
 Detecting Malicious Mobile Applications in Android OS

 Tan, Sun Teck Tan, Choon Rui
 School of Computing

 National University of Singapore
 Singapore

 email: dcstanst@nus.edu.sg a0087876@u.nus.edu

Abstract— The use of smartphones has become
increasingly popular over the years due to increasing
affordability and access to countless useful applications.
The Android OS accounts for the majority of the
smartphone market share due to its open source nature.
This entices many smartphone manufactures to build
Android phones. However, its popularity has also made
Android OS an attractive target for cybercriminals who
develop malicious applications, thereby putting Android
mobile users at risk. One of the greatest challenges in
protecting mobile users is detecting malicious
application among the numerous applications installed
on the smartphone. 2,500 mobile applications have been
analysed, with 50 free and 50 paid applications taken
from each category in the Google Play Store. We observe
a distinct correlation between each application’s
category and its requested permissions, which mean
using the pattern of requested permissions. Therefore,
using the pattern of requested permissions to detect
malicious applications can be an effective method. A
filter list can be constructed by further examination on
the pattern of the requested permissions. We developed
an Android mobile application which uses these filters to
scan all the installed applications to detect the presence
malicious applications and to flag them for deletion.
Additionally, we developed a gamified to cater to non
IT-savvy users to use it in a fun and educational
manner.

Keywords- malicious applications; Android OS; Pattern
matching.

I. INTRODUCTION
Society is becoming more and more technologically

advanced with every passing year. In 2014, 1 out of 5 people
in the world possessed a smartphone [8]. The Android
Operating System accounts for 84.7% of the worldwide
smartphone market share as of the second quarter of 2014
[9]. The popularity of the Android OS makes it an attractive
target for cybercriminals. The impact of one malicious
Android application will is far reaching, putting more mobile
users at risk compared to other OSes.

There has been a 388% rise in malicious applications for
the Android market from 2011 to 2013 [7]. Such a vast
increase is due to the fact that the majority of mobile users
use Android OS, enticing cybercriminals to it. The main
Android application marketplace, Google Play, also doesn’t
enforce a strict control over submitted applications. Although
Android devices only allow the installation of signed
applications, this measure can be bypassed by simply using a

self-signed certificate [1]. Such lenient policy allows
cybercriminals to distribute their malicious applications to
the public even more easily.

There are many different types of malicious
applications. Malicious applications that masquerade as
legitimate applications are one of the more prominent mobile
threats in 2014 [6]. Here is a typical scenario in which a
malicious masquerading application is created. Firstly, the
cybercriminal downloads a legitimate application from the
Android market. Secondly, the cybercriminal reverse
engineers the legitimate application, adds a malicious
payload and requests for more permissions to facilitate the
attack. The cybercriminal may also update the version
number. Lastly, the cybercriminal will repackage the
application and publish it back to the public. When a user
installs the repackaged application thinking it is the latest
version of the legitimate application, the cybercriminal will
be able to carry out malicious attacks on the user using the
additional permissions granted. Some common attacks
include: stealing confidential data, such as SMSes and
contact lists using the “READ_SMS” and
“READ_CONTACTS” permissions respectively and stealing
money by sending SMS messages or making calls to
premium rate numbers using the “SEND_SMS” and
“CALL_PHONE” permissions respectively. The impact of
such malicious applications is very significant as it is up to
the creativity of the cybercriminals to make full use of the
list of permissions to facilitate their attacks [14].

Mobile users, especially non-IT savvy users, are falling
prey to such malicious applications due to their over reliance
on the Android market or the reputation or popularity of the
applications. Most tech experts recommend that users only
download applications from the official Android Store,
Google Play because applications from other unknown
sources are dangerous [11]. Although this advice is not
wrong, it can mislead users, particularly non-IT savvy ones,
into thinking that the applications from the official Android
Store will always be safe. There have been cases where
malicious applications were successfully published to
Android Store and Google Play [13]. Therefore users still
have to be alert when downloading applications from the
Android Store.

