
 CAMAW: A Clustering Algorithm for Multiple Applications in WSAN
Elton A. Costa, Luci Pirmez, Claudio M. de Farias, Flávia C. Delicato

Programa de Pós-Graduação em Informática
Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil
E-mail: {eltonalvescosta, luci.pirmez, cmicelifarias, fdelicato}@gmail.com

Abstract—This paper proposes a clustering algorithm tailored
for multiple applications in Wireless Sensor and Actuator
Networks (WSANs) called Clustering Algorithm for Multiple
Applications in a WSAN (CAMAW). CAMAW is an
application aware clustering algorithm, since besides sharing
the WSAN infrastructure with multiple applications
simultaneously, it clusters the nodes according to each
application requirements. The main benefits of using CAMAW
are: (i) it is an energy-efficiency algorithm for WSANs since it
reduces data traffic, by multiplexing data of a same monitoring
type for several applications and (ii) is a dynamic clustering
algorithm because it organizes WSAN in groups faces the
arrival and the departure of running applications at runtime.
CAMAW outperforms the traditional clustering algorithms
regarding network lifetime in all considered scenarios.

Keywords-Clustering; Application-aware; Wireless sensor
networks; multiple applications.

I. INTRODUCTION
Recent advances in micro-electromechanical systems and

wireless communication technologies have enabled the
building of low-cost and small-sized sensors nodes, which
are capable of sensing, processing and communicating
through wireless links [1]. Wireless Sensor and Actuator
Networks (WSANs) are composed of tens, hundreds or even
thousands of sensor nodes [1]. Nodes in WSANs commonly
rely on non-rechargeable batteries as their energy sources,
and the replacement of depleted batteries is not always
feasible or desirable. The data gathered by the different
sensor nodes is transmitted to one or more sink nodes, which
are connected to other networks, such as Internet. These sink
nodes have more processing power and are powered by an
unlimited energy source. Actuator nodes are able to convert
an electrical signal (a virtual command) into a physical
phenomenon (an action) as sounding alarms, switched on/off
electric appliances or closing gates.

Traditionally, WSANs were designed for a single
purpose, a single application. Specifically, each network
node was programmed to collect and process data for a
single application. This approach is known as fit-for-purpose
[2]. In the single-application approach, each new application
is bundled with a WSN at the time of deployment. This
sensor network design usually incorporates redundancy in
the sensor deployment to ensure the successful execution of
the target application and to meet the defined quality of
service (QoS) requirements. This approach is not concerned
with the reuse of software artifacts and the resource sharing.
If this same approach is used to support multiple applications

belonging to different organizations, this leads to redundant
deployments, wasting energy. Independent sensor networks
dedicated to a specific applications are not the most cost
efficient, or the most practical deployment technique under a
wide variety of conditions, for example large-scale networks
having thousands of nodes or covering large geographical
areas, such as urban areas [4]. An example can be seen in
[3], in which a WSAN is used to monitor a smart building.
Now consider that there are two users interested in the
building. The first is the building conservation board, as it
needs to make sure that the building is in conditions to
receive employees. The second is a company that has rent
the building for its operation. It is quite possible that the
conservation board has already deployed its own WSAN to
monitor the environment. In this case, the company can reuse
the existing sensor nodes during the company work period.
The sensors could monitor temperature, luminosity, humidity
and several other environmental parameters. Those sensors
could be used for different applications. A temperature
sensor can be used by air-conditioning and by fire detection
application. Without sharing those sensors there would be
two WSANs, one for each user. Virtualization [4] is a
technology that can aid in tackling this issue, as it enables the
sharing of resources/infrastructure by multiple
applications/users.

According to the authors in [5], there are two categories
of WSAN virtualization: node level and network level. In the
network level virtualization, a subset of sensor nodes
belonging to a deployed network is assigned to execute the
tasks of given application at a given time, while the other
sensor nodes remain available for other application tasks.
Such subset composes a virtual sensor network (VSN). By
considering that each subset is dedicated to an application, a
WSAN can be utilized by multiple applications concurrently,
thus realizing the (network level) virtualization. In [4],
sensor nodes form clusters to support applications that
monitor dynamic phenomena. The sensor nodes within each
cluster execute application(s) tasks, meaning a sensor node
can be part of multiple clusters. Therefore, clustering is a key
feature to provide network level virtualization and allow
sharing the network resources among multiple applications.

