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Abstract— Recently, traffic in the Internet increases largely 

according to the improvement of network capacity.  However, 

it is sometimes pointed out that a small number of giant users 

exhaust large part of network bandwidth.  In order to resolve 

such problems, a practical way is to suppress large traffic flows 

which do not conform to Transmission Control Protocol (TCP) 

congestion control algorithms.  For this purpose, the network 

operators need to infer congestion control algorithms of 

individual TCP flows using passively monitored packet traces 

in the middle of networks.  On the other hand, a lot of TCP 

congestion control mechanisms have been introduced recently.  

Although there are several proposals on inferring them, no 

schemes are proposed which can analyze recently introduced 

TCP congestion control algorithms based on the passive 

approach.  This paper proposes a new passive scheme to 

compare most of recently proposed congestion control 

algorithms.  It estimates the congestion window size (cwnd) at a 

TCP sender at round-trip time intervals, and specifies the cwnd 

growth as a function of the estimated value of cwnd and the 

cwnd decrease parameter at individual congestion events.  This 

paper shows the results of applying our scheme to eight 

congestion control algorithms and shows that they can be 

identified from passively monitored traces.   

Keywords- TCP congestion control; passive monitoring; 

congestion window. 

I.  INTRODUCTION 

The TCP congestion control [1] is a mechanism for a 
data sender to limit its rate of injecting data segments into 
the network when it is congested.  More specifically, a TCP 
sender transmits data segments under the limitation of the 
congestion window size (cwnd) maintained within the sender 
side, beside the advertised window reported from a TCP 
receiver.  The value of cwnd grows up as a sender receives 
acknowledgment (ACK) segments and is decreased when it 
detects congestions.  How to grow and decrease cwnd is the 
key of congestion control algorithm.   

Since the congestion control came to be used in TCP, 
only a few algorithms, such as Tahoe, Reno and NewReno 
[2], were used commonly for a long time.  According to the 
diversification of network environments, however, many 
TCP congestion control algorithms have emerged [3].  For 
example, High Speed (HS) TCP [4], CUBIC TCP [5], and 
Hamilton TCP [6] are designed for high speed and long 
delay networks.  On the other hand, TCP Westwood+ [7] is 
designed for lossy wireless links.  While those algorithms are 
based on packet losses, TCP Vegas [8] triggers congestion 
control against an increase of round-trip time (RTT).  TCP 

Veno [9] and TCP Illinois [10] combine loss based and delay 
based approaches such that congestion control is triggered by 
packet losses but the delay determines how to grow cwnd.   

Recently, the traffic in the Internet increases largely 

according to the improvement of network capacity.  
However, it is sometimes pointed out that a small number of 
giant users exhaust large part of network bandwidth.  Since 
most of traffic in the Internet uses TCP, the network 
congestions will be resolved by the TCP congestion control 
mechanisms.  However, if any giant users do not conform to 
those mechanisms, the problem will be worse.  So, an 
important approach for network operators is to infer 
congestion control algorithm using passively monitored 
packet traces and to discriminate TCP unfriendly traffic 
flows.   

This type of TCP congestion control inferring is called a 
passive approach.  It has some limitations in the testing 
ability because it needs to use packet traces as they are, but is 
non-intrusive and can be applied to any link in the Internet if 
the traffic over the link can be monitored.  So far, several 
studies are proposed for passive approaches [11]-[14].  
However, there are no proposals on inferring the recently 
introduced algorithms, in the contrast with the active 
approach, where an active tester sends test inputs to a target 
node and checks the replies [15].   

In our former paper [16], we presented a new scheme on 
the passive TCP congestion control algorithm inferring, 
which is a basis of this paper.  However, the paper has some 
problems in the sense that it focused only on the cwnd 
growth function and that it applied the idea only to a packet 
trace using TCP Reno/NewReno.   

In this paper, we propose a complete scheme to compare 
the TCP congestion control algorithms.  The scheme focuses 
on not only the cwnd growth function, as in our former paper, 
but also the decrease parameter at the congestion detection.  
This paper also applies our scheme to most of recently 
proposed congestion control algorithms implemented in the 
Linux operating system, with the experimental results 
verifying our scheme through actually collected packet traces.   

