
Comparing TCP Congestion Control Algorithms

Based on Passively Collected Packet Traces

Toshihiko Kato, Atsushi Oda, Celimuge Wu, and Satoshi Ohzahata

Graduate School of Information Systems

University of Electro-Communications

Tokyo, Japan

e-mail: kato@is.uec.ac.jp, oda@net.is.uec.ac.jp, clmg@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract— Recently, traffic in the Internet increases largely

according to the improvement of network capacity. However,

it is sometimes pointed out that a small number of giant users

exhaust large part of network bandwidth. In order to resolve

such problems, a practical way is to suppress large traffic flows

which do not conform to Transmission Control Protocol (TCP)

congestion control algorithms. For this purpose, the network

operators need to infer congestion control algorithms of

individual TCP flows using passively monitored packet traces

in the middle of networks. On the other hand, a lot of TCP

congestion control mechanisms have been introduced recently.

Although there are several proposals on inferring them, no

schemes are proposed which can analyze recently introduced

TCP congestion control algorithms based on the passive

approach. This paper proposes a new passive scheme to

compare most of recently proposed congestion control

algorithms. It estimates the congestion window size (cwnd) at a

TCP sender at round-trip time intervals, and specifies the cwnd

growth as a function of the estimated value of cwnd and the

cwnd decrease parameter at individual congestion events. This

paper shows the results of applying our scheme to eight

congestion control algorithms and shows that they can be

identified from passively monitored traces.

Keywords- TCP congestion control; passive monitoring;

congestion window.

I. INTRODUCTION

The TCP congestion control [1] is a mechanism for a
data sender to limit its rate of injecting data segments into
the network when it is congested. More specifically, a TCP
sender transmits data segments under the limitation of the
congestion window size (cwnd) maintained within the sender
side, beside the advertised window reported from a TCP
receiver. The value of cwnd grows up as a sender receives
acknowledgment (ACK) segments and is decreased when it
detects congestions. How to grow and decrease cwnd is the
key of congestion control algorithm.

Since the congestion control came to be used in TCP,
only a few algorithms, such as Tahoe, Reno and NewReno
[2], were used commonly for a long time. According to the
diversification of network environments, however, many
TCP congestion control algorithms have emerged [3]. For
example, High Speed (HS) TCP [4], CUBIC TCP [5], and
Hamilton TCP [6] are designed for high speed and long
delay networks. On the other hand, TCP Westwood+ [7] is
designed for lossy wireless links. While those algorithms are
based on packet losses, TCP Vegas [8] triggers congestion
control against an increase of round-trip time (RTT). TCP

Veno [9] and TCP Illinois [10] combine loss based and delay
based approaches such that congestion control is triggered by
packet losses but the delay determines how to grow cwnd.

Recently, the traffic in the Internet increases largely

according to the improvement of network capacity.
However, it is sometimes pointed out that a small number of
giant users exhaust large part of network bandwidth. Since
most of traffic in the Internet uses TCP, the network
congestions will be resolved by the TCP congestion control
mechanisms. However, if any giant users do not conform to
those mechanisms, the problem will be worse. So, an
important approach for network operators is to infer
congestion control algorithm using passively monitored
packet traces and to discriminate TCP unfriendly traffic
flows.

This type of TCP congestion control inferring is called a
passive approach. It has some limitations in the testing
ability because it needs to use packet traces as they are, but is
non-intrusive and can be applied to any link in the Internet if
the traffic over the link can be monitored. So far, several
studies are proposed for passive approaches [11]-[14].
However, there are no proposals on inferring the recently
introduced algorithms, in the contrast with the active
approach, where an active tester sends test inputs to a target
node and checks the replies [15].

In our former paper [16], we presented a new scheme on
the passive TCP congestion control algorithm inferring,
which is a basis of this paper. However, the paper has some
problems in the sense that it focused only on the cwnd
growth function and that it applied the idea only to a packet
trace using TCP Reno/NewReno.

In this paper, we propose a complete scheme to compare
the TCP congestion control algorithms. The scheme focuses
on not only the cwnd growth function, as in our former paper,
but also the decrease parameter at the congestion detection.
This paper also applies our scheme to most of recently
proposed congestion control algorithms implemented in the
Linux operating system, with the experimental results
verifying our scheme through actually collected packet traces.

The rest of this paper consists of the following sections.
Section 2 surveys the related works. Section 3 proposes our
scheme. Section 4 gives the results that our scheme is
applied to congestion control algorithms actually. In the end,
Section 5 gives the conclusions of this paper.

135Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

mailto:%7d@net.is.uec.ac.jp

II. RELATED WORKS

In the traditional methods [11][12] of the passive
approach, a TCP sender’s state machine is estimated from
packet traces and compared with the behaviors of known
algorithms, and the most likely algorithm is selected. These
methods need complicated logic and are only applied to early
stage algorithms, such as Tahoe, Reno and NewReno. Oshio
et al. [13] estimates the changes of cwnd values and extracts
characteristics, such as the ratio of cwnd increased by one.
Based on these characteristics, it discriminates one of two
different versions randomly selected out of fourteen TCP
versions implemented in the Linux operating system. Qian
et al. [14], on the other hand, focuses on the extraction of
statistical features based on the monitoring of one direction
of TCP communications. They focused on the size of initial
congestion window, the relationship between the
retransmission rate and the time required to transfer a fixed
size of data for detecting the irregular retransmissions, and
the extraction of flow clock to find TCP data transmissions
controlled by the application or link layer factors. As an
example of the active approach, Yang et al. [15] proposes the
scheme to actively identify the TCP algorithm of a remote
web server. It makes a web server send 512 data segments
under the controlled network environment and observes the
number of data segments contiguously transmitted without
receiving any ACK segments. It then estimates the window
growth function and the decrease parameter, and using those
estimations, determines the TCP algorithm out of all default
TCP algorithms and most non-default TCP algorithms of
major operating system families.

III. PROPOSAL

A. Design Principle

A TCP congestion control algorithm can be described by
the following two characteristics.

 The window growth function, which determines how
an algorithm grows cwnd while there is no
congestion.

 The multiplicative decrease parameter (denoted by

), which determines the slow start threshold
(ssthresh) such that

𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ = 𝑐𝑤𝑛𝑑 just before congestion × (1 − 𝛽)

The goal of our scheme is to compare TCP congestion
control algorithms by specifying those two characteristics
using only packet traces collected passively.

The window growth function is defined differently by
individual TCP congestion control algorithms. For example,
TCP Reno/NewReno defines it as a behavior when a sender
receives a new ACK segment. On the other hand, CUBIC
TCP defines it as a function of the elapsed time from the last
window reduction. For the purpose of our scheme, however,
the window growth function needs to be specified in the
same framework for different congestion control
mechanisms. We have decided to specify it as a function of
cwnd values estimated at RTT intervals [16].

The multiplicative decrease parameter can be identified
from the sequence of estimated cwnd values by detecting fast
retransmit events.

B. Estimating cwnd Values at RTT Intervals

In the passive approach, packet traces are collected at
some monitoring point in the network. So, the time
associated with a packet is not the exact time when the node
focused sends/receives the packet. Our scheme adopts the
following approach to estimate cwnd values at RTT intervals
using the TCP time stamp option.

 Pick up an ACK segment in a packet trace. Denote
this ACK segment by ACK1.

 Search for the data segment whose TSecr (time
stamp echo reply) is equal to TSval (time stamp
value) of ACK1. Denote this data segment by Data1.

 Search for the ACK segment which acknowledges
Data1 for the first time. Denote this ACK segment
by ACK2. Denote the ACK segment prior to ACK2
by ACK1’

 Search for the data segment whose TSecr is equal to
TSval of ACK2. Denote this data segment by Data2.

From this result, we estimate a cwnd value at the timing
of receiving ACK1 as in (1).

 𝑐𝑤𝑛𝑑 = ⌊
𝑠𝑒𝑞 𝑖𝑛 𝐷𝑎𝑡𝑎2−𝑎𝑐𝑘 𝑖𝑛 𝐴𝐶𝐾1′

𝑀𝑆𝑆
⌋ (segments) (1)

Here, seq means the sequence number, ack means the
acknowledgment number of TCP header, and MSS is the
maximum segment size. ⌊𝑎⌋ is the truncation of a.

C. Specifying Window Growth Function

Using the sequence of cwnd values obtained above, our
scheme specifies the window growth function of a focused
TCP communication in the following way [16].

 Plot cwnd values at RTT intervals in relation to the
time associated with the value.

 Select a portion of the cwnd vs. time graph where
cwnd is growing up continuously.

 Compute the difference of adjacent cwnd values

(denote it by cwnd) for the selected portion, and

plot cwnd versus cwnd.