A good example of a reputable and popular application is
the game “Flappy Bird”. Due to its popularity, there have
been many malicious applications masquerading as the game
“Flappy Bird”. Thus, a popular application that has been
played by many users does not necessarily equate to an
absolutely safe application because there exist malicious
repackaged versions of the original application. In fact, users

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

mailto:dcstanst@nus.edu.sg

should be even more vigilant when downloading popular
applications as they tend to attract cybercriminals.

Our objective is to provide a solution to non-IT savvy
mobile users from falling prey to malicious mobile
applications that have been increasing over the past few
years. This objective was not fully met by some other
existing methods or techniques proposed by other
researchers.

For example, the approach of Cerbo et al. [19] is more
specific and narrowed down. They only analyzed SMS-
related operations done by the Java APIs. What we want to
achieve is to detect every category of malicious activities,
not just SMS-related problem, e.g. making phone calls to
premium numbers or stealing user's personal information.
Their approach is effective in detecting any malicious
activities arising from SMS-related operations. However
there is no scalability and it is outdated as DVM is used in
earlier versions of Android devices. For Android version 5.0,
an alternate runtime environment "Android Runtime (ART)"
has replaced DVM entirely. This makes their solution
obsolete. Our approach allows us to have an independent app
that will not be affected by any change in the device
hardware/software in this situation.

Lei et al. [20] used a permission-based behavioral foot
printing scheme and heuristics-based filtering scheme to
detect malicious apps. Their scheme takes into account every
app with the permissions that can have possible malicious
activity. For example, apps that require "SEND_SMS"
permission will be prohibited by their scheme. But this will
cause problem with messaging app such as WhatsApp. The
question is how to decide whether it is a legitimate app
requiring "SEND_SMS" permission. We used app's category
to handle this problem. Lei’s method is much more time-
consuming and resource intensive as they scan the
application to find how the app behaves, what APIs the app
calls and what function parameters are set by the app and so
on. Our discovery of using the app's category as part of the
detection criteria means our system is as lightweight as
possible without the need to do such intensive scans likes
their scheme in [20]

Zhou et al [21] classify the apps into high risk, medium
risk and low risk using a set of analysis modules. So they can
prioritize to put more effort on evaluating the high risk apps.
We also classify the apps into high/medium/low risk so that
hopefully the user can understand the level of impact and
potential damage the app is capable of causing. However,
their detection methodology is different from ours. They
analyze the app's code signatures and also reverse engineered
DVM bytecode. So once again, their method also becomes
obsolete. Time and resource might be of concern as they
states that it can process 118,318 total apps in less than 4
days. But will the user still be able to use his/her phone with
such program running?

The rest of the paper is organized as follow: In Section
II, we describe the current situation where the problems
occurred and the need to have an application to help the
common users. We present an analysis and propose our
methodology of solving the problem in Section III. Section

IV describes the implementation and it is followed by a brief
conclusion in Section V.

II. THE CURRENT SITUATION

 This section describes where the problem occurred and
the need to have an application to help the common users.

A. The Human Factor - User Awareness & Knowledge

The security of a system is only as strong as its weakest
link, and all too often, humans are that weakest link. Even if
a perfect solution that detects all malicious applications
exists, the end result will still be unacceptable if the user
does not correctly utilize the solution to protect oneself.
Therefore, the user’s point of view must be taken into
consideration when designing a solution. Contemporary
solutions can be too technical and user-unfriendly for use by
non-IT savvy users.

The first approach we considered was to have users
scrutinize the list of requested permissions. This requires
substantial IT knowledge and awareness for them to be able
to decide if there are unnecessary permissions requested.
Otherwise users may simply install applications even when
presented with a long list of unnecessary permissions. A
way we can help users, particularly non-IT savvy ones, is to
provide guidance. For instance, we can list permissions
commonly requested by legitimate applications. Thus, the
user will only need to do a basic comparison with the
standard.