The rest of this paper consists of the following sections.  
Section 2 surveys the related works.  Section 3 proposes our 
scheme.  Section 4 gives the results that our scheme is 
applied to congestion control algorithms actually.  In the end, 
Section 5 gives the conclusions of this paper.   
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II. RELATED WORKS 

In the traditional methods [11][12] of the passive 
approach, a TCP sender’s state machine is estimated from 
packet traces and compared with the behaviors of known 
algorithms, and the most likely algorithm is selected.  These 
methods need complicated logic and are only applied to early 
stage algorithms, such as Tahoe, Reno and NewReno.  Oshio 
et al. [13] estimates the changes of cwnd values and extracts 
characteristics, such as the ratio of cwnd increased by one.  
Based on these characteristics, it discriminates one of two 
different versions randomly selected out of fourteen TCP 
versions implemented in the Linux operating system.  Qian 
et al. [14], on the other hand, focuses on the extraction of 
statistical features based on the monitoring of one direction 
of TCP communications.  They focused on the size of initial 
congestion window, the relationship between the 
retransmission rate and the time required to transfer a fixed 
size of data for detecting the irregular retransmissions, and 
the extraction of flow clock to find TCP data transmissions 
controlled by the application or link layer factors.  As an 
example of the active approach, Yang et al. [15] proposes the 
scheme to actively identify the TCP algorithm of a remote 
web server.  It makes a web server send 512 data segments 
under the controlled network environment and observes the 
number of data segments contiguously transmitted without 
receiving any ACK segments.  It then estimates the window 
growth function and the decrease parameter, and using those 
estimations, determines the TCP algorithm out of all default 
TCP algorithms and most non-default TCP algorithms of 
major operating system families.   

III. PROPOSAL 

A. Design Principle 

A TCP congestion control algorithm can be described by 
the following two characteristics.   

 The window growth function, which determines how 
an algorithm grows cwnd while there is no 
congestion.   

 The multiplicative decrease parameter (denoted by 

), which determines the slow start threshold 
(ssthresh) such that  

𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ =  𝑐𝑤𝑛𝑑 just before congestion × (1 − 𝛽) 

The goal of our scheme is to compare TCP congestion 
control algorithms by specifying those two characteristics 
using only packet traces collected passively.   

The window growth function is defined differently by 
individual TCP congestion control algorithms.  For example, 
TCP Reno/NewReno defines it as a behavior when a sender 
receives a new ACK segment.  On the other hand, CUBIC 
TCP defines it as a function of the elapsed time from the last 
window reduction.  For the purpose of our scheme, however, 
the window growth function needs to be specified in the 
same framework for different congestion control 
mechanisms.  We have decided to specify it as a function of 
cwnd values estimated at RTT intervals [16].   

The multiplicative decrease parameter can be identified 
from the sequence of estimated cwnd values by detecting fast 
retransmit events.   

B. Estimating cwnd Values at  RTT Intervals 

In the passive approach, packet traces are collected at 
some monitoring point in the network.  So, the time 
associated with a packet is not the exact time when the node 
focused sends/receives the packet.  Our scheme adopts the 
following approach to estimate cwnd values at RTT intervals 
using the TCP time stamp option.   

 Pick up an ACK segment in a packet trace.  Denote 
this ACK segment by ACK1. 

 Search for the data segment whose TSecr (time 
stamp echo reply) is equal to TSval (time stamp 
value) of ACK1.  Denote this data segment by Data1.   

 Search for the ACK segment which acknowledges 
Data1 for the first time.  Denote this ACK segment 
by ACK2.  Denote the ACK segment prior to ACK2 
by ACK1’ 

 Search for the data segment whose TSecr is equal to 
TSval of ACK2.  Denote this data segment by Data2.   

From this result, we estimate a cwnd value at the timing 
of receiving ACK1 as in (1).   