The cwnd vs. cwnd graph obtained here is considered as
a representation of the window growth function. As
described in the next section, the derived function will show
characteristics which can distinguish an individual
congestion control mechanism from others.

D. Specifying Multiplicative Decrease Paremeter

Our scheme specifies the multiplicative decrease
parameter in the following way.

 From the cwnd vs. time graph, select fast retransmit
events by identifying portions where cwnd drops to
some value other than one segment.

 Examine the cwnd values just before and just after
the drop.

136Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

 Compute 1 −
𝑐𝑤𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑑𝑟𝑜𝑝

𝑐𝑤𝑛𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑑𝑟𝑜𝑝
 and use it as an

estimation of .

IV. APPLYING PROPOSAL TO VARIOUS TCPS

In this section, we show the expected features of
individual congestion control algorithms identified by our
scheme, and results of experiments applied to actual packet
traces.

A. Experiment Conditions

In the experiment, sending and receiving terminals are
connected via a bridge. The bridge inserts 100 msec delay
(50 msec in one way) and packet losses whose probability is
1.0 × 10−4 . These values are selected for emulating an
wide area Internet communication. The sending terminal
and the bridge are connected by a 100 Mbps Ethernet link.
The receiving terminal and the bridge are connected by an
Ethernet link or an IEEE 802.11g WLAN. The data sending
is performed by iperf, and is monitored by tcpdump at the
sender. We used either result of an Ethernet link or a WLAN
depending on individual algorithms.

B. Applying to TCP Reno/NewReno

In TCP Reno/NewReno, cnwd (in unit of segment) grows
up, for a new ACK segment, by one in the slow start phase
and by 1/cwnd in the congestion avoidance phase. By
considering the possibility that the delayed ACK is used, the
growth of cwnd during a RTT will be 𝑐𝑤𝑛𝑑/2 ≤⊿𝑐𝑤𝑛𝑑 ≤
𝑐𝑤𝑛𝑑 in the slow start phase, and ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 in the
congestion avoidance phase. As for the multiplicative
decrease parameter, 𝛽 = 0.5.

 Figure 1 shows experimental results for TCP Reno/
NewReno. In Figure 1(a), the change of sequence number is
shown along the time sent from the TCP sender. This figure
corresponds to the information included in the packet trace.
From this result, the sequence of cwnd values at RTT
intervals are computed by the algorithm described in II.B,
which is given in the cwnd vs. time graph in (b) of this figure.
In this graph, the portion marked by a circle is selected, and

the cwnd vs. cwnd graph is plotted. The dropping portions

in the cwnd vs. time graph generate the  vs. time graph.
These two graphs give the features expected above. It

should be noted that the ratio of cwnd = 0 and 1 is 1:1.
This is reasonable because the delayed ACK sends an ACK

segment for every other data segment and, therefore, cwnd
will be one every other RTT interval.

C. Applying to HS TCP

HS TCP is designed to obtain high throughput over wide
bandwidth and long delay networks. It grows cwnd to

𝑐𝑤𝑛𝑑 +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑
⁄ in response to every new ACK

segment, and decrease cwnd to (1 − 𝑏(𝑐𝑤𝑛𝑑)) × 𝑐𝑤𝑛𝑑 at a
congestion event. That is, it changes the increase and
decrease parameters, a(cwnd) and b(cwnd), depending on
cwnd value. More specifically, a(*) and b(*) are defined as
follows.

 𝑎(𝑐𝑤𝑛𝑑) =
0.156×𝑐𝑤𝑛𝑑0.8×𝑏(𝑐𝑤𝑛𝑑)

2−𝑏(𝑐𝑤𝑛𝑑)
 (2)

 𝑏(𝑐𝑤𝑛𝑑) = (0.1 − 0.5) ×
log 𝑐𝑤𝑛𝑑−log 38

log 83000−log 38
+ 0.5 

From those equations, when cwnd is 38, 118, or 221,
a(cwnd) is 1, 2, or 3 segments and b(cwnd) is 0.50, 0.44, or
0.41, respectively. Considering that the passive approach
can only detect the cwnd value in the unit of segment and
that there is a case the delayed ACK is used, the estimated

cwnd will be as follows.

 ⊿𝑐𝑤𝑛𝑑 = {

0 𝑜𝑟 1 (𝑐𝑤𝑛𝑑 < 38)
1 𝑜𝑟 2 (38 ≤ 𝑐𝑤𝑛𝑑 < 118)

1, 2 𝑜𝑟 3 (118 ≤ 𝑐𝑤𝑛𝑑 < 221)
 (4)

On the other hand, the estimated value of  will be the same
as b(cwnd).