Clustering algorithms are responsible for organizing the
network in groups, called clusters. Clusters generally have a
cluster leader, called Cluster Head (CH), and a set of
member sensor and actuator nodes, called cluster members
(CM). The main role of a CH is to receive the data collected
by the sensors of its cluster and route it towards the sink
node using either one hop or multihop communication. Since
data communication is an energy-demanding operation and

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

the overall distance among cluster members and their
respective cluster-head is generally smaller than the distance
among these nodes and the sink, cluster members save
transmission energy thus contributing to increase the
network lifetime [6]. Cluster members can collaborate about
recent data measurements and determine how much
information should be transmitted to the sink node [1]. A
CM usually chooses which CH to associate itself through a
mechanism that uses some distance-based criteria [2][7],
such as received signal strength indicator (RSSI) and shortest
communication distance, among others. A drawback of most
existing clustering algorithms for WSAN is that they are
typically designed to meet the requirements of a single target
application. Usually, the traditional clustering algorithms
form the clusters based on the geographical position of the
nodes (defined by both GPS positioning or RSSI). Therefore,
these algorithms may include nodes in the clusters that do
not attend to the requirements of an application, since they
are unaware of them. Also, the nodes resources would not be
shared among the different applications simultaneously
running on the network, representing a waste of energy.

Several challenges arise for designing clustering
algorithms for multiple applications. Different applications
may have different target areas, different monitoring interests
(in terms of type of sensing data), and different data sensing
and data transmission rates. In the multiple applications
approach there will be several clusters, each one carrying out
the monitoring tasks of a given application. Nodes can
belong to more than one cluster simultaneously and change
among clusters over time. Those clusters must share among
them common data, avoiding repeating common tasks.

Considering the aforementioned characteristics, this
paper proposes an application aware clustering algorithm,
called Clustering Algorithm for Multiple Applications in a
WSAN (CAMAW), since it clusters nodes based on the
application’s area of interest and requirements. CAMAW
enables the resource sharing among multiple applications,
hence realizing the network-level virtualization. It allows the
sensor nodes to attend several applications from groups that
were created keeping in mind the matching of the nodes
sensing resources and the applications requirements. In other
words, CAMAW promotes a rational use of the network
resources because it first clusters the nodes strictly according
to the applications requirements, which restricts both the
interest area, as the apt set of nodes to be clustered. Second,
it enables the sharing of the network resources between
applications, given the ability of CAMAW to identify
commonalities between sensing requirements of the different
running applications as an opportunity to reduce sensing and
communication efforts. CAMAW uses both features as a
way to save energy and to prolong the network lifetime.

This paper is divided as follows: Section II reviews the
related works. Section III presents CAMAW, our proposed
clustering algorithm for multiple applications in WSNs. In
Section IV, we describe the experiments to evaluate the
proposal. Section V concludes this paper and outlines future
work.

II. RELATED WORKS
Several works have proposed WSN virtualization

approaches. The work of Khalid et al. [8] proposes a
middleware framework for network virtualization for Smart
Home and Ambient Assisted Living (SHAAL). SHAAL is
based upon the virtualization of sensor network that enables
multiple applications to run on a network with heterogeneous
nodes. In SHAAL, a single application can be distributed
over a number of clusters, where a node is capable of
participating of several clusters. Moreover, the sharing of the
infrastructure is made possible by an abstraction layer that
resides at each sensor node. The virtual manager, i.e., the
core of the middleware, has to sure that the clusters are made
dynamically according to the application requirements.
SHAAL like CAMAW organizes the WSAN dynamically
considering the arrival and departure of applications.
However, CAMAW intends to share the monitoring data
between applications with common interests on data, in order
to minimize monitoring efforts and therefore saving energy.

Another work, SenShare [2] attempts to address the
technical challenges arise from the network level by
constructing overlay sensor networks which are not only
responsible for providing the most suitable members to
perform tasks from applications, but also isolating the
network traffic of a target application from the network
traffic generated by other applications or the supportive
mechanisms used to maintain the network overlay. For
achieving the goal of traffic isolation, SenShare extends each
application packet at the runtime with a 6 bytes long
application routing header, but the entire network message is
still formatted under the IEEE 802.15.4 standard. Since the
sensor nodes of a cluster can be located in anywhere within
the network, the nodes with allocated tasks and physical
neighbors that can communicate with single hop messages
are then formed in a cluster. This generally results in a
number of clusters that are isolated from each other. For
constructing a WSN from these clusters as a single
connected application-specific network, virtual links between
the clusters need to be established with the help of nodes that
are not performing tasks from the target application. Virtual
links between clusters are incrementally generated by three
consecutive steps, where 1) identify the nodes that are on the
edges of a connected node cluster, 2) discover optimum
paths from the nodes selected in the previous step that
connect the local cluster to other clusters, and 3) ensure all
the clusters are connected together and can access the
network’s sink. In SenShare, several instances of the same
RSSF could run in isolated, one per application, while in
CAMAW all applications run in a single instance, which
enables to find and eliminate redundancies in sensing and
communication, according to the common applications
requirements.

The work of Caldas et al. [9] proposes S-LEACH, an
application aware cluster-based routing algorithm for shared
sensor networks because is designed to deal with several
applications simultaneously sharing the same infrastructure
of wireless sensor network. Therefore, in S-LEACH the
clusters formation is created in order to route the data for

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

multiple applications by transmitting these data once.
Besides, by considering a context of shared applications in a
common sensors infrastructure, the CH nodes of S-LEACH
use data fusion algorithms designed for Shared Sensor
Networks [10] instead of traditional fusion techniques. In S-
LEACH, the clustering process is unaware of the
applications, which means that it first organizes the whole
WSAN in clusters and, only then, takes notice of the
applications in order to promote the sharing of the collected
data. While CAMAW only organizes clusters according to
the applications requirements as a way to restrict the
application interest area and also minimize the clustering,
monitoring and transmission efforts. It also helps to avoid the
clustering of nodes that are unnecessary.