The second approach of using an antivirus application
will be less technically demanding on the user since it will
run and identify any malicious applications masquerading as
legitimate ones. Nevertheless, due to Android OS
sandboxing feature that limits the capabilities of antivirus
applications, the user will still be required to manually
remove malicious applications identified by the antivirus
program from the device. Thus, this approach still requires a
small bit of user awareness and knowledge. However, if
rooting of device is required, there will be a huge learning
curve for non-IT savvy users. Although it is easy to root
devices nowadays with just a few button presses, rooted
devices can be attacked in many more different ways [2].
Therefore, rooting of device is recommended only for IT-
savvy users.

The third approach of having users restrict permissions
given to applications will require about the same level of IT
knowledge and awareness as the first approach. The user
will need to decide which permissions to restrict because a
permission that is legitimate in one application might not be
legitimate in another application. The same form of
assistance provided for the first approach can be used for
this approach to help non-IT savvy users. However,
modifying permissions granted to other applications on the
device will require root access for devices with Android
version 4.4.2 or newer. Once again, rooting of device is not
recommended for non-IT savvy users, as rooted devices
require greater user knowledge and awareness.

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

B. Deduction and Assumption
The project is focused on Android users, particularly

non-IT savvy users, because they are more at risk to falling
prey to malicious applications. An ideal solution is to create
a security application that detects malicious applications
based on permissions requested by applications being
installed on devices. The application should be built with
user-friendliness as a priority to help non-IT savvy users.
The application should not require a rooted device.

A possible way is to create a blacklist of potentially
dangerous permissions, such as the “SEND_SMS”
permission, which when granted allows the application to
send SMS messages to arbitrary recipients, including
premium rate numbers. When an application is detected
requesting any of the permissions in the blacklist, it will
raise an alert and label the application as dangerous.
However, there are situations where the “SEND_SMS”
permission is not dangerous. Messaging applications will
require the “SEND_SMS” permission in order to function.
We need to be able to determine when requested
permissions are legitimate and when they are malicious. In
the next section, we describe the methodology used to
answer this question.

III. ANALYSIS

 This section presents an analysis and proposes our
methodology of solving the problem.

A. Sampling of mobile applications
 In order to create a security application that detects
malicious applications based on requested permissions, we
conducted an analysis on mobile applications’ requested
permissions. This allowed us to gain a deeper understanding
of which permissions are commonly requested by
applications. There are a total of 25 categories of
applications in the Android Market, Google Play Store.
They are “Books & Reference”, “Business”, “Comics”,
“Communication”, “Education”, “Entertainment”,
“Finance”, “Games”, “Health & Fitness”, “Libraries &
Demo”, “Lifestyle”, “Media & Video”, “Medical”, “Music
& Audio”, “News & Magazines”, “Personalization”,
“Photography”, “Productivity”, “Shopping”, “Social”,
“Sports”, “Tools”, “Transportation”, “Travel & Local” and
“Weather”. Each category is split between free and paid
applications. Therefore to ensure our analysis covers all
cases, the requested permissions of 50 free and 50 paid
applications of each category were collected. In summary,
the total sample size in our study was 2,500 applications
((50+50)*25). There are 261 different permissions at the
time of writing and they are divided among 14 permission
groups, “In-app purchases”, “Device & app history”,
“Cellular data settings”, “Identity”, “Contacts/Calendar”,
“Location”, “SMS”, “Phone”, “Photo/Media/File”,

“Camera/Microphone”, “Wi-Fi connection”, “Bluetooth
connection”, “Device ID & Call info” and “Other”.

The retrieved permissions are consolidated into a table
with the respective groupings for each category as shown in
Table I. The maximum count is 50 as we considered 50
applications in each category.

As shown in Table I, the common permissions for an
application in the “Books & Reference” category are “Read
the contents of your USB storage”, “Modify or delete the
contents of your USB storage” from the “Photo/Media/File”
group and “Full network access”, “View network
connections”, “Prevent device from sleeping” the from
“Other” group.

