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Abstract— Recently, according to the diversification of 

network environments, a lot of TCP congestion control 

mechanisms have been introduced.  They define how a TCP 

sender increases the congestion window (cwnd) during no 

congestion and decreases cwnd when it detects congestion.  

Since the congestion control algorithms affect the performance 

of the Internet, it is important to know which algorithms are 

used widely.  This paper proposes a scheme to infer the 

algorithm for individual TCP flows by examining the packet 

trace passively captured for the flows.  Our scheme estimates 

cwnd values in RTT intervals and correlates the cwnd values 

and the differences of consecutive cwnd values.  Our scheme 

aims to infer many of recently proposed congestion control 

algorithms, which have been out of scope in the conventional 

passive approaches.  Our scheme adopts a simple approach 

just correlating cwnds and their differences, in contrast with 

the conventional approaches which estimate the internal TCP 

behaviors based on packet traces.  This paper describes the 

details of our scheme and shows the results where our scheme 

is applied to an iPhone TCP communication.   

Keywords- TCP congestion control algorithms; passive 

monitoring; congestion window .   

I.   INTRODUCTION 

Since the congestion control mechanism came to be used 
in Transmission Control Protocol (TCP) [1], only a few 
algorithms, such as Tahoe, Reno and NewReno [2], were 
used commonly for a long time.  In the congestion control, a 
TCP sender transmits data segments under the limitation of 
the congestion window (cwnd) maintained within the sender, 
beside the advertised window reported from a TCP receiver.  
The value of cwnd increases as a sender receives ACK 
segments and is decreased when it detects congestions.  How 
to increase and decrease cwnd is the key of congestion 
control algorithm.  The early-stage algorithms mentioned 
above are summarized as an additive increase and 
multiplicative decrease (AIMD) because cwnd increases 
linearly and is reduced in an exponential fashion.   

According to the diversification of network environments, 
many TCP congestion control algorithms have emerged [3].  
For example, High Speed (HS) TCP [4], and CUBIC TCP 
[5] are designed for high speed and long delay networks.  On 
the other hand, TCP Westwood [6] and its descendants are 
designed for lossy wireless links.  While the algorithms 
mentioned so far are based on the packet losses, TCP Vegas 
[7] and FAST TCP [8] trigger congestion control against an 

increase of round-trip time (RTT).  TCP Veno [9] and TCP 
Illinois [10] combine loss based and delay based approaches 
such that congestion control is triggered by packet losses but 
the delay determines how to increase cwnd.   

The TCP congestion control algorithms affect the 
performance of the Internet, and so it is important to know 
which algorithms are used widely.  Since the congestion 
control algorithm is implemented within a TCP sender, it 
cannot be identified from observable parameters in TCP 
segments.  Instead, a tester which infers the algorithm needs 
to estimates internal behaviors of TCP senders from their 
input/output interactions.   

The approaches to infer the congestion control algorithm 
are categorized into two groups.  One is the passive approach 
where passively collected packet traces are examined to 
measure TCP behaviors.  This approach has some limitations 
in the testing ability, but is non-intrusive and requires no 
additional equipment for measurement.  The other is the 
active approach in which an active tester sends test inputs to 
a target node and checks the replies.  This approach can 
perform a more comprehensive test than the passive one, but 
is limited to the case where a tester communicates with a 
node to be tested.   

So far, several studies are proposed for both approaches 
[11]-[16].  However, as for the passive approach, there are 
no proposals on inferring the recently introduced algorithms.  
In this paper, we propose a new scheme based on the passive 
approach.  The proposed scheme aims to infer many of 
recent congestion control algorithms and adopts a simpler 
methodology than the conventional studies.   

The rest of this paper consists of the following sections.  
Section 2 surveys the related works specifically.  Section 3 
proposes our scheme.  Section 4 gives some examples where 
our scheme is applied to an iPhone TCP communication.  
Section 5 gives the conclusions of this paper.   