 𝑐𝑤𝑛𝑑 =  ⌊
𝑠𝑒𝑞 𝑖𝑛 𝐷𝑎𝑡𝑎2−𝑎𝑐𝑘 𝑖𝑛 𝐴𝐶𝐾1′

𝑀𝑆𝑆
⌋ (segments) (1)

Here, seq means the sequence number, ack means the 
acknowledgment number of TCP header, and MSS is the 
maximum segment size.  ⌊𝑎⌋ is the truncation of a.   

C. Specifying Window Growth Function 

Using the sequence of cwnd values obtained above, our 
scheme specifies the window growth function of a focused 
TCP communication in the following way [16].   

 Plot cwnd values at RTT intervals in relation to the 
time associated with the value. 

 Select a portion of the cwnd vs. time graph where 
cwnd is growing up continuously.   

 Compute the difference of adjacent cwnd values 

(denote it by cwnd) for the selected portion, and 

plot cwnd versus cwnd.   

The cwnd vs. cwnd graph obtained here is considered as 
a representation of the window growth function.  As 
described in the next section, the derived function will show 
characteristics which can distinguish an individual 
congestion control mechanism from others.   

D. Specifying Multiplicative Decrease Paremeter 

Our scheme specifies the multiplicative decrease 
parameter in the following way.   

 From the cwnd vs. time graph, select fast retransmit 
events by identifying portions where cwnd drops to 
some value other than one segment.   

 Examine the cwnd values just before and just after 
the drop.   
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 Compute 1 − 
𝑐𝑤𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑑𝑟𝑜𝑝

𝑐𝑤𝑛𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑑𝑟𝑜𝑝
 and use it as an 

estimation of .   

IV. APPLYING PROPOSAL TO VARIOUS TCPS 

In this section, we show the expected features of 
individual congestion control algorithms identified by our 
scheme, and results of experiments applied to actual packet 
traces.   

A. Experiment Conditions 

In the experiment, sending and receiving terminals are 
connected via a bridge.  The bridge inserts 100 msec delay 
(50 msec in one way) and packet losses whose probability is 
1.0 × 10−4 .  These values are selected for emulating an 
wide area Internet communication.  The sending terminal 
and the bridge are connected by a 100 Mbps Ethernet link.  
The receiving terminal and the bridge are connected by an 
Ethernet link or an IEEE 802.11g WLAN.  The data sending 
is performed by iperf, and is monitored by tcpdump at the 
sender.  We used either result of an Ethernet link or a WLAN 
depending on individual algorithms.   

B. Applying to TCP Reno/NewReno 

In TCP Reno/NewReno, cnwd (in unit of segment) grows 
up, for a new ACK segment, by one in the slow start phase 
and by 1/cwnd in the congestion avoidance phase.  By 
considering the possibility that the delayed ACK is used, the 
growth of cwnd during a RTT will be 𝑐𝑤𝑛𝑑/2 ≤⊿𝑐𝑤𝑛𝑑 ≤
𝑐𝑤𝑛𝑑 in the slow start phase, and ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 in the 
congestion avoidance phase.  As for the multiplicative 
decrease parameter, 𝛽 = 0.5.   

 Figure 1 shows experimental results for TCP Reno/ 
NewReno.  In Figure 1(a), the change of sequence number is 
shown along the time sent from the TCP sender.  This figure 
corresponds to the information included in the packet trace.  
From this result, the sequence of cwnd values at RTT 
intervals are computed by the algorithm described in II.B, 
which is given in the cwnd vs. time graph in (b) of this figure.  
In this graph, the portion marked by a circle is selected, and 

the cwnd vs. cwnd graph is plotted.  The dropping portions 

in the cwnd vs. time graph generate the  vs. time graph.  
These two graphs give the features expected above.  It 

should be noted that the ratio of cwnd = 0 and 1 is 1:1.  
This is reasonable because the delayed ACK sends an ACK 

segment for every other data segment and, therefore, cwnd 
will be one every other RTT interval.   

C. Applying to HS TCP 

HS TCP is designed to obtain high throughput over wide 
bandwidth and long delay networks.  It grows cwnd to 

𝑐𝑤𝑛𝑑 +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑
⁄  in response to every new ACK 

segment, and decrease cwnd to (1 − 𝑏(𝑐𝑤𝑛𝑑)) × 𝑐𝑤𝑛𝑑 at a 
congestion event.  That is, it changes the increase and 
decrease parameters, a(cwnd) and b(cwnd), depending on 
cwnd value.  More specifically, a(*) and b(*) are defined as 
follows.    