Finally, the authors in [11] present a clustering algorithm
called self-configurable clustering (SCCH). SCCH firstly
clusters the sensor nodes and selects the CHs (cluster heads).
To define CHs a fuzzy system is used and local information
of each sensor node is considered. The output of the fuzzy
system is a value representing the eligibility of sensor nodes
to be CHs. Then, nodes in the network compare their
eligibilities against others’. A node with the maximum
eligibility value will introduce itself as a CH and the rest of
the nodes as backup CHs (BCHs). As a result, the CMs
(cluster members) can ensure that there is always a BCH for
their CHs. Therefore; in case of CH failure the CMs can
replace the BCH with the permanent CH failure. CAMAW is
different from SCCH because: (i) it is designed for clustering
multiple applications while SCCH is for WSANs; (ii)
CAMAW is an application-aware while SCCH is concerned
about the nodes location in the monitored area.

III. CAMAW
CAMAW is a clustering algorithm executed periodically

in all nodes of a WSAN. There is one cluster (and its
respective CH) for each application. Each period of
execution is a cycle. The cycle begins by synchronizing all
nodes in the WSAN, for this procedure we may use a well-
know synchronization algorithm such as the one presented in
[12]. Then, the nodes wait for messages coming from the
Sink Node. If the message type is for creating a new
application, CAMAW is responsible for clustering the nodes
for such application according to node capacities and
application requirements. Otherwise, if the message is for
terminating an application, two cases are possible: first, if the
application is the only application in the cluster, the node
should maintain the cluster formation but stop all monitoring
activities; second, if there are other applications in the
network, the nodes shall free the resources used by this
application while maintaining the nodes working.

CAMAW is only concerned about the clusters formation.
Other procedures such as data collection and data fusion are
out of scope of our work.

A. Data Structures
The network is composed of a set V of sensor nodes vi

V, where V = {v1,v2, ..., vn} and of a set of applications aj
A, where A= {a1,a2, ..., am}. A node may perform monitoring
tasks for 0 to m applications simultaneously. During the

algorithm execution there are two possible states for the
applications in the network: Active or Inactive. An
application is active if there are sensor nodes monitoring for
this application. An application is inactive if there is no
cluster in the networking performing monitoring tasks in its
behalf.

The data structures used by CAMAW (stored in every
node) are NodeCapabilities and AppRequirements.
NodeCapabilities stores the NodeID (a unique node
identifier, such as the node MAC address), node’s
capabilities regarding types of monitoring interfaces (TpMnt)
and rate in use (TxUse), a list of all physical neighbors and
the node’s residual energy. AppRequirements stores the
Application identifiers (AppID) of the applications in active
state supported by the sensor node. Besides, for each
application AppRequirements also stores the monitoring
interests expressed in terms of: time that the application can
remain running on the network, i.e., the duration of the
application (TDur); the monitoring requirements (sensing
unit (TpMnt) and Rate (TxApp)), the node’s role (CM or CH)
for this application and the ID of the CH. It also stores a list
of all NodeIDs neighboring nodes able to monitor for this
application (NeighborSet). Additionally, for each
neighboring nodes this structure stores an utility value that
informs how promising a node is in order to become CH for
a given application. This value is calculated by the function
W described in D.2.a. This structure also stores the
geographical location (POS), which indicates the position of
the center of the area of interest and its radius (x, y, r).
Finally, the data structure also stores Aptitude, the
information if the node is apt to monitor for a given
application (0 = not apt and 1 = apt). A node is considered
apt if this node (i) has one or more sensing units that are of
interest for the application and (ii) is located at the
application area of interest. We introduce an availability
function that indicates whether a sensor can provide the
required service at the specified area. The function is shown
below.
 (1)

Where t is the sensing unit that an application requires, x

and y are the geographical location for the monitoring event
and I is the Sensor ID.

B. CAMAW Procedure
In the following subsections we will provide a detailed

explanation of our algorithm. It encompasses three phases:
(i) Setup (Section C) is responsible for configuring the
algorithm initial parameters. (ii) Application Arrival
(Section D) is responsible for clustering the nodes according
to node capacities and application monitoring requirements
and (iii) Application departure (Section E) is responsible for
reorganizing the network in the event of an application end.
The Pseudo-code of CAMAW can be seen in Figure 1:

∈
∈

⎩
⎨
⎧

=
eunavailabl issensor a if ,0

available issensor a if ,1
),,,(iyxtA

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Input: Applications that are deployed on the Network
(AppRequirements), NodeCapabilities
Output: Clusters by application
1. # SETUP PHASE
2. Fill NodeCapabilities
3. For each new Round
4. Execute a synchronization algorithm
5. if it is not the first round
6. for each application j
7. ROLE_SELECTION_PROCEDURE()
8. ASSOCIATION_PROCEDURE()
9. Wait for messages
10. If message = BS_NEW_APP
11. For each Application Ai in A
12. APPLICATION ARRIVAL PHASE ()
13. Else if message = BS_END_APP_ or If (node role = CH

and tDur expired)
14. APPLICATION DEPARTURE PHASE ()

Figure 1. CAMAW cluster formation procedure

C. Setup Phase
This phase is responsible for configuring the nodes and

inserting values to data structures that will be necessary in
other phases. During the Setup phase it is also executed a
synchronization procedure [12]. The synchronization is
important to guarantee spatial and temporal correlation of the
data collected by the WSAN. Synchronization makes
possible to the algorithm to start data acquisition by several
nodes simultaneously. Also, in this phase, for each new
round after the first, for each application j in the WSAN, the
node will execute a Role Selection procedure (described in
Section III.D.b) for rotating the nodes role. This is used to
avoid the energy depletion of the CHs.

D. Application Arrival
 This phase is responsible for grouping the nodes into

clusters in accordance with the capabilities of sensor nodes
and the monitoring requirements of the new application.
This phase is subdivided in the following three procedures:
(i) Verify the Aptitude, (ii) Role Selection, (iii) Association.
In the Verify the Aptitude procedure the node checks if it is
apt to monitor for the new application. In the Role Selection
procedure, each apt node decides its role for the new
Application: (i) Cluster Head (CH) or (ii) Cluster Member
(CM). In the Association procedure, each node is
responsible for associating with its respective CH (if the
node role is CM) or to wait for the CM to send association
requests (if the node role is CH).

The Pseudo-code of this phase can be seen in Figure 2:

Input: Applications that are deployed on the WSAN
(AppRequirements), NodeCapabilities
Output: nodes with CH Role CH_ID = NodeID). 	

1. #VERIFY APTITUDE PROCEDURE
2. Verify if node is apt using (1)
3. # ROLE SELECTION PROCEDURE
4. If node is apt AND with no role
5. Set node rating through (2)
6. Send CAPABILITIES_EXCHANGE msgs to

neighborhood
7. Wait for CAPABILITIES_EXCHANGE msgs from

neighborhood during a fraction of the setup phase slot time
of a round

8. Stores neighbor capabilities from incoming msgs on
node’s AppRequirements.NeighborSet data structure

9. For each neighbor node <i> on AppRequirements.
NeighborSet

10. If betterRating <= i rating
11. Set betterRating to i rating
12. If nodeRating in AppRequirements.NeighborSet >

betterRating
13. Send NEW_COLLECTOR for all neighboring

nodes
14. Else
15. Wait for all NEW_COLLECTOR during a fraction

of the setup phase slot time of a round
16. Update CH’s candidate capabilities from incoming

msgs on AppRequirements.NeighborSet
17. If node already has a CH role
18. For each monitor node i in

AppRequirements.NeighborSet
19. For each TpMnt of i in AppRequirements
20. For each TpMnt of each new AppID in

AppRequirements
21. If TpMnt of new AppID in

AppRequirements matches i’s TpMnt in
AppRequirements.NeighborSet

22. Add i on newClusterStructure structure
23. If TpMnt of AppID in AppRequirements do

not exists in AppRequirements.AppID
24. Store TpMnt of AppID in

AppRequirements.AppID
25. Else
26. If AppRequirements .TxApp of AppID >

i’s AppRequiremnts.TxApp
27. Update i’sAppRequirements.TxApp 	 with

AppID.TxApp
28. If newNeighborSet is equal to Neighbors in

AppRequirements
 Send CH_END_CLUSTER to newNeighborSet
nodes
29. Send CH_NEW_APP to newNeighborSet nodes
30. Else
31. Send UPDATE_SENSORING with new

NeighborSet in AppRequirements settings to all nodes in

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

AppRequirements
32. # ASSOCIATION PROCEDURE
33. If node role = CM
34. Choose the CH with higher RSSI on AppRequirements
35. Send the CM_JOIN to the chosen CH
36. Update your CH_ID on AppRequirements with chosen

CH’s nodeID.
37. Else if node role = CH
38. Wait for all CM_JOIN from neighboring nodes.
39. With the data inside incoming msgs from neighboring

nodes, update the node’s entry on NeighborSet as monitor
node.