II.   RELATED WORKS 

As for the passive approach, TCPanaly [11] is one of the 
early stage research activities.  It analyzes packet traces and 
tries to decide which implementation of TCP best matches 
the connection being observed.   

Jaiswel et al. [12] adopted a similar approach with 
TCPanaly and proposes the TCP flavor identification among 
Tahoe, Reno and NewReno.  Its basic idea is to construct 
three kinds of “replicas” of the TCP sender’s state machine 
for individual TCP connections observed at the measurement 
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point.  These replicas are for Tahoe, Reno and NewReno.  
For a segment sent by a TCP sender, each replica checks 
whether the segment is allowed or not.  The numbers of 
violations are maintained and the TCP flavor with minimum 
number of violations is selected for the connection.   

Oshio et al. [13] estimates the changes of cwnd values 
and extracts features, such as ratio of cwnd increase being 
one and so on.  Based on these features, it discriminates one 
of two different versions randomly selected from thirteen 
TCP versions implemented in the Linux operating system.   

Qian et al. [14], on the other hand, focuses on the 
extraction of statistical features based on the monitoring of 
one direction of TCP communications.  They focused on the 
size of initial congestion window, the relationship between 
the retransmission rate and the time required to transfer a 
fixed size of data, which is used for detecting the irregular 
retransmissions, and the extraction of flow clock to find the 
TCP data transmission controlled by the application or link 
layer factors.   

As an example of the active approach, TBIT [15] was 
developed to characterize the TCP behavior of major web 
servers.  It checks the initial window size by not 
acknowledging any data segments sent by the server at the 
first data transfer.  It also detects the congestion control 
algorithm by dropping two data segments (not 
acknowledging them) within one window.  This 
discriminates Tahoe, Reno and NewReno.   

CAAI [16] proposes the scheme to actively identify the 
TCP algorithm of a remote web server.  It can identify all 
default TCP algorithms, such as AIMD and CUBIC, and 
most non-default TCP algorithms of major operating system 
families.  It makes a web server send 512 data segments 
under the controlled network environment with specific RTT 
and observes the number of data segments contiguously 
transmitted without receiving any ACK segments.  It then 
estimates the window growth function and the decrease 
coefficient, and using those estimations, determines the TCP 
algorithm for an individual web server.   

As described above, CAAI proposes the inference of 
TCP congestion control algorithms used widely today, but no 
studies from the standpoint of passive approach.  This paper 
proposes a passive monitoring based approach for inferring 
many of the TCP versions available today.   

III. PROPOSAL OF OUR SCHEME 

A. Design principles 

The TCP congestion control algorithms have two parts.  
One is a part where a TCP sender increases cwnd at 
receiving an ACK segment acknowledging new data 
segments.  The other is a part where a TCP sender decreases 
cwnd when it detects network congestion through 
retransmitting any data segments or perceiving an increase of 
RTT.   

Our scheme to infer the congestion control algorithm is 
designed based on the following principles. 
 Our scheme focuses on the increasing part of cwnd.   
 It uses changes of the values of cwnd at individual RTT 

intervals.   

 It estimates the value of cwnd at a moment when a TCP 
sender receives a specific ACK segment as the total 
size of inflight data segments, which are sent but not 
acknowledged, just before the TCP sender receives the 
ACK segment one RTT later than the first ACK.   Fig. 
1 shows this mechanism.  Fig. 1 supposes that a sender 
receives a specific ACK and then sends data 1.  After 
one RTT, the sender receives ACK for data 1.  Data 2 
is the data segment sent out just before the sender 
receiving ACK for data 1 and data 3 is the data segment 
sent out just after the acknowledgment.  Here, our 
scheme estimates the value of cwnd when the sender 
receives a specific ACK as 
                                    
                            , that is, 

                          
                            .  

 The packet trace used in the inference may be captured 
in the middle of network.  Therefore, in general, the 
packet sequence in the trace is different from the 
sequence in which the relevant TCP sender sends and 
receives packets.  Our scheme needs to estimate the 
packet sequence in the TCP sender from that in the 
packet trace.  For this purpose, our scheme utilizes the 
TCP time stamp option in TCP segments.   