The two requested permissions in the “Photo/ Media/
File” group allow the application to read and save data such
as books and references to the phone. “Full network access”
and “View network connections” permissions allow the
application to access the Internet to browse and retrieve
books and references. “Prevent device from sleeping”
permission prevents the device screen from dimming or
turning off due to inactivity on the screen because the user
might be reading without touching the screen for some time.
Thus, these requested permissions are reasonable and
legitimate for a “Books & Reference” application.

An application will be highly suspicious if it requests
permissions with zero counts or permissions that do not
exist in Table I. Note that the “Other” permission group
contains more than a hundred permissions. For brevity, we
omitted permissions in this category that were not requested
by any app.

After analyzing all 25 tables from their respective
categories, we concluded that the most commonly requested
permissions across all categories are “Read the contents of
your USB storage”, “Modify or delete the contents of your
USB storage” from “Photo/Media/File” group and “Full
network access”, “View network connections” from the
“Other” group. This is because most applications require
Internet access and read/write access to the device storage to
save data onto the phone.

We produced a bar graph for the data in each table by
plotting the permission count against the different permission
groups with bars representing the permissions requested by
free and paid applications. The graph gives a visual
representation that allows us to observe any difference
between free and paid applications of each category as
shown in Fig. 1. Once again, the maximum count is 50 for
each version.

From Fig. 1, we observe that the pattern of requested
permissions for free applications closely resembles the
pattern of requested permissions for paid applications.

After analyzing all 25 bar graphs from their respective
categories, we conclude that the permissions requested for
both free and paid applications from the same category
generally have the same pattern. However, we observed
some notable variations.

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

.

 TABLE I. CONSOLIDATED TABLE OF TOP 50 FREE AND PAID “BOOKS & REFERENCE” APPS

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

The “Google Play license check” permission appeared more
in paid applications than in free applications, as paid
applications need this permission to check if the user has
made any payment. Only a small number of free applications
made requests for this permission.

Free applications tend to embed advertisements as a
source of income for developers. Thus, additional

permissions are required to facilitate the usage of
advertisements in the free applications.

Paid applications developed by commercial companies
or professionals tend to better understand the concept of
permissions and thus request permissions wisely, which lead
to fewer requested permissions. A novice developer may
request redundant permissions due to uncertainty over the

Figure 1. Top 50 free and 50 paid “Books & Reference” Apps

Figure 2. Categories of permissions

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

necessity of various permissions and we observed this in
several free applications.

B. Correlation between each application’s category and
permissions

With the required data on the permissions of different

categories gathered, we can then attempt to find differences
in permissions requested by applications in different
categories. As the data collected comprises of both free and
paid applications, they will be added and used together in our
subsequent analysis. We plot permission counts against
permission groups with each line color representing a
category of permissions in Fig. 2. The maximum count is
100 because we’ve summed up counts for both free and paid
applications

It is clear that permissions in both the
“Photo/Media/File” and “Other” categories are commonly
requested for all 25 categories of applications. This result is
in line with the conclusion we drew in the previous section,
where we observed that the most commonly requested
permissions across all categories are “Read the contents of
your USB storage”, “Modify or delete the contents of your
USB storage” from “Photo/Media/File” group and “Full
network access”, “View network connections” from the
“Other” group. It can be observed that there are close to zero
permission count for all 25 categories for “Cellular data
settings” and “Bluetooth connection” groups, which is due to
a change in the permission policy by Android. These
permissions have been reassigned - both “BLUETOOTH”
and “BLUETOOTH_ADMIN” permissions are now under
the “Other” group.

Apart from the points above, each of the 25 categories
has a distinct pattern of requested permissions as displayed
by each line pattern in the line graph.

Recall that the “Other” group encompasses over a
hundred permissions. Thus to further show the different
patterns between each of the 25 categories, a deeper analysis
is needed. We examine the requested permissions of 25
categories of applications for the “Other” group, and we
think this will yield useful results. A line graph is created by
plotting permission counts against the different permission
groups with each line color representing the permissions
from each category of applications as shown in Fig. 3. Once
again, the maximum count is 100 due to aggregation over
free and paid applications.