40. Send UPDATE_SENSORING to these nodes present in
AppRequirements

Figure 2. Application Arrival Phase

1) Verify Aptitude Procedure
The objective of this procedure is to determine if the

sensor nodes are able to meet the monitoring requirements
of the new application. In this procedure, each sensor node
waits to receive the BS_NEW_APP message from the sink
node. The BS_NEW_APP message contains the monitoring
parameters that each new application has. This message has
the list of sensing unities (AppRequirements.TpMnt)
demanded by the applications, its respective rates
(AppRequirements.TxApp), its localization
(AppRequirements.Pos) and the duration
(AppRequirements.TDur). According to this information,
the data structure AppRequirements is updated. Following,
for each new application, the sensor node verifies if it has
one or more sensing unit that can support one or more
monitoring requirement of this new application. After
verifying if it is able to support the requirements of the new
application, the sensor node updates its data structure
AppRequirements.Aptitude with application identifier
(AppRequirements.AppID) and the monitoring requirement
of the new application (AppRequirements.TpMnt). If the
application identifier (AppRequirements.AppID) was
included in AppRequirements.Aptitude, the next procedure
(Role Selection) starts. Otherwise, this sensor node remains
in a low duty cycle (idle) in order to save its remaining
energy.

2) Role Selection Procedure
The objective of this procedure is to determine the role

of each sensor node i for the new applications j according to
a utility function Wi. First, we present the utility function
used in this work to inform "how promising" is a given
sensor node i in order to become the Cluster Head for the
new application j. Next, the role selection procedure itself is
described.

a) Utility Function
Wij is calculated to measure the utility of a given i sensor

node for the new application j as a function of: (i) the
residual energy level of sensor node i and (ii) the percentage

of neighboring nodes within the radio range of sensor node i.
The utility function W(i,j) is presented in (1):

 W(i,j) = Xij+Yi (2)

Where Xi,j indicates the percentage of neighboring nodes for
the node i according to the new application j, Yi informs the
residual energy of the node i. Xi,j is defined in (3) as the ratio
between the number of neighbors of node i for the new
application j divided by the total amount of network nodes
represented by N. The residual energy is defined in (4) as the
current amount of energy of the sensor node i divided by the
maximum total energy of that node.

 Xi,j= "#$%&'()*𝑖𝑗	
"

 (3)

 Yi= .𝑖	/0123456	
.𝑖	78756

 (4)

b) Role Selection
The objective of this procedure is to select the

appropriate role of the node i. In this procedure (see Figure
2), the apt sensor node i calculates its utility through the
function Wij (2). After obtaining the utility value of the
sensor node i for the application j, this information is stored
at the structure AppRequirements. On following the sensor
node i sends to its neighbors the
CAPABILITIES_EXCHANGE message (line 7) containing
its utility for the application j and its capabilities
(NodeCapabilities).

The sensor node i waits to receive the
CAPABILITIES_EXCHANGE message from its neighbors
regarding the arrival of a new application j. For each
CAPABILITIES_EXCHANGE message received and for
each application j, the sensor node i updates its
AppRequirements structure with the identifiers of its
neighboring nodes (NodeCapabilities.NodeID), and their
respective utilities (line 8). Moreover, it is also updated the
types of sensing units (TpMnt) that are present in each
neighboring node.

With the utility information of each neighboring node,
each sensor node i now is able to compare its utility value in
relation to its neighbors. For each application j, the sensor
node i that contains the highest utility value will send the
NEW_COLLECTOR message to its neighbors in order to
inform that it is the new CH for application j on that region
(lines 9-13). The NEW_COLLECTOR message contains the
CH identifier (NodeCapabilities.NodeID). For each
application j, the neighbors that received the
NEW_COLLECTOR message will become CMs (line 15)
for application j.

The node i verifies in AppRequirements if it is a CH for
another application, it will verify if the set of CMs in
AppRequirements.NeighborSet contains only nodes that are
apt to monitor for the new application (line 6). If all the CMs

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

in AppRequirements.NeighborSet are apt for monitoring for
the new application, then CH updates its
AppRequirements.TxApp with the more demanding sensing
rate (AppRequirements.TxApp) and it includes the AppID in
AppRequirments (line 26-27). Else if only some nodes in
AppRequirements.NeighborSet are apt for monitoring for
application j, the node i will send a CH_END_CLUSTER
message (line 28) for those nodes. Then node i will send
CH_NEW_APP (line 29) for those nodes to perform a new
Role Selection and Association procedures. The CH of this
new Cluster will have the NodeCapabilities.NodeID of node
i in its AppRequirements, meaning that this new CH will
forward its messages to the node i (lines 31-42) instead of
the Sink node.

c) Association Procedure
For each new application j, the sensor node i verifies its

role. If the node role i is CM, this node chooses one CH node
to be associated with among the CHs nodes of a given region
according to the Signal Strength, i.e., the one with the
highest RSSI (Received Signal Strength Indicator) value.
After choosing the CH node, the CM node sends a
JOIN_CLUSTER message to it. This message contains the
node’s identifier (NodeCapabilities.NodeID) and the
identifier of the new application j. Next, the CM node i waits
to receive the UPDATE_SENSORING message from its CH
node informing that the node can start to collect data for the
new application j. This message contains the new
application’s identifier, the monitoring types
(AppRequirements.TpMnt) and its respective rates
(AppRequirements.TxApp). With this information about the
new application j, the CM node i updates the fields of
NodeCapabilities.TxUse. If the node role i is CH, this node
waits to receive the CM_JOIN message from CM nodes that
will be members of the new cluster to the new application j.
After receiving each CM_JOIN message, the CH node i
updates in AppRequirements the entries referring to each CM
nodes responsible for sending the CM_JOIN messages.
Following, the CH node i sends a UPDATE_SENSORING
message for its CMs nodes.