Figure 2 shows experimental results for HS TCP. It
shows only the graphs obtained in our proposal. From the

100

80

60

40

20

 10 20 30 40 50 60 70 80 90

Time (sec)

Sequence
number
(mega
byte)

0

(a) Sequence number vs. time of monitored TCP flow

(b) Estimated cwnd increasing function and decrease parameter

Figure 1. Experimental results for TCP Reno/NewReno

 (using Ethernet link).

137Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

cwnd vs. cwnd graph, cwnd is 0 or 1 and their ratio is 1:1

when cwnd <38. When cwnd ≥ 38, cwnd is 1. This result
is consistent with the expectation above, and especially it

should be noted that the cwnd value changes at the cwnd
value of 38. As for the multiplicative decrease parameter, 𝛽
is between 0.4 and 0.5 and this result is also consistent with
the expectation.

D. Applying to CUBIC TCP

CUBIC TCP defines cwnd as a cubic function of elapsed
time T since the last congestion event. Specifically, it
defines cwnd by (5).

 𝑐𝑤𝑛𝑑 = 𝐶 (𝑇 − √𝛽 ∙
𝑐𝑤𝑛𝑑𝑚𝑎𝑥

𝐶

3
)

3

+ 𝑐𝑤𝑛𝑑𝑚𝑎𝑥  

Here, C is a predefined constant, 𝛽 is the decrease parameter,
and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥 is the value of cwnd just before the loss
detection in the last congestion event. We approximate

cwnd by 𝑅𝑇𝑇 ×
𝑑(𝑐𝑤𝑛𝑑)

𝑑𝑇
 and obtain (6) by representing it in

cwnd [16].

 ⊿𝑐𝑤𝑛𝑑 = 3𝑅𝑇𝑇 ∙ √𝐶
3

(√𝑐𝑤𝑛𝑑 − 𝑐𝑤𝑛𝑑𝑚𝑎𝑥
3)

2
 (6)

The decrease parameter is defined by 𝛽 = 0.2 in the original
CUBIC. It is 0.3 in the new versions of CUBIC TCP [3].

Figure 3 shows experimental results for CUBIC TCP.

The curve in the cwnd vs. cwnd graph has two

characteristics. One is that it follows a √𝑥23
 curve and the

other is that it has parts in both sides of a point of cwnd = 0.
So, it is considered that this result is consistent with (6). As
for the decrease parameter, the result is 𝛽 ≈ 0.3 and this
means that the used CUBIC software is a new version.

E. Applying to Hamilton TCP

Hamilton TCP is another example that defines cwnd as a
function of a time. It defines the increase parameter a of

cwnd, similar with that of HS TCP, as a function of elapsed
time T since the last congestion event in the following way.

 𝑎(𝑇) = {
1 + 10(𝑇 − 𝑇𝑙𝑜𝑤) + 0.25(𝑇 − 𝑇𝑙𝑜𝑤)2 (𝑇 ≥ 𝑇𝑙𝑜𝑤)

1 (𝑇 < 𝑇𝑙𝑜𝑤)

 (7)

Here, Tlow is a threshold for switching the low-speed mode
and the high-speed mode. a(T) is an increase of cwnd
during a RTT interval, we can obtain an approximate value
of cwnd by integrating (7). First of all, we compute the
square completion the upper equation of (7), and obtain (8).

 ⊿𝑐𝑤𝑛𝑑 =
1

4
(𝑇 − 𝑇𝑙𝑜𝑤 + 20)2 − 99 (8)

By integrating (8) and substituting cwnd, cwnd is computed

as a function of cwnd in the following way.

Figure 2. Experimental results for HS TCP (using WLAN).

Figure 3. Experimental results for CUBIC TCP (using Ethernet link).

Figure 4. Experimental results for Hamilton TCP (using WLAN).

138Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

𝑐𝑤𝑛𝑑 =
1

3𝑅𝑇𝑇
(√⊿𝑐𝑤𝑛𝑑 + 99)

3

−
198

𝑅𝑇𝑇
√⊿𝑐𝑤𝑛𝑑 + 99 + 𝐶 

Here, C is a constant. This result means that cwnd is a

function of ⊿cwnd
3

2. So it is considered that, by computing

the inverse function, cwnd will be represented by a function

of cwnd
2

3. This is a similar result with CUBIC TCP. But, in
the case of Hamilton TCP, the TCP Reno part exists before a

√𝑥23
 curve, and there in only an increasing part unlike

CUBIC TCP. As for the multiplicative decrease parameter,
𝛽 = 0.5 is expected.