All the lines are very high on the left side because the
first two permissions are “Full network access” and “View
network connections”, which are commonly requested across
all categories: this result has further reinforced the
observation. Different categories have different peaks and
patterns in the graph. From both line graphs, we conclude
that there is a unique pattern of requested permissions for
each of the 25 categories. Amongst permissions, there are no
two lines that overlap each other exactly. Thus, each pattern
can be used to identify a particular category. Finally, the
problem raised previously in this section on how to
determine when permission is legitimate or malicious can
now be solved. Each category has a particular pattern, so the
pattern can be used to determine if the permission is
malicious or not in that context. Additionally, utilizing these
patterns will ensure a better detection rate and also fewer
false positives compared to using one general filter, such as
the general blacklist method, for every application.

Figure 3. 25 Categories of permissions for “Other” group only

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

If an application requests a permission where its category’s
line in the figure peaks, this request will be deemed
legitimate. If the application requests a permission where the

line is lowest in the figure then the application is highly
suspicious as this is abnormal behavior.

.

TABLE II. THREAT LEVEL TABLE FOR PERSONALIZATION CATEGORY

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

C. Threat level filter
Each pattern will be used as the baseline for its

respective category and we tailor a threat level filter
specifically for that category. There are 3 threat levels for the
filter: “Safe”, “Mild” and “Danger”. A review for each of the
permissions found in the respective patterns is performed to
further allocate them to the appropriate threat levels.

Permissions in the “Safe” threat level are those that are
required to carry out an application’s intended core
functionalities. For instance, a messaging application will not
be flagged as potentially malicious for requesting the
“SEND_SMS” permission.

Permissions in the “Mild” threat level are those that may
not be necessary for the application’s primary functionalities
and may raise privacy issues, such as retrieving information
about the user and device. However, the potential for
malicious activity is still low. An example in this category is
an application that retrieves information for an embedded
third party advertisement service.

Permissions in the “Danger” threat level are those that
can cause some form of damage/loss to the phone or/and the
user and are not required for the core functionality of the
application. For example, the “CALL_PHONE” permission
allows an application to make phone calls without user
intervention. An application not in the “Communication”
category that requests this permission may be stealing money
by calling premium-rate numbers. Permissions that are
abnormal, such as those with zero count or those not in Table
I above, are also in the “Danger” threat level by default as
they indicate malicious activity.

The permissions with their respective threat levels are
then collated into Table II. As mentioned, any permission not
indicated inside Table I is by default in the “Danger” threat
level.

When an application is being scanned for malicious
intent, the threat level table of the respective application’s
category is used. The scanner will look up each of the
application’s requested permissions and check the
corresponding mapped threat level in Table I. If there is a
deviation from the accepted norm, an alert will be triggered,
asking for remedial action, such as the removal of the

potentially malicious application.
In the next section, we describe the design and

implementation of our proposed security application,
DrShield.

IV. DESIGN AND IMPLEMENTATION OF DRSHIELD

 This section presents the design and implementation of
Dr.Shield.

A. Application Overview

The proposed solution is called DrShield. Since
Android users are the target audience, the solution is an
Android application, which can be installed on the user’s
phone. The user can then run DrShield, which will scan for
malicious applications installed on the phone. For each
application classified as potentially malicious, DrShield will
highlight abnormal and dangerous permissions requested,
along with guidance and recommended remedial action.
Upon the user’s approval, DrShield will help to delete the
detected application from the user’s phone