E. Application departure
In this procedure, each sensor node i waits to receive the

BS_END_APP message from the sink node or the
application duration time defined (AppRequirements.TDur
equals to zero) has finished. The pseudo-code of this phase
can be seen in Figure 3.

Input: All Nodes with role defined
Output: free nodes in sleep mode

1. # END APPLICATION# END APPLICATION
2. If the node is a CM

 Wait for GO_TO_SLEEP coming from the CH
 Else:
BS_END_APP MSG ARRIVAL

 Wait for BS_END_APP coming from the BS

3. For each MsgAppID in BS_END_APP msg
4. For each AppID in AppRequirements
5. If MsgAppID is equal to AppRequirements.AppID
6. remove AppRequirements.AppID
7. Else if MaxRate is null OR (MaxRate.TpMnt =

AppID.TpMnt AND MaxRate.TxApp < AppID.TxApp)
8. MaxRate= AppID
9. If AppRequirements is null
10. set all NodeCapabilities.TxUse = 0
11. Else
12. For each TpMnt in NodeCapabilities
13. For each TpMnt in MaxRate
14. If NodeCapabilities.TpMnt = MaxRate .TpMnt
15. NodeCapabilities.TxUse = MaxRate .TxApp

 # APPLICATION DURATION EXPIRATION
16. For each AppID in AppRequirements
17. For each TpDur in AppRequirements.AppID
18. If TpDur expirates
19. remove AppRequirements.AppID
20. Else if MaxRate is null OR (MaxRate.TpMnt =

AppID.TpMnt AND MaxRate.TxApp < AppID.TxApp)
21. MaxRate= AppID
22. If AppRequirements is null
23. set all NodeCapabilities.TxUse = 0
24. removeCluster = true
25. Else
26. For each TpMnt in NodeCapabilities
27. For each TpMnt in MaxRate
28. If NodeCapabilities.TpMnt = MaxRate .TpMnt
29. NodeCapabilities.TxUse = MaxRate .TxApp

NodeCapabilities.TxUse = MaxRate .TxApp

Figure 3. Application Departure Phase

For each application j, the sensor node i verifies its role.
If the role of the node i is CM, it waits to receive the
GO_TO_SLEEP message from the CH node (line 2). This
message will stop the monitoring tasks of an application
(Nodecapabilities.TxUse will receive 0). This message
contains the AppRequirements.AppID of the applications
leaving the WSAN. If the node monitors for a single
application, it turns to idle. Else, the node stops monitoring
for this application but it keeps monitoring for the other
applications.

If the role of the node i is CH there are two possibilities.
First, if the node is CH for a single application (line 9)
(there is only one AppID in AppRequirements), the
application is not ended to avoid a new clustering
procedure. In this case, it is preserved the cluster structure
but with no collecting of tasks or data transmission (setting
NodeCapabilities.TxUse to 0) (line 14-15). In addition, the
nodes enter a state of low duty cycle.

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Else, if the node is CH for more than one application, it
searches for another application (on
AppRequirements.ApppID) that monitors for the same
monitoring type (AppRequirements.TpMnt) (line 13) that the
departing application monitors.

If there is no other application that monitors for the same
monitoring type, node i sends UPDATE_SENSORING
message (containing AppRequirements.AppID) to all CMs
in this application’s cluster.

Else, if there is another application monitoring for the
same monitoring type (AppRequirements.TpMnt), there are
two possibilities. First, if the application that is leaving the
cluster had the most demanding monitoring rate
(AppRequirements.TxApp), then the node i will update
monitoring rate (AppRequirements.TxApp) for this
monitoring interface (AppRequirements.TpMnt) (line 15)
using the transmission rate of the application that remains
on the cluster. Then it sends a UPDATE_SENSORING
(containing the AppRequirements.AppID,
AppRequirements.TxApp, AppRequirments.TpMnt) message
and sent for all CMs. Second, if the application that is
leaving the cluster has a less demanding monitoring rate
(AppRequirments.TxApp) than the departing application,
there is no need to update the monitoring rate
(AppRequirments.TxApp). In this case, the node i sends a
GO_TO_SLEEP message containing the
AppRequirements.AppID of the departing application to all
CMs. The CMs will then stop monitoring for it.

IV. EXPERIMENTS
This section describes the experiments conducted to assess
CAMAW in terms of network lifetime, energy consumption
balance and the node memory used.