Figure 4 shows experimental results for Hamilton TCP.

The curve in the cwnd vs. cwnd graph presents the exact

characteristics described above. As for , the result value is
between 0.4 and 0.5, which is acceptable for the estimation.

F. Applying to TCP Westwood+

TCP Westwood+ is based on the end-to-end bandwidth
estimate using the rate of acknowledged data in returning
ACK segments. Its congestion control is triggered by packet
losses. While there are no packet losses, it increases cwnd
by the same algorithm with TCP Reno for every new ACK
segment. At the same time, the estimated bandwidth (bk) is
computed every RTT in the following way.

 𝑏𝑘 = 𝑑𝑘/∆𝑘 (10)

Here, 𝑑𝑘 is the amount of data acknowledged during the last
RTT (∆𝑘). The measured value 𝑏𝑘 is applied to an
exponential moving average filter and the averaged
bandwidth estimation (BWEk) is obtained.

 𝐵𝑊𝐸𝑘 = 0.9 × 𝐵𝑊𝐸𝑘−1 + 0.1 × 𝑏𝑘 (11)

When three duplicate ACKs are received, cwnd is set to the
value of 𝐵𝑊𝐸 × 𝑅𝑇𝑇𝑚𝑖𝑛/𝑀𝑆𝑆. That is, cwnd is decreased
to a specific value not using a multiplicative decrease

parameter. From those definitions, the expectation of cwnd
will be 0 or 1, which is the same with TCP Reno. The

expectation of  will be as in (12).

 1 −
𝐵𝑊𝐸×𝑅𝑇𝑇𝑚𝑖𝑛

𝑀𝑆𝑆×𝑐𝑤𝑛𝑑𝑚𝑎𝑥
 (12)

Here, cwndmax is the value of cwnd just before the last loss
detection.

Figure 5 shows experimental results for TCP Westwood+.

In the cwnd vs. cwnd graph, cwnd takes 1 and 0, and its
ratio is 1:1. This is the same with TCP Reno and conforms

to the expectation. On the other hand, in the  vs. time graph,

 takes various values between 0.2 and 0.5. Basically, 
itself has no meaning in this case, and in this sense the
results conform to the expectation.

G. Applying to TCP Vegas

TCP Vegas estimates the bottleneck buffer size using the
current values of cwnd and RTT, and the minimal RTT for
the TCP connection, according to (13).

 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑤𝑛𝑑 ×
𝑅𝑇𝑇− 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇
 

At every RTT interval, Vegas uses this BufferSize to
control cwnd in the congestion avoidance phase in the
following way.

 ⊿𝑐𝑤𝑛𝑑 = {

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

 0 (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 

Here, A = 2 and B = 4 (in unit of segment) are used in the
Linux operating system. The decrease parameter is 𝛽 = 0.5.

Figure 6 shows the results for TCP Vegas. In the cwnd

vs. cwnd graph, cwnd is 1 while cwnd is below 40, which
corresponds to the part of increasing cwnd. After that,

around cwnd is 45, the situations that cwnd is 0, 1 and -1
are mixed. This result conforms to the expectation above. In

the  vs. time graph, 𝛽 = 0.5, which matches the expectation.

Figure 5. Experimental results for TCP Westwood+ (using WLAN).

Figure 6. Experimental results for TCP Vegas (using WLAN).

139Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

H. Applying to TCP Veno

TCP Veno (Vegas and ReNO) uses the BufferSize in (13)
to adjust the growth of cwnd in the congestion avoidance
phase as follows. If BufferSize > B (B is the Vegas
parameter B), cwnd grows by 1/cwnd for every other new
ACK segment, and otherwise, it grows in the same manner
with TCP Reno. Therefore, if the delayed ACK is not used,

cwnd at RTT intervals will be as in (15).

 ⊿𝑐𝑤𝑛𝑑 = {
 1 𝑜𝑟 0(𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 

If the delayed ACK is used, ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 even if

𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵. But in this case, the ratio of cwnd being
1 and 0 is different for BufferSize. It will be 1:3 for
BufferSize >B, and 1:1 for 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵 . The
multiplicative decrease parameter is defined as in (16).

