
Multi-threaded Packet Timestamping for End-to-End QoS Evaluation

Péter Orosz and Tamás Skopkó

Faculty of Informatics

University of Debrecen

Debrecen, Hungary

e-mail: {oroszp, skopkot}@unideb.hu

Abstract— In this work, we are focusing on the enhancement of

end-to-end QoS evaluation by improving the performance and

the functionality of packet timestamping. Accordingly, a new

software-based multi-layer timestamping method is

introduced, which implements a multi-threaded offloading

mechanism. Compared to the available generic kernel-time

based solutions, it provides not only higher precision but also

lower kernel level overhead and thus lower packet loss without

using any special hardware component. These improvements

make the proposed method a more efficient basis for multi-

layer QoS measurement performed on-the-fly on the

communication endpoint, which may result in a better QoS-

QoE correlation. The efficiency of the solution is validated

against the generic, kernel-time based timestamping using

their Linux implementations.

Keywords-Timestamping; Media traffic; QoS evaluation;

Next Generation Networking; Computer network management;

Network measurement; Linux

I. INTRODUCTION

With the emergence of 1 Gbit/s and faster access
networks and with the increasing demand for their packet
level monitoring, the dominance of the purely software
based network measurement tools, operating on generic
desktop PCs, gradually decreased. Considering the high
transmission rate on the monitored network link, the
resolution and precision of software timestamping methods
and the lossy packet procession provided by a generic
Network Interface Card (NIC) became a serious bottleneck
of traffic analysis. The drawbacks of the software-based
packet capturing are already investigated by several papers
(see Section II). As primary effect, using low resolution and
precision software timestamps leads to an incorrect
representation of the packet inter-arrival times, since the
generation of these timestamps is performed within a shared
resource environment, where the timestamping process, as
any other process, is scheduled by the OS scheduler
subsystem and competes for CPU time. The common kernel-
time based solutions operate with large overhead and high
variance, which could be a bottleneck of precise QoS
measurement. The final 64-bit Time of Day (ToD) format of
the software timestamp is calculated within the kernel space
on-the-fly, based upon an arbitrary kernel clock-source (High
Precision Event Timer (HPET), Advanced Configuration and
Power Interface (ACPI), Timestamp Counter (TSC), etc.),
which, by executing several conversion functions upon
packet reception, results in a large packet processing
overhead. Among other complex packet processing tasks, the

timestamp calculation is implemented within the packet
reception softIRQ, which, due to its complexity, produces
excessive CPU load. The OS scheduling mechanism and the
large timestamping overhead provides a very low precision
timestamping output, while the intensive CPU usage of
softIRQ results in packet loss. All these effects make end-to-
end Quality of Service (QoS) evaluation that includes flow
level delay, jitter, packet loss, and reordering measurement,
very ineffective on high speed communication links.
Nevertheless, today’s hardware accelerated network
monitoring devices are designed to operate on aggregated
backbone link, not on an access link belonging to one single
endpoint node. In contrast, monitoring QoS level of real-time
media services on the communication endpoint itself should
be a reasonable option and this is the point where the
software-based on-the-fly QoS evaluation comes in.
However, QoS evaluation (including timestamping) requires
CPU and other resources and therefore it should be
performed with low overhead without degrading the
performance of the monitored real-time media
communication.

We are facing three rudimental problems: low resolution
and low precision of the timestamps, and large overhead.
The resolution of the software timestamp, as in case of any
timestamping mechanism, depends on the resolution of the
applied hardware clock source, the length of the data
structures that store the generated timestamp value, and the
granularity of the clock-to-time conversion. Enhancing the
microsecond resolution up to one nanosecond is not a
particularly big challenge, since today’s x86 and x64 CPUs
operate at 1+ GHz and support the constant Time Stamp
Counter (TSC) register, which acting as a kernel clock
source enables the timestamping subsystem to generate
timestamps with 1 ns resolution [1]. The constant rate
property assures the register value to be incremented with a
fixed rate according to the maximum CPU frequency,
independently of the current operational mode.