A. Experimental Settings
The experiments were conducted in the SUN SPOT

platform [13], a sensor platform particularly suitable for
rapid prototyping of WSANs applications. The SUN SPOT
SDK environment includes Solarium that contains a SPOT
emulator useful for experimenting software and/or to create
scenarios with a large number of nodes whenever the real
hardware is not available. The proposed algorithm was
deployed on the SUN SPOT platform rev8 hardware [13].
As mentioned in Section 3, the data collection and data
fusion procedures are not CAMAW’s responsibility.
Although, we implemented those procedures in order to
better evaluate the energy consumption of a WSAN using
CAMAW. In our experiments, we have used a maximum of
10 applications (1, 2, 3, 5, and 10 applications)
simultaneously running in the network. For each
application, we assigned two randomly sensing units. Our
implementation considered 1 to 5 different sensing units
(accelerometers, temperature, light, humidity and presence).
For each assigned sensing unit, we randomly assigned
sensing rates varying from 1 to 5 seconds, using the
procedures explained in [14]. It is discussed in the literature
that random monitoring tasks may not always represent real

applications; however, the diversity they provide is
sufficient for this group of experiments as explained in [14].
The sensing units used in our applications represent the
SUN SPOT embedded sensors.

All experiments were performed in a 100m x 100m
field. The network sensor nodes are in the Cartesian plane
defined in the area {(0,0), (100,0), (0,100), (100,100)}. The
sink is located far from any sensor node, at coordinates
(200,100). All network sensor nodes starts with 0.5 joules as
initial energy within its batteries. We have randomly
distributed 51 nodes in the network (50 nodes and 1 sink
node). We have used the energy model presented in [6],
which is the first order radio model. In this model, a radio
dissipates 𝐸#:#; = 50	nJ/bit to run the transmitter or receiver
circuitry and 𝜖?@A = 100 pJ/bit/m² for the transmitter
amplifier. The equations used to calculate transmission costs
and receiving costs for a k-bit message and a distance d are:

 𝐸C)?D*@$**$(D 𝑘, 𝑑 = 𝐸#:#; ∗ 𝑘 + 𝜀 ∗ 𝑘 ∗ 𝑑² (4)

 𝐸)#;#AC$(D	 𝑘 = 𝐸#:#; ∗ 𝑘 (5)

Sending and Receiving messages are costly operations;
therefore, the usage of these operations should be minimal.
Also, it is assumed that the radio channel is symmetric so
that the energy required to transmit a message from node i to
node j is the same as energy required to transmit a message
from node j to node i.

B. Metrics
The metrics used for assessing the impact of CAMAW in

a WSAN are: (i) the lifetime of the network, (ii) the standard
deviation in terms of consumed energy by the nodes at the
end of experiments (iii) the memory consumption. In this
paper, we adopted the same definition of network lifetime
used in [15], which is the time elapsed until the first node in
the WSAN is completely depleted of its energy. We have
used the Energy Standard Deviation (ESD) as metric for
showing CAMAW’s energy consumption balance in a
WSAN. In this case, all the WSAN sensor nodes form the
statistical population. The more the value of the ESD
approaches zero, the better the energy consumption balance
among nodes is. The memory consumption is defined as the
amount of memory used by CAMAW installed in the nodes.

C. Experiments results
The main goal of the first set of experiments is to assess

how long the WSANs last using the LEACH, CAMAW and
SCCH [11] algorithms by varying the number of
applications (1, 2, 3, 5 and 10) simultaneously running on
WSAN. Figure 4 shows the network lifetime using LEACH,
CAMAW and SCCH and the lifetime gained of the network
by CAMAW against LEACH and SCCH for scenarios with
1,2,3,5 and 10 currently running applications.

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Figure 4. Evaluating System Lifetime

The results of this experiment (see Figure 4) show that
as increases the number of applications simultaneously
running in the WSANs, in both algorithms the network
lifetime values are reduced. From Figure 4, it is possible to
observe that by increasing the number of applications
simultaneously running in the WSAN, there is naturally an
increase in the possibility of finding common sensing unit
among them. CAMAW algorithms well utilizes this idea to
reduce energy consumption of nodes by executing the
collected common data only once and sharing the result
among all applications so as to further improve the use of
the limited node resources. Beside that, instead of
transmitting the same data several times (each one for one
of the applications), as SCCH [11] would do, CAMAW
transmits this data only once for the several sharing
applications. The existence of common sensing units is not
properly addressed by SCCH and then it will consume
system energy in a less efficient way by repeatedly
performing the data collection. At the end of the
experiments, the remaining energy of nodes was collected to
calculate the standard deviation about energy
consumption.

TABLE I. STANDARD DEVIATION OF THE ENERGY
CONSUMPTION OF THE NODES

CAMAW SCCH

LEACH

1 Application
1.5% 3.6%

8.5%

2 Applications
2.3%

4.1% 8.9%

3 Applications 2.9%
4.9%

11.2%

5 Applications
3.8% 5.6%

14.3%

10 Applications
5.4% 9.1%

15.7%	

The results shown in table 1 indicate that with fewer
applications only a small part of the sensing field was
clustered resulting in a low standard deviation. As the
number of network applications has increased and new areas

in the network became clustered, it results in a higher
standard deviation. Considering the memory consumption
in bytes for the sensor, we noticed that the memory
consumption of CAMAW (2876 bytes) was 37.4% higher
than LEACH (1841 bytes). Although CAMAW consumes
more memory than LEACH and SCCH, CAMAW extends
network lifetime.