 Our scheme estimates a sequence of cwnd values 
observed in every RTT interval.  We denote this 
sequence as {cwndi}.  Then, a sequence of differences 
of consecutive cwnd values,  {      },  is defined by 
(1).   

                      (1) 
 In the end, our scheme evaluates the correlation of the 

two sequences, {cwndi} and {      } , by plotting 
them.  The graphs depend on the congestion control 
algorithms.   

It should be noted that, since our scheme does not require 
any tracking of TCP internal status, it is possible to infer the 
congestion control algorithms more easily than the 
conventional proposals.   

The reason we adopt cwnd values at RTT intervals is as 
follows.  First of all, many congestion control algorithms, 
such as Vegas and HS TCP, define a procedure for 
increasing cwnd at a RTT interval.  Some algorithms, such as 
AIMD, specify a procedure for receiving individual ACK 
segments, but the purpose of those algorithms is the change 
of cwnd in a RTT interval.  So, focusing the cwnd values at 

sender

a specific ACK

data 1

ACK for data 1

RTT

data 2

data 3

 
Figure 1.  Principle for cwnd estimation. 
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RTT intervals is considered as appropriate for reflecting the 
purpose of congestion control algorithms.   

The next point is that the algorithms define cwnd values 
in a byte but data segments are sent in the unit of maximum 
segment size (MSS).  Therefore, the passive approach can 
detect the change of cwnd values in the order of MSS.  On 
the other hand, many algorithms change cwnd values in the 
order of MSS during a RTT interval.   

B. Methodology for estimating cwnd at RTT intervals 

As mentioned above, the time associated with individual 
captured segments in a packet trace is not the exact time 
when the data sender sent or received those segments.  So, 
our scheme estimates a cwnd associated with one RTT 
interval in the following way.   
 First, our scheme focuses on an ACK segment in the 

packet trace, for example, ACK with ack-1 in Fig. 2.   
 Next, it looks for the first data segment whose TSecr 

(Time Stamp Echo Reply) is equal to TSval (Time 
Stamp Value) of the ACK segment we are focusing on, 
data with seq-3 in Fig. 2.   

 Our scheme then looks for the first ACK segment 
acknowledging this data segment, in this case, ACK 
with ack-3.   

 As the fourth step, it looks for the data segment whose 
TSecr is equal to TSval of the second ACK segment.  
In the example of Fig. 2, this corresponds to data with 
seq-7.   

After these steps, our scheme estimates that the first data 
segment, data with seq-3, and the second ACK segment, 
ACK with ack-3, construct a RTT relationship.  Based on this 
estimation, our scheme estimates that cwnd in the unit of 
MSS at the moment of receiving ACK with ack-1 is equal to 
(2).   

 
   -     - 

   
 (2) 

C. Applying our scheme to AIMD 

In the AIMD congestion control algorithm, cwnd is 
increased each time the TCP sender receives an ACK 
segment acknowledging new data.  The increase is one 

segment during the slow start phase, and 
 

    
 segments 

during the congestion avoidance phase.  During one RTT, 
cwnd of data segments are sent and acknowledged.  

Therefore, in the slow start phase, cwnd is increased by the 
value of cwnd (cwnd is doubled).  This means that 

            . 
On the other hand, in the congestion avoidance phase, cwnd 
is increased by one segment during one RTT.   So, in this 
phase,  

        .   
So, plotting cwnd and       generates the graph in Fig. 3.  
In this figure, it is assumed that the initial congestion 
window is one MSS, and that the slow start continues until 
cwnd is 16 followed by the congestion avoidance.   

D. Applying our scheme to TCP Vegas 

TCP Vegas detects congestion by the increase of RTT.  It 
measures the minimal RTT during the connection lifetime.  
With the current values of cwnd and RTT, it estimates the 
buffer size in the bottleneck node as (3).   