High resolution time measurement is already supported
by the Linux kernel from version 2.6.27 [2]. All we have to
do is to provide an unconverted 64-bit path for these high
resolution timestamps up to the user space monitoring
application. To achieve this goal, we previously enhanced
the common libpcap library to natively handle the
nanosecond resolution timestamps provided by the kernel
[3][4][5]. Unfortunately, the enhancement of the resolution
alone does not imply high time precision. The primary
bottleneck - the large deviation of the generation overhead -
decreases the precision to an unacceptable level. Moreover,

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

the large CPU overhead of the built-in timestamp generator
mechanism could lead to a serious amount of packet loss
during the real-time conversation. To overcome this
problem, a new timestamping method was designed and
implemented, which is based on a multi-threaded offloading
approach. The timestamping process is split into two
separate phases. The primary goal was to achieve minimal
timestamping overhead in kernel context with very low
variation (see Section III). Even if we know that it is
impossible to provide a precision close to the hardware-
based timestamping solutions, a realistic goal was to
significantly exceed the precision level of the existing
software-based solutions available on generic multi-core
architectures. A hardware accelerated approach of multi-
layer timestamping is already presented in our previous
paper [6]. However, in this proposal, we introduce a purely
software based timestamping solution with low overhead and
low variance, which enables to apply the method for multi-
layer timestamping on generic PCs without any hardware
acceleration.

Another critical aspect of packet processing is the packet
loss ratio caused by the capturing itself. Beyond the benefits
related to timestamp precision, the proposed timestamping
method significantly decreases the packet loss compared to
the large overhead kernel-time (ktime) based timestamping
mechanisms. Active QoS monitoring of real-time media
applications can therefore benefit from this method.

The rest of the paper is organized as follows. Section II
gives a summary of related works in the field of high
precision software-based packet timestamping. Theoretical
background of our multi-threaded timestamping method is
described in Section III and its Linux based implementation
is presented in Section IV. We evaluated the performance of
the introduced method using comparative laboratory
measurements in Section V. Finally, Section VI concludes
the presented work.

II. RELATED WORKS

In the last decade, several research projects focused on
the challenges of high performance network monitoring,
especially triggered by the emergence of the 1+ Gbps
networking technologies [7][8]. While most of them are
hardware accelerated solutions, some projects investigated
the possible performance enhancement of the software-based
network monitoring suites. Coppens et al. introduced a new
scalable network monitoring platform called SCAMPI [9],
which supports dedicated hardware accelerated monitoring
boards as well as generic NICs for packet capturing. Heyde
et al. investigated the loss property of the Intel NIC-based
packet capturing in the context of Lawful interception [10].
Pásztor et al. presented a high resolution, low overhead
timestamping method based on the CPU’s TSC register [11].
Their timestamping proposal includes an offloading
mechanism based on a post-processing phase. In our work,
we defined two parallel goals: improving the performance of
the offloading method proposed by Pásztor et al., and also
decreasing the packet loss ratio during the capture process.
The TSC clock source has high resolution as well as high
precision, as already investigated in [11]. However, the

software timestamping methods, relying on the TSC register
as clock source, have a very limited overall precision due to
the large generation overhead and the OS scheduling (within
the shared resource environment). These bottlenecks do not
enable these methods to provide adequate precision for high
speed QoS evaluation.

III. THEORETICAL BACKGROUND

Our proposed timestamping mechanism’s primary
benefit is its ultra-low timestamp generation overhead and
the low variance of this overhead on most of the generic
purpose multi-core system. The applied clock source is the
TSC clock cycle register, which is read by a custom, high
priority kernel process at packet arrival, then, the obtained
value is passed to the higher level packet processing
application, which offloads the clock-to-time conversion.
The original method proposed by Pásztor et al. performed
the conversion in a separated post-processing phase and did
focus neither on enhancing the packet processing
performance nor its multi-layer application. In contrast, our
overhead reduction and precision improvement is gained by
the combination of following two ideas.

A. Decreasing timestamping overhead and packet loss ratio

within the kernel space

The packet processing softIRQ, which implements
kernel-level timestamping functionality, should be statically
assigned to an otherwise idle CPU core by directly altering
its core affinity. Instead of providing the final timestamp
format, timestamping within the softIRQ context should
include the acquisition of the TSC value only, which requires
not more than 24 clock cycles to be performed. Then, this
64-bit clock cycle value, which represents the moment when
a packet reaches the kernel’s network stack, is preserved
with the packet within its path up to the conversion thread.
For further improvement of timestamp precision, all
interrupts are disabled on the assigned CPU core during the
execution of the timestamping code.

