
Inferring TCP Congestion Control Algorithms

by Correlating Congestion Window Sizes and their Differences

Toshihiko Kato, Atsushi Oda, Shun Ayukawa, Celimuge Wu, Satoshi Ohzahata

Graduate School of Information Systems

University of Electro-Communications

Chofu-shi, Tokyo, Japan

e-mail: kato@is.uec.ac.jp, oda@net.is.uec.ac.jp, s.aykw@net is.uec.ac.jp, clmg@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract— Recently, according to the diversification of

network environments, a lot of TCP congestion control

mechanisms have been introduced. They define how a TCP

sender increases the congestion window (cwnd) during no

congestion and decreases cwnd when it detects congestion.

Since the congestion control algorithms affect the performance

of the Internet, it is important to know which algorithms are

used widely. This paper proposes a scheme to infer the

algorithm for individual TCP flows by examining the packet

trace passively captured for the flows. Our scheme estimates

cwnd values in RTT intervals and correlates the cwnd values

and the differences of consecutive cwnd values. Our scheme

aims to infer many of recently proposed congestion control

algorithms, which have been out of scope in the conventional

passive approaches. Our scheme adopts a simple approach

just correlating cwnds and their differences, in contrast with

the conventional approaches which estimate the internal TCP

behaviors based on packet traces. This paper describes the

details of our scheme and shows the results where our scheme

is applied to an iPhone TCP communication.

Keywords- TCP congestion control algorithms; passive

monitoring; congestion window .

I. INTRODUCTION

Since the congestion control mechanism came to be used
in Transmission Control Protocol (TCP) [1], only a few
algorithms, such as Tahoe, Reno and NewReno [2], were
used commonly for a long time. In the congestion control, a
TCP sender transmits data segments under the limitation of
the congestion window (cwnd) maintained within the sender,
beside the advertised window reported from a TCP receiver.
The value of cwnd increases as a sender receives ACK
segments and is decreased when it detects congestions. How
to increase and decrease cwnd is the key of congestion
control algorithm. The early-stage algorithms mentioned
above are summarized as an additive increase and
multiplicative decrease (AIMD) because cwnd increases
linearly and is reduced in an exponential fashion.

According to the diversification of network environments,
many TCP congestion control algorithms have emerged [3].
For example, High Speed (HS) TCP [4], and CUBIC TCP
[5] are designed for high speed and long delay networks. On
the other hand, TCP Westwood [6] and its descendants are
designed for lossy wireless links. While the algorithms
mentioned so far are based on the packet losses, TCP Vegas
[7] and FAST TCP [8] trigger congestion control against an

increase of round-trip time (RTT). TCP Veno [9] and TCP
Illinois [10] combine loss based and delay based approaches
such that congestion control is triggered by packet losses but
the delay determines how to increase cwnd.

The TCP congestion control algorithms affect the
performance of the Internet, and so it is important to know
which algorithms are used widely. Since the congestion
control algorithm is implemented within a TCP sender, it
cannot be identified from observable parameters in TCP
segments. Instead, a tester which infers the algorithm needs
to estimates internal behaviors of TCP senders from their
input/output interactions.

The approaches to infer the congestion control algorithm
are categorized into two groups. One is the passive approach
where passively collected packet traces are examined to
measure TCP behaviors. This approach has some limitations
in the testing ability, but is non-intrusive and requires no
additional equipment for measurement. The other is the
active approach in which an active tester sends test inputs to
a target node and checks the replies. This approach can
perform a more comprehensive test than the passive one, but
is limited to the case where a tester communicates with a
node to be tested.

So far, several studies are proposed for both approaches
[11]-[16]. However, as for the passive approach, there are
no proposals on inferring the recently introduced algorithms.
In this paper, we propose a new scheme based on the passive
approach. The proposed scheme aims to infer many of
recent congestion control algorithms and adopts a simpler
methodology than the conventional studies.

The rest of this paper consists of the following sections.
Section 2 surveys the related works specifically. Section 3
proposes our scheme. Section 4 gives some examples where
our scheme is applied to an iPhone TCP communication.
Section 5 gives the conclusions of this paper.

II. RELATED WORKS

As for the passive approach, TCPanaly [11] is one of the
early stage research activities. It analyzes packet traces and
tries to decide which implementation of TCP best matches
the connection being observed.

Jaiswel et al. [12] adopted a similar approach with
TCPanaly and proposes the TCP flavor identification among
Tahoe, Reno and NewReno. Its basic idea is to construct
three kinds of “replicas” of the TCP sender’s state machine
for individual TCP connections observed at the measurement

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

point. These replicas are for Tahoe, Reno and NewReno.
For a segment sent by a TCP sender, each replica checks
whether the segment is allowed or not. The numbers of
violations are maintained and the TCP flavor with minimum
number of violations is selected for the connection.

