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Abstract—This paper investigates the spectrum sensing 

problem under the random traffic condition of the primary 

user (PU) in cognitive radio (CR) networks, where the PU may 

depart or arrive in a random way during the sensing period. 

Considering that the data transmission period of the secondary 

user (SU) starts right after the sensing period ends, we observe 

that, in the presence of the random traffic of the PU, the 

sensing samples in the latter part of the sensing period are 

more reliable in making a decision on whether the PU is 

present or not. Based on this observation, then, we propose 

spectrum sensing test statistics exploiting only sensing samples 

in the latter part the sensing period and assigning a larger 

weight to a sensing sample closer to the end of the sensing 

period. It is demonstrated in numerical results that the 

proposed methods offer a significant improvement in detection 

and receiver operating characteristic (ROC) performances 

over the conventional methods under the random traffic 

condition of the PU. 

Keywords- Cognitive  radio (CR); Random traffic; Spectrum 

sensing;  Primary user (PU). 

I. INTRODUCTION  

With the explosive demands for various high date rate 
services in wireless communications, recently, the radio 
frequency spectrum has rapidly become a scarce resource, 
and thus, the cognitive radio (CR) has gained much interest 
with its capability of offering a high degree of efficiency in 
using the radio frequency spectrum [1]-[3]. Spectrum 
sensing is an essential task in CR, which detects a spectral 
hole of the frequency spectrum allocated to the primary user 
(PU), thus allowing the secondary user (SU) to share the 
frequency spectrum with the PU [4].  

Conventionally, the spectrum sensing techniques [5]-
[7] have been designed under the assumption that the status 
of the PU does not change during the sensing period (i.e., 
the PU is present or absent during the whole sensing time). 
However, it is clear that the status of the PU may change in 
a real environment, i.e., the PU may depart or arrive in a 
random way during the sensing period. Although several 
spectrum sensing techniques [8]-[10] have been presented 
with considering this random traffic of the PU, the 
techniques require the channel knowledge, such as the 
distributions of the departure and arrival times of the PU 
signal [8] and noise variance [9], or they employ the sensing 
samples in the initial part of the sensing period causing a 
wrong spectral hole detection with a high likelihood [10]. 

In this paper, we propose a spectrum sensing technique 
based on variably weighted sensing samples, where only 
sensing samples in the latter part of the sensing period are 
used in the spectral hole detection, and a larger weight is 
assigned to a sensing sample closer to the end of the sensing 
period (i.e., the sensing sample closest to the end of the 
sensing period has the largest weight). The proposed 
technique is expected to perform well in the presence of the 
random traffic of the PU signal, since a sensing sample 
closer to the end of the sensing period is more reliable in the 
decision on the presence and absence of the PU signal when 
the PU departs or arrives randomly during the sensing 
period, as shown in Figure 1 [11]. 

The remainder of this paper is organized as follows. 
Section 2 models the spectrum sensing problem under the 
random traffic condition of the PU as a binary hypothesis 
test. Section 3 describes the proposed technique. Section 4 

 
Figure 1. Spectrum sensing decision under the random traffic condition of 

the PU. 
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compares the proposed and conventional techniques in 
terms of the detection probability and receiver operating 
characteristic (ROC) curve. Section 5 concludes this paper 
with a brief summary. 

II. RANDOM TRAFFIC MODEL OF THE PU SIGNAL 

The static and random traffic models of the PU signal 
are depicted in the left-hand and right-hand sides of Figure 2, 
respectively. In the static traffic model, the status of the PU 
signal remains unchanged during the whole sensing time, 
and thus, the spectrum sensing can be formulated as the 
following binary hypothesis testing problem [5]  
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where the hypotheses 
s

0H and 
s

1H  represent the absence and 

presence of the PU signal during the whole sensing time, 
respectively, I is the total number of the sensing samples, 
and z[ ]i , [ ]s i , and w[i] represent the ith samples of the 

received signal, the PU signal, and the additive noise, 
respectively.  