 𝑎(𝑐𝑤𝑛𝑑) =
0.156×𝑐𝑤𝑛𝑑0.8×𝑏(𝑐𝑤𝑛𝑑)

2−𝑏(𝑐𝑤𝑛𝑑)
 (2)

 𝑏(𝑐𝑤𝑛𝑑) = (0.1 − 0.5) ×
log 𝑐𝑤𝑛𝑑−log 38

log 83000−log 38
+ 0.5 

From those equations, when cwnd is 38, 118, or 221, 
a(cwnd) is 1, 2, or 3 segments and b(cwnd) is 0.50, 0.44, or 
0.41, respectively.  Considering that the passive approach 
can only detect the cwnd value in the unit of segment and 
that there is a case the delayed ACK is used, the estimated 

cwnd will be as follows.   

 ⊿𝑐𝑤𝑛𝑑 = {

0 𝑜𝑟 1 (𝑐𝑤𝑛𝑑 < 38)
1 𝑜𝑟 2  (38 ≤ 𝑐𝑤𝑛𝑑 < 118)

1, 2 𝑜𝑟 3  (118 ≤ 𝑐𝑤𝑛𝑑 < 221)
 (4)

On the other hand, the estimated value of  will be the same 
as b(cwnd).   

Figure 2 shows experimental results for HS TCP.  It 
shows only the graphs obtained in our proposal.  From the 
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Figure 1.  Experimental results for TCP Reno/NewReno 

 (using Ethernet link). 
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cwnd vs. cwnd graph, cwnd is 0 or 1 and their ratio is 1:1 

when cwnd <38.  When cwnd ≥ 38, cwnd is 1.  This result 
is consistent with the expectation above, and especially it 

should be noted that the cwnd value changes at the cwnd 
value of 38.  As for the multiplicative decrease parameter, 𝛽 
is between 0.4 and 0.5 and this result is also consistent with 
the expectation.   

D. Applying to CUBIC TCP 

CUBIC TCP defines cwnd as a cubic function of elapsed 
time T since the last congestion event.  Specifically, it 
defines cwnd by (5). 

 𝑐𝑤𝑛𝑑 = 𝐶 (𝑇 − √𝛽 ∙
𝑐𝑤𝑛𝑑𝑚𝑎𝑥

𝐶

3
)

3

+ 𝑐𝑤𝑛𝑑𝑚𝑎𝑥  

Here, C is a predefined constant, 𝛽 is the decrease parameter, 
and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥 is the value of cwnd just before the loss 
detection in the last congestion event.  We approximate 

cwnd by 𝑅𝑇𝑇 ×
𝑑(𝑐𝑤𝑛𝑑)

𝑑𝑇
 and obtain (6) by representing it in 

cwnd [16].   

 ⊿𝑐𝑤𝑛𝑑 = 3𝑅𝑇𝑇 ∙ √𝐶
3

(√𝑐𝑤𝑛𝑑 − 𝑐𝑤𝑛𝑑𝑚𝑎𝑥
3 )

2
 (6)

The decrease parameter is defined by 𝛽 = 0.2 in the original 
CUBIC.  It is 0.3 in the new versions of CUBIC TCP [3].   

Figure 3 shows experimental results for CUBIC TCP.  

The curve in the cwnd vs. cwnd graph has two 

characteristics.  One is that it follows a √𝑥23
 curve and the 

other is that it has parts in both sides of a point of cwnd = 0.  
So, it is considered that this result is consistent with (6).  As 
for the decrease parameter, the result is 𝛽 ≈ 0.3  and this 
means that the used CUBIC software is a new version.   

E. Applying to Hamilton TCP 

Hamilton TCP is another example that defines cwnd as a 
function of a time.  It defines the increase parameter a of 

cwnd, similar with that of HS TCP, as a function of elapsed 
time T since the last congestion event in the following way.   