Oshio et al. [13] estimates the changes of cwnd values
and extracts features, such as ratio of cwnd increase being
one and so on. Based on these features, it discriminates one
of two different versions randomly selected from thirteen
TCP versions implemented in the Linux operating system.

Qian et al. [14], on the other hand, focuses on the
extraction of statistical features based on the monitoring of
one direction of TCP communications. They focused on the
size of initial congestion window, the relationship between
the retransmission rate and the time required to transfer a
fixed size of data, which is used for detecting the irregular
retransmissions, and the extraction of flow clock to find the
TCP data transmission controlled by the application or link
layer factors.

As an example of the active approach, TBIT [15] was
developed to characterize the TCP behavior of major web
servers. It checks the initial window size by not
acknowledging any data segments sent by the server at the
first data transfer. It also detects the congestion control
algorithm by dropping two data segments (not
acknowledging them) within one window. This
discriminates Tahoe, Reno and NewReno.

CAAI [16] proposes the scheme to actively identify the
TCP algorithm of a remote web server. It can identify all
default TCP algorithms, such as AIMD and CUBIC, and
most non-default TCP algorithms of major operating system
families. It makes a web server send 512 data segments
under the controlled network environment with specific RTT
and observes the number of data segments contiguously
transmitted without receiving any ACK segments. It then
estimates the window growth function and the decrease
coefficient, and using those estimations, determines the TCP
algorithm for an individual web server.

As described above, CAAI proposes the inference of
TCP congestion control algorithms used widely today, but no
studies from the standpoint of passive approach. This paper
proposes a passive monitoring based approach for inferring
many of the TCP versions available today.

III. PROPOSAL OF OUR SCHEME

A. Design principles

The TCP congestion control algorithms have two parts.
One is a part where a TCP sender increases cwnd at
receiving an ACK segment acknowledging new data
segments. The other is a part where a TCP sender decreases
cwnd when it detects network congestion through
retransmitting any data segments or perceiving an increase of
RTT.

Our scheme to infer the congestion control algorithm is
designed based on the following principles.
 Our scheme focuses on the increasing part of cwnd.
 It uses changes of the values of cwnd at individual RTT

intervals.

 It estimates the value of cwnd at a moment when a TCP
sender receives a specific ACK segment as the total
size of inflight data segments, which are sent but not
acknowledged, just before the TCP sender receives the
ACK segment one RTT later than the first ACK. Fig.
1 shows this mechanism. Fig. 1 supposes that a sender
receives a specific ACK and then sends data 1. After
one RTT, the sender receives ACK for data 1. Data 2
is the data segment sent out just before the sender
receiving ACK for data 1 and data 3 is the data segment
sent out just after the acknowledgment. Here, our
scheme estimates the value of cwnd when the sender
receives a specific ACK as

 , that is,

 .

 The packet trace used in the inference may be captured
in the middle of network. Therefore, in general, the
packet sequence in the trace is different from the
sequence in which the relevant TCP sender sends and
receives packets. Our scheme needs to estimate the
packet sequence in the TCP sender from that in the
packet trace. For this purpose, our scheme utilizes the
TCP time stamp option in TCP segments.

 Our scheme estimates a sequence of cwnd values
observed in every RTT interval. We denote this
sequence as {cwndi}. Then, a sequence of differences
of consecutive cwnd values, { }, is defined by
(1).

 (1)
 In the end, our scheme evaluates the correlation of the

two sequences, {cwndi} and { } , by plotting
them. The graphs depend on the congestion control
algorithms.

It should be noted that, since our scheme does not require
any tracking of TCP internal status, it is possible to infer the
congestion control algorithms more easily than the
conventional proposals.

The reason we adopt cwnd values at RTT intervals is as
follows. First of all, many congestion control algorithms,
such as Vegas and HS TCP, define a procedure for
increasing cwnd at a RTT interval. Some algorithms, such as
AIMD, specify a procedure for receiving individual ACK
segments, but the purpose of those algorithms is the change
of cwnd in a RTT interval. So, focusing the cwnd values at

sender

a specific ACK

data 1

ACK for data 1

RTT

data 2

data 3

Figure 1. Principle for cwnd estimation.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

RTT intervals is considered as appropriate for reflecting the
purpose of congestion control algorithms.

The next point is that the algorithms define cwnd values
in a byte but data segments are sent in the unit of maximum
segment size (MSS). Therefore, the passive approach can
detect the change of cwnd values in the order of MSS. On
the other hand, many algorithms change cwnd values in the
order of MSS during a RTT interval.