In the random traffic model of the PU signal, on the 
other hand, the spectrum sensing is formulated as [8] 
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where the hypothesis 0

rH and 1

rH represent the absence and 

presence of the PU signal not during the whole sensing time 
but at the end of the sensing period, respectively, i.e., the PU 
signal is declared absent in the frequency band under 
consideration if it departs between the 

0J th and 0( 1)J  th 

samples, and thus, is eventually absent at the I th sample 
instant, whereas the PU signal is declared present if it arrives 
between the

1J th and 
1( 1)J  th samples and so is present at 

the I th sample instant. It is noteworthy that (3) and (4) 
reduce to (1) and (2), respectively, when 

0 1 0.J J   

III. PROPOSED SPECTRUM SENSING TECHNIQUE  

A. Test Statistics Based on Variably Weighted Sensing 

Samples 

To obviate the need for the knowledge on the 
distributions of the departure and arrival times of the PU 
signal, we consider a spectrum sensing technique based on 
the energy detection [6] with the sensing samples, and also, 
to exclude the sensing samples in the initial part of the 
sensing period causing a wrong decision on the presence 
and absence of the PU signal with a high likelihood, we 
exploit only the last L  samples out of the I samples. In 
addition, we enable the spectrum sensing technique to 
assign a larger weight to a sensing sample closer to the end 
of the sensing period, since a sensing sample closer to the 
end of the sensing period is more reliable in the decision on 
the presence and absence of the PU signal under the random 
traffic condition of the PU signal, as mentioned in 

Introduction. Bearing all of these desired features in mind, 
now, we propose the following two spectrum sensing test 
statistics  
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where 0a   and 1.b  The two test statistics are similar in 

that both of them assign a larger weight to a sensing sample 
closer to the end of the sensing period; yet, they are 
different in their weights: The weights of (5) and (6) are the 
power and exponential functions, respectively, of the 
normalized indices of the last L samples. 

B. Distributions of Test Statistics  

Assuming that the L noise samples  
1

[ ]
I

i I L
w i

  
are 

statistically independent and identically distributed Gaussian 

random variables with zero mean and variance 
2 , we can 

derive the characteristic functions of the test statistics as 

0
2

1

1
( )

1 2

L

l
l

j
j


 

 


                        (7) 

under 0

rH and 

2

1 22
1

1 [ ]
( ) exp

(1 2 )1 2

L

l ll

j s I L l
j

jj




  

  
   

  
       (8) 

under 1 ,rH where ( / )a

l l L   and ( / )l Lb for PT and 

,ET respectively. The inverse Fourier transforms of (7) and 

(8) would yield the probability density functions (PDFs) 

under 0

rH  and 1 ,rH respectively; however, it is highly 

complicated to express the PDFs in a closed form. Noting 

that the values of a and b do not change the general forms 

of the PDFs, thus, we verify the validity of the characteristic 
functions by deriving the PDFs for a simplified case (i.e., 

when 0a  and 1,b  and so, when ),P ET T  and then, by 

comparing the analytical detection probability based on the 
PDFs with the simulated detection probability. The 

characteristic functions 0 ( )j and 1( )j reduce to 

 
Figure 2. The static and random traffic models of the PU signal  
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respectively, when 0a  and 1.b   In fact, (9) and (10) are 

the characteristic functions of the central chi-square and 
non-central chi-square PDFs, respectively, with L degrees 
of freedom [12]. Thus, the detection probability is given by  
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is the  th-order modified Bessel function of the first kind 

with 1
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with   a pre-determined false alarm probability.  Figure 3 

shows the analytical and simulated detection probabilities 

for PT and ET  when  =0.01, 0.03, 0.05, and 0.1 and L=50, 

where we can clearly see that the analytical and simulated 
results agree with each other, thus verifying the validity of 
(7) and (8), and allowing us to use them in determining a 

threshold for the detection performance evaluation in the 
next section. 
 

IV. NUMERICAL RESULTS  

In this section, the proposed spectrum sensing 
technique is compared with the conventional spectrum 
sensing techniques in terms of the detection probability and 

ROC curve, where I is set to 200, 
0J and

1J  are assumed to 

be distributed uniformly over the sensing period, the signal-

to-noise-ratio (SNR) is defined as 
2 2[ ] / { [ ]}s i E w i with { }E   

denoting the statistical expectation, and ,  , and L a b are 

numerically optimized to maximize the detection probability 
for each of the given SNR values and false alarm 
probabilities. 