As DrShield is an Android application, it follows the
Android structure of bundling Java classes and XML files.
The Java classes are used to define the application logic and
the XML files are for designing the interface layout. Fig. 4
shows the overall layout of the Java classes created for
DrShield. DrShield can be run in one of two modes.“Utility
Mode” and “Story Mode”. The “Utility Mode” offers
detection and removal of malicious applications installed on
the phone device. “Story Mode” offers the same
functionalities of “Utility Mode” but it is repackaged with
gaming elements to give users a more fun and educative
experience when using the application. Thus the “Utility
Mode” is catered towards veteran users who want to get the
job done, whereas the “Story Mode” caters to the younger
crowd or users who are are less tech-savvy. The “Story
Mode” also entices users to know more and raise awareness
of the dangers of requested permissions. DrShield will first
scan all the installed applications on the phone to detect

Figure 4. Overall layout of the Java classes created for Dr.Shield

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

malicious applications. Suspicious applications on the
phone will be represented by devils in the game as shown in
Fig. 5. The user has to battle and defeat the evil devils to
save the world. The game will actually delete each
malicious application from the phone when the respective
devil is defeated.

When there are no malicious applications detected on

the phone, there will be no evil devils in the arena screen to
battle. Thus to ensure the continuity of the game, there are
also training devils at the bottom of the arena screen. The
training devils do not represent actual applications on the

phone. There are 3 training devils with different difficulty
levels - easy, medium and hard. The difficulty of the battle
with the evil devil will depend on the threat level of the
corresponding application. Tapping on a devil will move the
user to the devil details screen. If the tapped devil is an evil
devil application with “High” or “Mild” threat level, the
devil details screen will be like Fig. 6. If the tapped devil is
a good devil, application with “Low” threat level, the screen

will be like Fig. 7.
The devil details screen shows the category of the

application and the application’s individual requested
permissions with its short description of the evaluation. The
requested permissions will be mapped as the devil’s abilities
in the game. When the user taps any of requested permission

Figure 5. Devil Arena Screen

Figure 7 GOOD DEVIL DETAILS DCREEN

Figure 6. Evil devil detail screen

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

a pop-up with the actual permission codename and a long
description of the evaluation will be displayed.

B. How the Designed Application is better than Existing
Solutions
The proposed security application, DrShield, special and

unique compared to existing solutions on the market.
 Firstly, it is simple and specifically designed to detect
malicious applications. DrShield only requires one
permission, “Full Internet Access”, in order to query the
online Google Play Store to figure out which category each
scanned application belongs to.

Existing security applications provided by commercial
companies require many requested permissions. An example
is shown in Fig. 8. The solution provided by AVG Mobile
requests a total of 51 permissions, including of potentially

dangerous permissions, such as “send SMS messages” and
“directly call phone numbers”.

The large number of requested permissions could be due
to the application providing extra functionality, such as
backup of phone data. These permissions represent a threat
vector - a disgruntled employee could sabotage the
company’s security application to perform unauthorized
operations on users’ phones, such as collecting confidential
data. Since the user agreed to grant these permissions when
installing the security application such an attack would be
successful.

If the same situation happens to DrShield, the
disgruntled employee will not be able to do much damage
since the only permission granted to the application is
Internet access. The disgruntled employee cannot read your
contacts or make calls to premium rate numbers without the
“Read your contacts” and “Directly call phone numbers”
permissions respectively. By minimizing the number of
requested permissions, DrShield keeps such potential risk
and damage to a minimum.

Secondly, commercial security applications can be very
technical and unfriendly to non IT-savvy users. DrShield
provides a gaming aspect, Story Mode, to guide non IT-
savvy users to use the application in a fun and educational
manner. Over time, users will know more and be more aware
about the potential dangers of requested permissions, which
may lead them to be more cautious when installing new
applications on their phone.

Lastly, a drawback with traditional antivirus solutions is
inefficiency. If there a new malicious application is released,
traditional antivirus solutions will need to be updated with
signatures to detect the new threat. There will be a window
of opportunity for malicious applications to wreak havoc
before they get detected and removed. However, with
DrShield, this will not be the case. Any new variant will still
have a category and the appropriate threat filter can be used
to scan the application for any potential malicious intent
right away

Figure 7. Good devil details screen

Figure 8. Google Play Store displaying the application’s permissions

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

V. CONCLUSION
The use of smartphones has become increasingly

popular over the years due to affordability and convenience.
Android OS accounts for majority of the smartphone market
share due to its open source nature, which entices many
smartphone brands to build Android phones. However, this
also made Android OS an attractive target for
cybercriminals to develop malicious applications, which
puts Android mobile users at risk. One of the greatest
challenges in protecting users is to detect malicious
applications among the numerous applications installed on a
phone.