B. Methodology for estimating cwnd at RTT intervals

As mentioned above, the time associated with individual
captured segments in a packet trace is not the exact time
when the data sender sent or received those segments. So,
our scheme estimates a cwnd associated with one RTT
interval in the following way.
 First, our scheme focuses on an ACK segment in the

packet trace, for example, ACK with ack-1 in Fig. 2.
 Next, it looks for the first data segment whose TSecr

(Time Stamp Echo Reply) is equal to TSval (Time
Stamp Value) of the ACK segment we are focusing on,
data with seq-3 in Fig. 2.

 Our scheme then looks for the first ACK segment
acknowledging this data segment, in this case, ACK
with ack-3.

 As the fourth step, it looks for the data segment whose
TSecr is equal to TSval of the second ACK segment.
In the example of Fig. 2, this corresponds to data with
seq-7.

After these steps, our scheme estimates that the first data
segment, data with seq-3, and the second ACK segment,
ACK with ack-3, construct a RTT relationship. Based on this
estimation, our scheme estimates that cwnd in the unit of
MSS at the moment of receiving ACK with ack-1 is equal to
(2).

 - -

 (2)

C. Applying our scheme to AIMD

In the AIMD congestion control algorithm, cwnd is
increased each time the TCP sender receives an ACK
segment acknowledging new data. The increase is one

segment during the slow start phase, and

 segments

during the congestion avoidance phase. During one RTT,
cwnd of data segments are sent and acknowledged.

Therefore, in the slow start phase, cwnd is increased by the
value of cwnd (cwnd is doubled). This means that

 .
On the other hand, in the congestion avoidance phase, cwnd
is increased by one segment during one RTT. So, in this
phase,

 .
So, plotting cwnd and generates the graph in Fig. 3.
In this figure, it is assumed that the initial congestion
window is one MSS, and that the slow start continues until
cwnd is 16 followed by the congestion avoidance.

D. Applying our scheme to TCP Vegas

TCP Vegas detects congestion by the increase of RTT. It
measures the minimal RTT during the connection lifetime.
With the current values of cwnd and RTT, it estimates the
buffer size in the bottleneck node as (3).

 (3)

Vegas uses this BufferSize for the control in the
congestion avoidance phase in the following way.
 If , then cwnd is increased by one

MSS. (In the Linux implementation, is less than 2.)
 If , then cwnd is decreased by one

MSS. (In the Linux implementation, is more than 4.)
 If , then the system is considered

to be in a steady state and no modification to cwnd is
applied.

This examination is done at every RTT interval. Therefore,
the difference of cwnd at RTT interval, { }, is

in the congestion avoidance phase.

As for the slow start phase, cwnd is increased every other
RTT. This means that { } is

sender receivermonitor

ACK (ack-1, TSval-a, TSecr-a)data (seq-1, TSval-d, TSecr-d)
data (seq-2, TSval-d, TSecr-d)
data (seq-3, TSval-d, TSecr-d)
data (seq-4, TSval-d, TSecr-d)
data (seq-5, TSval-d, TSecr-d)
data (seq-6, TSval-d, TSecr-d)

ACK (ack-2, TSval-a, TSecr-a)

ACK (ack-3, TSval-a, TSecr-a)

data (seq-7, TSval-d, TSecr-d) ACK (ack-4, TSval-a, TSecr-a)

data (seq-8, TSval-d, TSecr-d)

 Figure 2. Estimation of cwnd associated with one RTT.

1

1

cwnd (segments)

Δ
cw

nd
(s

eg
m

en
ts

)

8

8

16

Figure 3. Applying to AIMD.

1

1 cwnd
(segments)

Δ
cw

nd
(s

eg
m

en
ts

)

8

8

16-1
0

Figure 4. Applying to TCP Vegas.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

in this phase. So, plotting cwnd and generates the
graph in Fig. 4 for TCP Vegas. In this figure, it is assumed
that the initial congestion window is one MSS, that the slow
start continues until cwnd is 16, and that BufferSize increases
when cwnd is 20.

E. Applying our scheme to TCP Veno

The Veno (VEgas and ReNO) algorithm uses the Vegas
estimate in order to limit the increase of cwnd during the
congestion avoidance phase. If the Vegas buffer estimate
shows excessive buffer utilization (i.e.,), a
TCP sender increases cwnd by one for every two RTT.

This means that the increase of cwnd during the
congestion avoidance phase is

 during no congestion, and
 during congestion.