 𝑎(𝑇) = {
1 + 10(𝑇 − 𝑇𝑙𝑜𝑤) + 0.25(𝑇 − 𝑇𝑙𝑜𝑤)2 (𝑇 ≥ 𝑇𝑙𝑜𝑤)

1 (𝑇 < 𝑇𝑙𝑜𝑤)
 

  (7)

Here, Tlow is a threshold for switching the low-speed mode 
and the high-speed mode.   a(T) is an increase of cwnd 
during a RTT interval, we can obtain an approximate value 
of cwnd by integrating (7).  First of all, we compute the 
square completion the upper equation of (7), and obtain (8).   

 ⊿𝑐𝑤𝑛𝑑 =
1

4
(𝑇 − 𝑇𝑙𝑜𝑤 + 20)2 − 99 (8)

By integrating (8) and substituting cwnd, cwnd is computed 

as a function of cwnd in the following way. 

 

Figure 2.  Experimental results for HS TCP (using WLAN). 

 

Figure 3.  Experimental results for CUBIC TCP (using Ethernet link).   

 

Figure 4.  Experimental results for Hamilton TCP (using WLAN). 
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𝑐𝑤𝑛𝑑 =
1

3𝑅𝑇𝑇
(√⊿𝑐𝑤𝑛𝑑 + 99)

3

−
198

𝑅𝑇𝑇
√⊿𝑐𝑤𝑛𝑑 + 99 + 𝐶 

Here, C is a constant.  This result means that cwnd is a 

function of ⊿cwnd
3

2.  So it is considered that, by computing 

the inverse function, cwnd will be represented by a function 

of cwnd
2

3.  This is a similar result with CUBIC TCP.  But, in 
the case of Hamilton TCP, the TCP Reno part exists before a 

√𝑥23
 curve, and there in only an increasing part unlike 

CUBIC TCP.  As for the multiplicative decrease parameter, 
𝛽 = 0.5 is expected.   

Figure 4 shows experimental results for Hamilton TCP.  

The curve in the cwnd vs. cwnd graph presents the exact 

characteristics described above.  As for , the result value is 
between 0.4 and 0.5, which is acceptable for the estimation.   

F. Applying to TCP Westwood+ 

TCP Westwood+ is based on the end-to-end bandwidth 
estimate using the rate of acknowledged data in returning 
ACK segments.  Its congestion control is triggered by packet 
losses.  While there are no packet losses, it increases cwnd 
by the same algorithm with TCP Reno for every new ACK 
segment.  At the same time, the estimated bandwidth (bk) is 
computed every RTT in the following way.   

 𝑏𝑘 = 𝑑𝑘/∆𝑘 (10)

Here, 𝑑𝑘   is the amount of data acknowledged during the last 
RTT ( ∆𝑘 ).  The measured value 𝑏𝑘  is applied to an 
exponential moving average filter and the averaged 
bandwidth estimation (BWEk) is obtained.   

 𝐵𝑊𝐸𝑘 = 0.9 × 𝐵𝑊𝐸𝑘−1 + 0.1 × 𝑏𝑘 (11)

When three duplicate ACKs are received, cwnd is set to the 
value of 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑚𝑖𝑛/𝑀𝑆𝑆.  That is, cwnd is decreased 
to a specific value not using a multiplicative decrease 

parameter.  From those definitions, the expectation of cwnd 
will be 0 or 1, which is the same with TCP Reno.  The 

expectation of  will be as in (12).   

 1 −
𝐵𝑊𝐸×𝑅𝑇𝑇𝑚𝑖𝑛

𝑀𝑆𝑆×𝑐𝑤𝑛𝑑𝑚𝑎𝑥
 (12) 

Here, cwndmax is the value of cwnd just before the last loss 
detection.   

Figure 5 shows experimental results for TCP Westwood+.  

In the cwnd vs. cwnd graph, cwnd takes 1 and 0, and its 
ratio is 1:1.  This is the same with TCP Reno and conforms 

to the expectation.  On the other hand, in the  vs. time graph, 

 takes various values between 0.2 and 0.5.  Basically,  
itself has no meaning in this case, and in this sense the 
results conform to the expectation.  