Upon detailed analysis, a distinct correlation between
each application’s category and its requested permissions
was observed. Using the pattern of requested permissions to
detect malicious applications can therefore be an effective
method. The proposed solution, DrShield, utilizes these
patterns to scan all applications installed on a smartphone to
detect malicious applications. DrShield also comes in two
modes, with the “Utility Mode” catering to veteran users
who want to get the job done, whereas the “Story Mode”
caters to the younger crowd or less tech-savvy users. The
aim of the “Story Mode” is to entice users to play the game
and at the end, understand more and be more aware of the
potential dangers of requested permissions.

.DrShield has fulfilled all the criteria mentioned in
Section II.B, which are creating a security application that
detects malicious applications based on the requested
permissions, is user-friendly and do not require a rooted
device. Additionally, the objective of the project has been
met with DrShield. It provides a solution that the user can
use to scan and remove malicious applications from a
device, protecting the user.

Overall, DrShield demonstrates an effective and unique
approach to detecting malicious mobile applications in
Android OS compared to traditional anti-virus methods.
This approach is new and it has not yet been popularized.
DrShield can be used as a stepping stone for future
developments in this direction.

REFERENCES

[1] Android, “Signing Your Applications” ,

http://developer.android.com/tools/publishing/app-signing.html
[retrieved: Oct, 2015]

[2] R. Broida, “How to easily root an Android device”,
http://www.cnet.com/how-to/how-to-easily-root-an-android-device
[retrieved: Oct, 2015]

[3] Bullguard, “The risks of rooting your Android phone”
http://www.bullguard.com/bullguard-security-center/mobile-
security/mobile-threats/android-rooting-risks.aspx [retrieved: Oct,
2015]

[4] O. Celestino “Mobile Apps: New Frontier for Cybercrime”
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-
attack/119/mobile-apps-new-frontier-for-cybercrime. [retrieved: Oct,
2015]

[5] A. Decker. “How Mobile Ads Abuse Permissions” 2012
http://blog.trendmicro.com/trendlabs-security-intelligence/how-
mobile-ads-abuse-permissions.

[6] F- Secure. “Mobile Threat Report Q1 2014”
http://www.fsecure.com/documents/996508/1030743/Mobile_Threat_
Report_Q1_2014.pdf

[7] M. Gendron (Ed.). “RiskIQ Reports Malicious Mobile Apps in
Google Play Have Spiked Nearly 400 Percent” 2014
http://www.riskiq.com/company/press-releases/riskiq-reports-
malicious-mobile-apps-google-play-have-spiked-nearly-400.

[8] J. Heggestuen, (2013). “One In Every 5 People In The World Own A
Smartphone, One In Every 17 Own A Tablet “
2013.http://www.businessinsider.com/smartphone-and-tablet-
penetration-2013-10.

[9] IDC.” IDC: Smartphone OS Market Share”
http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[10] M. Kassner,” Some important facts about Android antivirus
applications”, http://www.techrepublic.com/blog/smartphones/some-
important-facts-about-android-antivirus-applications [retrieved: Oct,
2015]

[11] P. Marchant, “Top 10 Android security tips”,
http://www.computerweekly.com/feature/Top-10-Android-security-
tips [retrieved: Oct, 2015]

[12] Nielsen., “Smartphones: So many apps, so much time”,
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-
many-apps-so-much-time.html [retrieved: Oct, 2015]

[13] P. Paganini, “Phishing goes mobile with cloned banking app into
Google Play”, http://securityaffairs.co/wordpress/26134/cyber-
crime/phishing-goes-mobile-cloned-banking-app-google-play.html.
[retrieved: Oct, 2015]