 𝛽 = {
0.5 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

0.2 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 (16)

Figure 7 shows experimental results for TCP Veno. In

the cwnd vs. cwnd graph, cwnd takes 1 and 0, but its ratio

is 1:1. On the other hand, the  vs. time graph shows that
𝛽 = 0.2. These results are consistent with the expectation
when BufferSize is less than and equal to B.

I. Applying to TCP Illinois

TCP Illinois changes the increase parameter, a(Q), and
the decrease parameter, b(Q), of cwnd, which are similar
with those of HS TCP, according to the queuing delay, Q.
The queuing delay is measured by the increase of RTT from
the minimum RTT for a TCP connection. In the Linux
operating system, a(Q) changes from 0.1 to 10 in unit of
segment. b(Q) changes from 0.125 to 0.5. Those values are

updated once per every RTT. In the expectation, cwnd will

be defined by
1

2
𝑎(𝑄) ≤ ⊿𝑐𝑤𝑛𝑑 ≤ 𝑎(𝑄) and  will be b(Q).

Figure 8 shows experimental results for TCP Illinois. In

the cwnd vs. cwnd graph, cwnd increases from 1 to 6 and
then decreases to 1 again. This will reflect the delay in the

communication. The  vs. time graph,  has the values
between 0.2 and 0.6. These conform to the expectations.

V. CONCLUSIONS

This paper presented that the TCP congestion control
algorithms can be characterized from only passively
collected packet traces, by specifying the cwnd growth

function as cwnd vs. cwnd, and the multiplicative decrease
parameter. We applied our scheme to Reno/NewReno, HS
TCP, CUBIC, Hamilton, Westwood+, Vegas, Veno and
Illinois, and indicated that individual algorithms show
characteristics which can identify the individuals from others.
Our future works include identifying congestion control
algorithms automatically and inferring from packet traces
which contain only one way TCP packet traces.

REFERENCES

[1] V. Javobson, “Congestion Avoidance and Control,” ACM
SIGCOMM Comp. Commun. Review, vol. 18, no. 4, Aug.
1988, pp. 314-329.

[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” IETF RFC
3728, April 2004.

[3] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-
to-Host Congestion Control for TCP,” IEEE Commun.
Surveys & Tutorials, vol. 12, no. 3, 2010, pp. 304-342.

[4] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”
IETF RFC 3649, Dec. 2003.

[5] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 5, July 2008, pp. 64-74.

[6] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and
long distance networks,” Proc. Int. Workshop on PFLDnet,
Feb. 2004, pp. 1-16.

[7] L. Grieco and S. Mascolo, “Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP
congestion control,” ACM Computer Communication Review,
vol. 34, no. 2, April 2004, pp. 25-38.

Figure 7. Experimental results for TCP Veno (using Ethernet link).

Figure 8. Experimental results for TCP Illinois (using WLAN)

140Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

[8] L. Brakmo and L. Perterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE J.
Selected Areas in Commun., vol. 13, no. 8, Oct. 1995, pp.
1465-1480.

[9] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for
Transmission Over Wireless Access Networks,” IEEE J. Sel.
Areas in Commun., vol. 21, no. 2, Feb. 2003, pp. 216-228.

[10] S. Liu, T. Bassar, and R. Srikant, “TCP-Illinois: A loss and
delay-based congestion control algorithm for high-speed
networks,” Proc. VALUETOOLS ’06, Oct. 2006, pp. 1-13.

[11] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM Comp. Commun. Review, vol. 27,
no. 4, Oct. 1997, pp.167-179.

[12] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP Connection Characteristics Through Passive

Measurements,” Proc. INFOCOM 2004, March 2004, pp.
1582-1592.

[13] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP
Versions Based on Cluster Analysis,” Proc. ICCCN 2009,
Aug. 2009, pp. 1-6.

[14] F, Qian, A. Gerber, and Z. Mao, “TCP Revisited: A Fresh
Look at TCP in the Wild,” Proc. IMC ’09, Nov. 2009, pp. 76-
89.

[15] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP
Congestion Avoidance Algorithm Identification,” Proc.
ICDCS ’11, June 2011, pp. 310-321.

[16] T. Kato, A. Oda, S. Ayukawa, C. Wu, and S. Ohzahata,
“Inferring TCP Congestion Control Algorithms by
Correlating Congestion Window Sizes and their Differences,”
Proc. IARIA ICSNC 2014, Oct. 2014, pp.42-47.

141Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