                 
           

   
 (3) 

Vegas uses this BufferSize for the control in the 
congestion avoidance phase in the following way.   
 If              , then cwnd is increased by one 

MSS.  (In the Linux implementation,   is less than 2.) 
 If              , then cwnd is decreased by one 

MSS.  (In the Linux implementation,   is more than 4.) 
 If                , then the system is considered 

to be in a steady state and no modification to cwnd  is 
applied.   

This examination is done at every RTT interval.  Therefore, 
the difference of cwnd at RTT interval,  {      }, is  

                
in the congestion avoidance phase.   

As for the slow start phase, cwnd is increased every other 
RTT.  This means that {      } is  

sender receivermonitor

ACK (ack-1, TSval-a, TSecr-a)data (seq-1, TSval-d, TSecr-d)
data (seq-2, TSval-d, TSecr-d)
data (seq-3, TSval-d, TSecr-d)
data (seq-4, TSval-d, TSecr-d)
data (seq-5, TSval-d, TSecr-d)
data (seq-6, TSval-d, TSecr-d)

ACK (ack-2, TSval-a, TSecr-a)

ACK (ack-3, TSval-a, TSecr-a)

data (seq-7, TSval-d, TSecr-d) ACK (ack-4, TSval-a, TSecr-a)

data (seq-8, TSval-d, TSecr-d)

 Figure 2.  Estimation of cwnd associated with one RTT. 
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Figure 3.  Applying to AIMD. 
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Figure 4.  Applying to TCP Vegas. 
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in this phase.  So, plotting cwnd and       generates the 
graph in Fig. 4 for TCP Vegas.  In this figure, it is assumed 
that the initial congestion window is one MSS, that the slow 
start continues until cwnd is 16, and that BufferSize increases 
when cwnd is 20.   

E. Applying our scheme to TCP Veno 

The Veno (VEgas and ReNO) algorithm uses the Vegas 
estimate in order to limit the increase of cwnd during the 
congestion avoidance phase.  If the Vegas buffer estimate 
shows excessive buffer utilization (i.e.,              ), a 
TCP sender increases cwnd by one for every two RTT.   

This means that the increase of cwnd during the 
congestion avoidance phase is  

         during no congestion, and 
              during congestion.   

As a result, the plotting of cwnd and       will be as the 
graph in Fig. 5 for Veno.  In this figure, it is assumed that the 
initial congestion window is one MSS, that the slow start 
continues until cwnd is 16, and that congestion occurs when 
cwnd is 20.   

F. Applying our scheme to HS TCP 

The HS TCP changes the increase coefficient   
according to the current size of cwnd.  Here,   defines how 
many segments are added to cwnd for one RTT in the 
congestion avoidance phase.  When cwnd is less than or 
equal to 38 segments,   is 1, which has the same behavior as 
the traditional AIMD.  If cwnd is more than 84K segments,   
is 70.  Between 38 and 84K segments,   is interpolated from 
1 and 70 linearly.   

In the slow start phase, HS TCP adopts the limited slow 
start, which bounds the maximum increase step during this 
phase to 100 segments.   

These specifications give the plotting of cwnd and 
      as shown in Fig. 6 in the form of semilog graph.  In 
the graph, the congestion avoidance is started from cwnd of 
32, and the relationship between the consecutive cwnds is 
defined as in (4) for       which is between 38 and 8700.   

               
    

       
(        )    (4) 

G. Applying our scheme to CUBIC TCP 

CUBIC TCP defines cwnd as a cubic function of elapsed 
time T since the last congestion event.  Specifically, it 
defines cwnd by (5).   

       (  √  
       

 

 
)

 

         (5) 

Here, C is a predefined constant,   is a coefficient of 
multiplicative decrease in the congestion control, and 
       is the value of cwnd just before the loss detection 
in the last congestion event.   

From this equation, the increase of cwnd during one RTT 
can be obtained approximately by (6).   

     
 (    )

  
       (  √  

       

 

 
)

 

 (6) 

By using (5), (6) is represented as a function of cwnd as in 
(7).   