 

Figure 3. The analytical and simulated detection probabilities for PT  and  

ET when  =0.01, 0.03, 0.05, and 0.1 and L=50. 

 
Figure 4. The detection probabilities as a function of the SNR of the 

proposed and conventional schemes when the false alarm probability is (a) 

0.01 and (b) 0.1.  
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Table I shows the optimized values of ,  , and L a b for 

various values of the SNR when the false alarm probability 
is 0.01 and 0.1, where it is observed that, as the value of the 

SNR decreases, the values of  and a b  generally increases to 

amplify the signal power, whereas the value of L generally 
decreases to exclude highly noise-contaminated sensing 
samples while preserving the reliable samples in the latter 
part of the sensing period. 

Figure 4 shows the detection probabilities of the 
proposed and conventional spectrum sensing techniques as a 
function of the SNR when the false alarm probability is 0.01 
and 0.1, where we can observe that the proposed techniques 
outperform the conventional techniques with a gain ranging 
approximately from 0.5 dB to 13 dB, which stems from the 
fact that the proposed techniques use only reliable sensing 
samples in the latter part of the sensing period unlike the 
conventional techniques. In addition, in the figure, we can 

 
Figure 5. The ROC curves of the proposed and conventional techniques when the value of the SNR is (a) -5dB, (b) -10dB, (c) -15dB, and (d)-20dB.  

TABLE I. THE OPTIMIZED VALUES OF , , andL a b  WHEN THE FALSE ALARM PROBABILITY IS 0.01 AND 0.1. 

SNR (dB) 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 
 

False 

Alarm 

Probability 

= 0.01 

TP 
Optimized a 0.4 0.3 0.7 1 1.6 2.2 2.7 2.4 2.6 2.2 2.3 

Optimized L 175 175 175 175 175 95 85 175 100 100 95 
 

TE 
Optimized b 6.5 3 3.5 4.5 9.5 10.5 3 10.5 13 13 15 

Optimized L 175 175 175 175 150 125 65 95 105 125 110 

False 

Alarm 

Probability 

= 0.1 

 

TP 
Optimized a 0.6 0.1 0.6 0.7 1.3 1.9 1.9 0.8 1.7 2.3 3 

Optimized L 150 150 175 175 175 175 150 95 110 150 90 
 

TE 
Optimized b 13.5 1.5 3 2.5 5 8.5 14.5 7.5 14.5 13.5 7 

Optimized L 175 150 175 150 175 150 175 150 175 80 150 
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see that the performance of 
ET is slightly better than that 

of ,PT due to the effect of the weights on the sensing samples 

being slightly larger with
ET than with .PT   

Figure 5 shows the ROC curves of the proposed and 
conventional techniques when the value of the SNR is (a) -
5dB, (b) -10dB, (c) -15dB, and (d) -20dB. It is seen in the 
figure that the proposed techniques offer an improvement in 
performance over the conventional techniques for all cases 
shown, and the improvement becomes more pronounced for 
a larger SNR value generally. This is because the reliable 
sensing samples are more efficiently utilized in the spectral 
hole detection through the proposed variable weighting 
methods, and the number L of the reliable sensing samples 
generally increases as the value of the SNR becomes larger, 
as shown in Table I. 

Although the PU signal is assumed to arrive or depart 
only one time during the sensing period in this paper, the 
PU signal may arrive or depart several times [13] during the 
sensing period or even during the data transmission period 
[14]. So, we would like to address sensing techniques in 
such more realistic environments in the future work. 

V. CONCLUSION 

In this paper, we have proposed two novel detection test 
statistics based on variably weighted sensing samples for 
spectrum sensing under the random traffic condition of the 
PU signal. Using the power and exponential functions of the 
sensing samples in the latter part of the sensing period, we 
have designed weighting methods that enable the detection 
test statistics to assign a larger weight to a sensing sample 
closer to the end of the sensing period, and consequently, to 
improve their own decision reliability in the presence of the 
PU random traffic. Numerical results demonstrate that the 
proposed test statistics provide better detection and ROC 
performances than the conventional ones under the random 
traffic condition of the PU signal.  
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