defined Networking”, IEEE Comm.

Magazine, pp. 136-141, February 2013..

[2] A. Tootoonchian, and Y. Ganjali, “Hyperflow: a distributed

control plane for openflow” in Proc. INM/WREN, 2010,

https://pdfs.semanticscholar.org/f7bd/dc08b9d9e2993b3639

72b89e08e67dd8518b.pdf, [retrieved: 5, 2018].

[3] T. Koponen, , M.Casado, , N.Gude, J.Stribling, L. Poutievski,

et.al., “Onix: a distributed control platform for large-scale

production networks,” in Proc. OSDI, 2010,

https://www.usenix.org/legacy/event/osdi10/tech/full_papers

/Koponen.pdf, [retrieved: 5, 2018].

[4] B.Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network

Function Virtualisation: Challenges and Opportunities for

Innovations”. IEEE Communications Magazine, pp. 90-97,

February 2015.

[5] B. Heller, R. Sherwood, and N. McKeown, “The controller

placement problem,” in Proc. HotSDN, pp. 7–12, 2012,

https://dl.acm.org/citation.cfm?id=2342444, [retrieved: 5,

2018].

[6] H. Yan-nan, W. Wen-dong, G. Xiang-yang, Q. Xi-rong, and

C. Shi-duan, ”On the placement of controllers in software-

defined networks”, ELSEVIER, Science Direct, vol. 19,

Suppl.2, pp. 92–97, October 2012, ,

http://www.sciencedirect.com/science/article/pii/S10058885

1160438X, [retrieved: 1, 2018].

[7] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner,

and P. Tran-Gia, “Pareto-Optimal Resilient Controller

Placement in SDN-based Core Networks,” Proceedings of

the ITC, Shanghai, China, 2013,

https://ieeexplore.ieee.org/document/6662939/, [retrieved: 1,

2018].

[8] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan,

“Reliability aware controller placement for software-defined

networks,” in Proc. IM. IEEE, pp. 672–675, 2013,

https://ieeexplore.ieee.org/document/6573050/, [retrieved:

1, 2018].

[9] L. Muller, R. Oliveira, M. Luizelli, L. Gaspary, and M.

Barcellos, “Survivor: an Enhanced Controller Placement

Strategy for Improving SDN Survivability”, IEEE Global

Comm. Conference (GLOBECOM); 12/2014,

https://ieeexplore.ieee.org/document/7037087/, [retrieved: 1,

2018].

[10] G.Wang, Y.Zhao, J.Huang, and W.Wang, “The Controller

Placement Problem in Software Defined Networking: A

Survey”, IEEE Network, pp. 21- 27, September/October

2017.

[11] K. Sood and Y.Xiang, “The controller placement problem

or the controller selection problem?”, Journal of

Communications and Information Networks, Vol.2, No.3,

pp.1-9, Sept.2017.

[12] E. Borcoci, T. Ambarus, and M. Vochin, „Multi-criteria

based Optimization of Placement for Software Defined

Networking Controllers and Forwarding Nodes,” The 15th

International Conference on Networks, ICN 2016, Lisbon,

http://www.iaria.org/conferences2016/ICN16.html,

[retrieved: 5, 2018].

[13] S.Yoon, Z.Khalib1, N. Yaakob, and A.Amir, “Controller

Placement Algorithms in Software Defined Network - A

Review of Trends and Challenges”, MATEC Web of

Conferences ICEESI 2017 140, 01014

DOI:10.1051/matecconf/201714001014, 2017.

[14] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience

of Split-Architecture Networks” in GLOBECOM 2011,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69

1.795&rep=rep1&type=pdf, [retrieved: 5, 2018].

[15] D. Hochba “Approximation algorithms for np-hard

problems”, ACM SIGACT News, 28(2), pp. 40–52, 1997,.

[16] A. P. Wierzbicki, “The use of reference objectives in

multiobjective optimization”. Lecture Notes in Economics

and Mathematical Systems, vol. 177. Springer-Verlag, pp.

468–486.

[17] Internet2 open science, scholarship and services exchange.

http://www.internet2.edu/network/ose/, [retrieved: 4, 2018].

[18] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M.

Roughan, “The Internet Topology Zoo,” IEEE JSAC, vol. 29,

no. 9, 2011, pp.1765-1475..

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-669-9

ICSNC 2018 : The Thirteenth International Conference on Systems and Networks Communications