[14] Sophos,”Sophos Security Threat Report 2014”
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-
security-threat-report-2014.pdf, pp. 9

[15] Svetius, ” How to Root Any Device” http://www.xda-
developers.com/root. [retrieved: Oct, 2015]

[16] C. Toombs, “XPrivacy Gives You Massive Control Over What Your
Installed Apps Are Allowed To Do”,
http://www.androidpolice.com/2013/06/23/xprivacy-gives-you-
massive-control-over-what-your-installed-apps-are-allowed-to-do
[retrieved: Oct, 2015]

[17] L. Tung, “Google removes 'awesome' but unintended privacy controls
in Android 4.4.2”, http://www.zdnet.com/google-removes-awesome-
but-unintended-privacy-controls-in-android-4-4-2-7000024329.
[retrieved: Oct, 2015]

[18] M. M. Zaki, S. Shahrin, .A. M. Faizal, S. Rahayu, and Y. Robiah, ”
Android Malware Detection System Classification”. Research Journal
of Information Technology, 6: 325-341,
http://scialert.net/abstract/?doi=rjit.2014.325.341, pp. 329.

[19] F. D. Cerbo, A. Girardello, F. Michahelles, and S. Voronkova.,
 “Detection of Malicious Applications on Android OS”
 Computational Forensics, LNCS 6540, 2011, pp 138-149.
[20] L Lei, Y. Wang, J. Jing, Z. Zhang and X. Yu.,”MeadDroid: Detecting

Monetary Theft Attacks in Android by DVM Monitoring”,
Information Security and Cryptology - ICISC 2012, LNCS 7839,
2013, pp 78-91

[21] Y. Zhou, Z. Wang, W. Zhou and X. Jiang.,”Hey, You, Get Off of My
Market:Detecting Malicious Apps in Official and Alternative Android
Markets” Proceedings of the 19th Network and Distributed System
Security Symposium (NDSS 2012), 2012, pp 317-326

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

http://developer.android.com/tools/publishing/app-signing.html
http://www.cnet.com/how-to/how-to-easily-root-an-android-device
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-threats/android-rooting-risks.aspx
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-threats/android-rooting-risks.aspx
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/119/mobile-apps-new-frontier-for-cybercrime
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/119/mobile-apps-new-frontier-for-cybercrime
http://www.fsecure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
http://www.fsecure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
http://www.techrepublic.com/blog/smartphones/some-important-facts-about-android-antivirus-applications
http://www.techrepublic.com/blog/smartphones/some-important-facts-about-android-antivirus-applications
http://www.computerweekly.com/feature/Top-10-Android-security-tips
http://www.computerweekly.com/feature/Top-10-Android-security-tips
http://securityaffairs.co/wordpress/26134/cyber-crime/phishing-goes-mobile-cloned-banking-app-google-play.html
http://securityaffairs.co/wordpress/26134/cyber-crime/phishing-goes-mobile-cloned-banking-app-google-play.html
http://www.xda-developers.com/root
http://www.xda-developers.com/root
http://www.androidpolice.com/2013/06/23/xprivacy-gives-you-massive-control-over-what-your-installed-apps-are-allowed-to-do
http://www.androidpolice.com/2013/06/23/xprivacy-gives-you-massive-control-over-what-your-installed-apps-are-allowed-to-do
http://www.zdnet.com/google-removes-awesome-but-unintended-privacy-controls-in-android-4-4-2-7000024329
http://www.zdnet.com/google-removes-awesome-but-unintended-privacy-controls-in-android-4-4-2-7000024329

	I. Introduction
	II. The Current Situation
	A. The Human Factor - User Awareness & Knowledge
	B. Deduction and Assumption

	III. Analysis
	A. Sampling of mobile applications
	B. Correlation between each application’s category and permissions
	C. Threat level filter

	IV. Design and Implementation of DrShield
	A. Application Overview
	B. How the Designed Application is better than Existing Solutions

	V. Conclusion