As a result, the plotting of cwnd and will be as the
graph in Fig. 5 for Veno. In this figure, it is assumed that the
initial congestion window is one MSS, that the slow start
continues until cwnd is 16, and that congestion occurs when
cwnd is 20.

F. Applying our scheme to HS TCP

The HS TCP changes the increase coefficient
according to the current size of cwnd. Here, defines how
many segments are added to cwnd for one RTT in the
congestion avoidance phase. When cwnd is less than or
equal to 38 segments, is 1, which has the same behavior as
the traditional AIMD. If cwnd is more than 84K segments,
is 70. Between 38 and 84K segments, is interpolated from
1 and 70 linearly.

In the slow start phase, HS TCP adopts the limited slow
start, which bounds the maximum increase step during this
phase to 100 segments.

These specifications give the plotting of cwnd and
 as shown in Fig. 6 in the form of semilog graph. In
the graph, the congestion avoidance is started from cwnd of
32, and the relationship between the consecutive cwnds is
defined as in (4) for which is between 38 and 8700.

() (4)

G. Applying our scheme to CUBIC TCP

CUBIC TCP defines cwnd as a cubic function of elapsed
time T since the last congestion event. Specifically, it
defines cwnd by (5).

 (√

)

 (5)

Here, C is a predefined constant, is a coefficient of
multiplicative decrease in the congestion control, and
 is the value of cwnd just before the loss detection
in the last congestion event.

From this equation, the increase of cwnd during one RTT
can be obtained approximately by (6).

 ()

 (√

)

 (6)

By using (5), (6) is represented as a function of cwnd as in
(7).

 ()

 √

(√
)

 (7)

This result gives the plotting of cwnd and as in Fig.
7. Here, it is assumed that is 0 in the slow start

phase and √

H. Applying our scheme to TCP Illinois

TCP Illinois changes the increase coefficient of cwnd, ,
according to the queuing delay. The queuing delay is
measured as the increase of RTT from the minimum RTT for
the connection. Depending on the queuing delay, changes
from 0.1 segments to 10 segments. The value of is
updated once per every RTT. Therefore, the plotting of
cwnd and will be given as in Fig. 8. In this figure, it
is assumed that the initial congestion window is one MSS,

1

1

cwnd (segments)

Δ
cw

nd
(s

eg
m

en
ts

)

8

8

16
0

Figure 5. Applying to TCP Veno.

0

10

20

30

40

50

60

70

80

2 1641 8 64 51212832 256 2048 40961024 8192

cwnd (segments)

Δ
c
w

n
d

(s
e
gm

e
n
ts

)

Figure 6. Applying to HS TCP.

0

5

10

15

20

25

0 20 40 60 80 100 120

cwnd (segments)

Δ
c
w

n
d

(s
e
gm

e
n
ts

)

Figure 7. Applying to CUBIC TCP.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

that the slow start continues until cwnd is 16, and that the
queuing delay is small in the beginning of the congestion
avoidance.

IV. INFERRING IPHONE 5 TCP ALGORITHM

As an example of the inferring of TCP congestion control
algorithm using our scheme, we performed an experiment
estimating the TCP algorithm of iPhone 5. Fig. 9 shows the
configuration. An ftp application on an iPhone 5 terminal
communicates with an ftp server through an LTE network
and the Internet. While the iPhone 5 uploads a file to the
server, it moves on a local train in Tokyo. The packet traces
are collected in a PC connected with the iPhone through the
remote virtual interface [17].

We collected two packet traces. Fig. 10 shows the results
of the first example. Fig. 10 (a) and (b) show the TCP
sequence number versus time and cwnd value versus time in
this communication, respectively. These graph show that
the handover happened two times around at 7 second and 35
second, and accordingly, the cwnd value decreases. The
graph (c) shows the relationship between and cwnd.
It is noted that the decreases of cwnd are not described in this
figure. The graph shows the slow start like behavior from
cwnd =1 to cwnd = 23, in which is proportional to
cwnd. On the other hand, from cwnd = 30 to 111, most of
observed values for is equal to one. It can be said
that the graph in Fig. 10 (c) is quite similar with that in Fig. 3
and so the results of this example says that the TCP
congestion control algorithm used in iPhone 5 is AIMD.

Fig. 11 shows another example for iPhone 5. In this
example, packet losses occur at 20, 30, 70 and 95 second in
the communication, and accordingly the cwnd value changes
as shown in Fig. 11 (b). Based on this graph, we depicted
the relationship between and cwnd as shown in Fig.
11 (c). This figure has a proportional part and one segment
part similarly with Fig. 10 (c). This result also says that the
the TCP congestion control algorithm used in iPhone 5 is
AIMD.