D. Comparison between simulated and real nodes
In this section, the same scenario simulated using Solarium
was implemented on a real sensor WSAN platform. Our
goal was to confirm that the results obtained from
simulations actually reproduce the results that would be
returned if all experiments were performed on a real WSAN
platform. This real experiment was performed in a
controlled environment (our research laboratory at UFRJ).
In this case, the nodes were kept stationary and disposed on
the floor. The experiment on simulated nodes consumed less
energy than the real experiment, since there was no
interference on the simulated environment. In order to
compare the results of real and simulated experiments, we
have used 0,5 J as initial node energy in the experiments.
The maximum difference in our tests was 2% between real
and simulated nodes.

V. CONCLUSIONS
In this paper, we have presented an application aware

clustering algorithm for multiple networks in a WSAN called
CAMAW. The results of our experiments show that
CAMAW increased the network lifetime of the experimented
scenarios. These results were achieved by sharing the
monitoring interfaces with several applications, avoiding
unnecessary data collections and transmissions. As future
work in this context of network level virtualization, we
intend to develop the multi-sink capability. We expect to
improve the connectivity and efficiency, since it will enable
CAMAW both to choose deliver the data through the less
costly sink node, thus spending less energy, and/or to work
with more sinks at same time. Also, this will enable
CAMAW to interconnect among VSNs.

ACKNOWLEDGMENT
This work is partly supported by the Brazilian Funding

Agencies CNPq and FAPERJ under grants numbers FAPERJ
- E-26/110.468/2012; CNPq - 307378/2014-4; CNPq
304941/2012-3; CNPq - 473851/2012-1; INMETRO -
PRONAMETRO; CNPq 477223/2012.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

“Wireless sensor networks: a survey,” Comput. Networks, vol. 38,
no. 4, 2002, pp. 393–422.

[2] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare:
Transforming sensor networks into multi-application sensing
infrastructures,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7158 LNCS,
2012, pp. 65–81.

[3] Farias, C. et al. “A control and decision system for smart buildings
using wireless sensor and actuator networks”. Transactions on

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Emerging Telecommunications Technologies, 25(1), 2014, pp. 120-
135.

[4] A. P., Jayasumana, Q., Han, and T. H. Illangasekare, “Virtual Sensor
Networks a Resource Efficient Approach for Concurrent
Applications,” Proc. 4th Int’l. Conf. Info. Tech., 2007, Las Vegas,
NV, 2007, pp. 111–15.

[5] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, P. Polakos,
A. Dhabi, and U. A. Emirates, “Wireless Sensor Network
Virtualization : Early Architecture and Research,” no. June, 2015, pp.
23–25.

[6] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocol for Wireless Microsensor
Networks,” Syst. Sci. 2000. Proc. 33rd Annu. Hawaii Int. Conf.,
2000, p. 10.

[7] K. a. Bispo, N. S. Rosa, and P. R. F. Cunha, “A semantic solution for
saving energy in wireless sensor networks,” Proc. - IEEE Symp.
Comput. Commun., 2012, pp. 492–499.

[8] Z. Khalid, N. Fisal, H. Safdar, R. Ullah, and W. Maqbool,
“Middleware Framework for Network Virtualization in SHAAL,”
IEEE Symp. Comput. Ind. Appl., 2014, pp. 175–179.

[9] G. Caldas, C. M. de Farias, L. Pirmez and F. C. Delicato , “S-
LEACH: A LEACH extension for Shared Sensor Networks”,

Wireless Networks (ICWN), 2015 International Conference on, July
2015.

[10] C. Farias. et al., "Multisensor data fusion in Shared Sensor and
Actuator Networks," Information Fusion (FUSION), 2014 17th
International Conference on , 2014, pp.1-8.

[11] D. Izadi, J. Abawajy, and S. Ghanavati, "An Alternative Clustering
Scheme in WSN," Sensors Journal, IEEE , vol.15, no.7, 2015,
pp.4148-4155.

[12] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P.
Levis, “Collection tree protocol”. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems,SenSys
,SenSys '09, Berkeley, USA, 2009, pp. 1–14.

[13] E. Wilde, D. Guinard and V. Trifa. Architecting a Mashable Open
World Wide Web of Things, Institute for Pervasive Computing, ETH
Zürich, Zürich, Switzerland, No. 663, 2010.

[14] V. Raghunathan, C. Schurgers, S. P. S. Park, and M. B. Srivastava,
“Energy-aware wireless microsensor networks,” IEEE Signal Process.
Mag., vol. 19, no. 2, , 2002, pp. 40–50.

[15] S. Xiong, J. Li, M. Li, J. Wang and Y. Liu, "Multiple Task
Scheduling for Low-Duty-Cycled Wireless Sensor Networks, " in
INFOCOM '11, 2011, pp. 1323-1331.

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