     
 (    )

  
      √ 

 
(√            
 )

 
 (7) 

This result gives the plotting of cwnd and        as in Fig. 
7.  Here, it is assumed that         is 0 in the slow start 

phase and      √ 
 

      

H. Applying our scheme to TCP Illinois 

TCP Illinois changes the increase coefficient of cwnd,  , 
according to the queuing delay.  The queuing delay is 
measured as the increase of RTT from the minimum RTT for 
the connection.  Depending on the queuing delay,   changes 
from 0.1 segments to 10 segments.  The value of   is 
updated once per every RTT.  Therefore, the plotting of 
cwnd and        will be given as in Fig. 8.  In this figure, it 
is assumed that the initial congestion window is one MSS, 
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Figure 5.  Applying to TCP Veno. 
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Figure 6.  Applying to HS TCP. 
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Figure 7.  Applying to CUBIC TCP. 
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that the slow start continues until cwnd is 16, and that the 
queuing delay is small in the beginning of the congestion 
avoidance.   

IV. INFERRING IPHONE 5 TCP ALGORITHM 

As an example of the inferring of TCP congestion control 
algorithm using our scheme, we performed an experiment 
estimating the TCP algorithm of iPhone 5.  Fig. 9 shows the 
configuration.  An ftp application on an iPhone 5 terminal 
communicates with an ftp server through an LTE network 
and the Internet.  While the iPhone 5 uploads a file to the 
server, it moves on a local train in Tokyo.  The packet traces 
are collected in a PC connected with the iPhone through the 
remote virtual interface [17].   

We collected two packet traces.  Fig. 10 shows the results 
of the first example.  Fig. 10 (a) and (b) show the TCP 
sequence number versus time and cwnd value versus time in 
this communication, respectively.   These graph show that 
the handover happened two times around at 7 second and 35 
second, and accordingly, the cwnd value decreases.  The 
graph (c) shows the relationship between       and cwnd.  
It is noted that the decreases of cwnd are not described in this 
figure.  The graph shows the slow start like behavior from 
cwnd =1 to cwnd = 23, in which       is proportional to 
cwnd.  On the other hand, from cwnd = 30 to 111, most of 
observed values for       is equal to one.  It can be said 
that the graph in Fig. 10 (c) is quite similar with that in Fig. 3 
and so the results of this example says that the TCP 
congestion control algorithm used in iPhone 5 is AIMD.   

Fig. 11 shows another example for iPhone 5.  In this 
example, packet losses occur at 20, 30, 70 and 95 second in 
the communication, and accordingly the cwnd value changes 
as shown in Fig. 11 (b).  Based on this graph, we depicted 
the relationship between        and cwnd as shown in Fig. 
11 (c).  This figure has a proportional part and one segment 
part similarly with Fig. 10 (c).  This result also says that the 
the TCP congestion control algorithm used in iPhone 5 is 
AIMD.   

V.   CONCLUSIONS 

This paper proposed a simple but effective scheme 
inferring the TCP congestion control algorithm from 
passively collected packet traces.  The proposed scheme 
estimates cwnd values at every RTT intervals from packet 
traces and makes the correlation beween the cwnd values and 
the differences consecutive cwnd values by plotting these 
values.  We showed that the result plotting can explicitly 

distinguish AIMD, TCP Vegas, TCP Veno, HS TCP, CUBIC 
TCP and TCP Illinois.  As an example, we applied our 
scheme to identify the TCP congestion control algorithm 

LTE Network Internet

ftp server

iPhone 5

PC for tcpdump

file upload

 
Figure 9.  Configuration of experiment. 

 
(a) sequence number vs. time. 

 
(b) cwnd vs. time. 

 
(c)       vs. cwnd. 

Figure 10.  Results of first example. 
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used in iPhone 5.  From two packet traces in which an 
iPhone 5 terminal is sending ftp data, our scheme showed 
two graphs showing the AIMD like relationship between 
      and cwnd.  We could successfully conclude that the 
algorithm used in iPhone 5 is AIMD from these results.   
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Figure 11.  Results of second example. 
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