V. CONCLUSIONS

This paper proposed a simple but effective scheme
inferring the TCP congestion control algorithm from
passively collected packet traces. The proposed scheme
estimates cwnd values at every RTT intervals from packet
traces and makes the correlation beween the cwnd values and
the differences consecutive cwnd values by plotting these
values. We showed that the result plotting can explicitly

distinguish AIMD, TCP Vegas, TCP Veno, HS TCP, CUBIC
TCP and TCP Illinois. As an example, we applied our
scheme to identify the TCP congestion control algorithm

LTE Network Internet

ftp server

iPhone 5

PC for tcpdump

file upload

Figure 9. Configuration of experiment.

(a) sequence number vs. time.

(b) cwnd vs. time.

(c) vs. cwnd.

Figure 10. Results of first example.

0

20

40

60

80

100

120

0 10 20 30 40 50

cw
n

d
 [

se
g
m

e
n

ts
]

time [s]

0

5

10

15

20

25

0 50 100 150

⊿
cw

n
d

 [
se

g
m

e
n

ts
]

cwnd [segments]

1

1 cwnd
(segments)

Δ
cw

nd
(s

eg
m

en
ts

)

16

16

32

10

8 42 52
Figure 8. Applying to TCP Illinois.

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

used in iPhone 5. From two packet traces in which an
iPhone 5 terminal is sending ftp data, our scheme showed
two graphs showing the AIMD like relationship between
 and cwnd. We could successfully conclude that the
algorithm used in iPhone 5 is AIMD from these results.

REFERENCES

[1] V. Javobson, “Congestion Avoidance and Control,” ACM
SIGCOMM Comp. Commun. Review, vol. 18, no. 4, Aug.
1988, pp. 314-329.

[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” IETF RFC
3728, April 2004.

[3] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-
to-Host Congestion Control for TCP,” IEEE Commun.
Surveys & Tutorials, vol. 12, no. 3, 2010, pp. 304-342.

[4] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”
IETF RFC 3649, Dec. 2003.

[5] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 5, July 2008, pp. 64-74.

[6] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang,
“TCP Westwood: Bandwidth estimation for enhanced
transport over wireless links,” Proc. ACM MobiCom ’01, July
2001, pp. 287-297.

[7] L. Brakmo and L. Perterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE J.
Selected Areas in Commun., vol. 13, no. 8, Oct. 1995, pp.
1465-1480.

[8] D. Wei, C. Jin, S. Low, and S. Hegde, “FAST TCP:
Motivation, Architecture, Algorithms, Performance,”
IEEE/ACM Trans. on Networking, vol. 14, no. 6, Dec. 2006,
pp. 1246-1259.

[9] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for
Transmission Over Wireless Access Networks,” IEEE J.
Selected Areas in Commun., vol. 21, no. 2, Feb. 2003, pp.
216-228.

[10] S. Liu, T. Bassar, and R. Srikant, “TCP-Illinois: A loss and
delay-based congestion control algorithm for high-speed
networks,” Proc. VALUETOOLS ’06, Oct. 2006.

[11] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM Comp. Commun. Review, vol. 27,
no. 4, Oct. 1997, pp.167-179.

[12] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP Connection Characteristics Through Passive
Measurements,” Proc. INFOCOM 2004, March 2004, 1582-
1592.

[13] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP
Versions Based on Cluster Analysis,” Proc. ICCCN 2009,
Aug. 2009, pp. 1-6.

[14] F, Qian, A. Gerber, and Z. Mao, “TCP Revisited: A Fresh
Look at TCP in the Wild,” Proc. IMC ’09, Nov. 2009, pp. 76-
89.

[15] J.Padhye and S. Floyd, “On inferring TCP behavior,” Proc.
ACM SIGCOMM, Aug. 2001, pp.287-298.

[16] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP
Congestion Avoidance Algorithm Identification,” Proc.
ICDCS ’11, June 2011, pp. 310-321.

[17] Apple Inc. “Technical Q&A QA 1176 Getting a Tacket Trace,”
Available from:

https://developer.apple.com/library/ios/qa/qa1176/_index.htm
l#//apple_ref/doc/uid/DTS10001707, 2014.08.13.

(a) sequence number vs. time.

(b) cwnd vs. time.

(c) vs. cwnd.

Figure 11. Results of second example.

0

20

40

60

80

100

0 50 100 150

cw
n

d
 [

se
g
m

e
n

ts
]

time[s]

0

5

10

15

0 20 40 60 80⊿
cw

n
d

 [
se

g
m

e
n

ts
]

cwnd [segments]

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-368-1

ICSNC 2014 : The Ninth International Conference on Systems and Networks Communications