G. Applying to TCP Vegas 

TCP Vegas estimates the bottleneck buffer size using the 
current values of cwnd and RTT, and the minimal RTT for 
the TCP connection, according to (13).   

 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑤𝑛𝑑 ×
𝑅𝑇𝑇− 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇
 

At every RTT interval, Vegas uses this BufferSize to 
control cwnd in the congestion avoidance phase in the 
following way.   

 ⊿𝑐𝑤𝑛𝑑 = {

1         (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

  0  (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1        (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 

Here, A = 2 and B = 4 (in unit of segment) are used in the 
Linux operating system.  The decrease parameter is 𝛽 = 0.5.   

Figure 6 shows the results for TCP Vegas.  In the cwnd 

vs. cwnd graph, cwnd is 1 while cwnd is below 40, which 
corresponds to the part of increasing cwnd.  After that, 

around cwnd is 45, the situations that cwnd is 0, 1 and -1 
are mixed.  This result conforms to the expectation above.  In 

the  vs. time graph, 𝛽 = 0.5, which matches the expectation.   

 

Figure 5.  Experimental results for TCP Westwood+ (using WLAN). 

 

Figure 6.  Experimental results for TCP Vegas (using WLAN). 
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H. Applying to TCP Veno 

TCP Veno (Vegas and ReNO) uses the BufferSize in (13) 
to adjust the growth of cwnd in the congestion avoidance 
phase as follows.  If BufferSize > B  (B is the Vegas 
parameter B), cwnd grows by 1/cwnd for every other new 
ACK segment, and otherwise, it grows in the same manner 
with TCP Reno.  Therefore, if the delayed ACK is not used, 

cwnd at RTT intervals will be as in (15).   

 ⊿𝑐𝑤𝑛𝑑 = {
  1 𝑜𝑟 0(𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 

If the delayed ACK is used, ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1  even if 

𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵.  But in this case, the ratio of cwnd being 
1 and 0 is different for BufferSize.  It will be 1:3 for 
BufferSize >B, and 1:1 for 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵 .  The 
multiplicative decrease parameter is defined as in (16).   

 𝛽 = {
0.5 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

0.2 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 (16)

Figure 7 shows experimental results for TCP Veno.  In 

the cwnd vs. cwnd graph, cwnd takes 1 and 0, but its ratio 

is 1:1.  On the other hand, the  vs. time graph shows that 
𝛽 = 0.2.  These results are consistent with the expectation 
when BufferSize is less than and equal to B.   

I. Applying to TCP Illinois 

TCP Illinois changes the increase parameter, a(Q), and 
the decrease parameter, b(Q), of cwnd, which are similar 
with those of HS TCP, according to the queuing delay, Q.  
The queuing delay is measured by the increase of RTT from 
the minimum RTT for a TCP connection.  In the Linux 
operating system, a(Q) changes from 0.1 to 10 in unit of 
segment.  b(Q) changes from 0.125 to 0.5.  Those values are 

updated once per every RTT.  In the expectation, cwnd will 

be defined by 
1

2
𝑎(𝑄) ≤ ⊿𝑐𝑤𝑛𝑑 ≤ 𝑎(𝑄) and  will be b(Q).   

Figure 8 shows experimental results for TCP Illinois.  In 

the cwnd vs. cwnd graph, cwnd increases from 1 to 6 and 
then decreases to 1 again.  This will reflect the delay in the 

communication.  The  vs. time graph,  has the values 
between 0.2 and 0.6.  These conform to the expectations.   

V. CONCLUSIONS 

This paper presented that the TCP congestion control 
algorithms can be characterized from only passively 
collected packet traces, by specifying the cwnd growth 

function as cwnd vs. cwnd, and the multiplicative decrease 
parameter.  We applied our scheme to Reno/NewReno, HS 
TCP, CUBIC, Hamilton, Westwood+, Vegas, Veno and 
Illinois, and indicated that individual algorithms show 
characteristics which can identify the individuals from others.  
Our future works include identifying congestion control 
algorithms automatically and inferring from packet traces 
which contain only one way TCP packet traces.   
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