B. Offloading timestamp conversion to the user space

The cycle-to-time conversion should be done on-the-fly
by a dedicated user space thread of the multi-thread
capturing process. After conversion, the nanosecond
resolution timestamps, which is now in time of day format,
should be sent back to the main packet processing thread.
The dedicated timestamp conversion thread is also running
on an otherwise idle CPU core and therefore it provides a
very low conversion overhead (Fig. 1).

The combination of these two ideas does not just reduce
timestamping overhead and improve the precision, but
significantly decreases the kernel-level packet loss ratio at
high arrival rates: by offloading the cycle-to-time
conversion, the low level processing of each incoming
packet requires lower CPU resource and thus, more packets
can be accepted by the kernel networking subsystem within
the same time interval without resource exhaustion. To
maintain the low loss ratio up to the capture application,
large packet buffers should be applied at the higher levels of
the kernel space. Our comparative measurements validate the

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

performance parameters of the proposed method using its
Linux based implementation (see Section V).

Figure 1. The new timestamping method produces a raw timestamp value

in kernel space with very low overhead and implements the offloading of
the cycle-to-time conversion by a dedicated processing thread in user

space.

In network measurement, the precision of timestamping
is a criterion more important than the low clock offset,
especially for measuring packet inter-arrival times and
round-trip delays at one single point of the network (e.g.,
active probing). On a generic purpose PC without any
additional hardware, the TSC clock cycle register is the
optimal choice for high precision packet timestamping, since
it has a very low rate error (< 0.3 ppm) as presented in [11].
The multi-core architecture and the new multi-threaded
offloading method together can provide enough processing
capacity to fulfill the requirements of high precision packet
timestamping.

The proposal of Pásztor et al. is based upon Fast Ethernet
measurements. Today, Gigabit Ethernet is widely used for
connecting endpoints to the network. Our multi-threaded
timestampig solution was therefore validated using intensive
traffic patterns on 1 Gbps network links. Intensive traffic on
a Gigabit Ethernet link may involve high packet rate with
inter-arrival times below 1 s. The timestamping mechanism
must provide enough resolution and precision to realistically
interpret packet arrivals even at high rate. The resolution and
precision capabilities of the software-based timestamping are
determined by the generation overhead and its variance.
Accordingly, the desirable overhead of packet timestamping
should be well below the 1 s order to represent the inter-
arrival times.

On a single core system, even with our multi-threaded
offloading method, it is hard to demonstrate such a low
timestamp generation time since it is not possible for the
packet processing softIRQ to be assigned to an idle CPU
core. Accordingly, we assume, that a generic multi-core CPU
with constant TSC register is available for the measurement
task.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

We decided to implement our method under Linux since
it has sophisticated interrupt handling and scheduling
mechanisms. As a first step, we modified the kernel's packet
timestamping code by replacing the complex and relatively
time-consuming calls by a simple RDTSC instruction. In the

unmodified kernel, timestamps are generated by calling
ktime_get_real() that queries the system's clock source and
calculates a wall-clock time. RDTSC is an x86 CPU
instruction that reads the CPU's TSC register. When
compared to the built-in timestamping method, executing
RDTSC takes shorter time, just about 24 clock cycles on a
decent Intel CPU. Since the generated values are not
represented in wall-clock format, they need to be post-
processed later.

As a further optimization, we locked the packet
processing softIRQ to a specific CPU-core. It ensures that no
other interrups are intefering with timestamping and the
packet processing functions. Multiple CPU cores don't
necessarily keep their TSC counters in sync. Locking the
softIRQ to a specific core also ensures that the read TSC
values are acquired from only one CPU. The cycle to ToD
conversion should be done in the user-space, utilizing
another core. The off-line processing is elaborate when doing
long-term capturing. Therefore, we modified the libpcap
library to do the conversion at packet receiption. The capture
application should query the CPU frequency and report it to
libpcap to be able to the conversion. We locked the dumpcap
application to another core. By using a multi-threaded
design, libpcap could utilize more than one core for
converting the timestamps.

V. EVALUATION OF THE TIMESTAMPING PERFORMANCE

Comparative measurements and statistical analysis of the
measurement output data are used to validate the
performance parameters of the new multi-threaded
offloading method for software timestamping. The
investigated parameters for both methods (the kernel-time
based and the multi-threaded one) involve the per-packet
overhead of the timestamping process, the variance of the
overhead for the processed packets and the overall packet
loss ratio within the system. A generic purpose PC with Intel
Core i7 K-2600 2.93 GHz CPU and Linux non-preemptive
kernel 2.6.39.2 was set up for all of our measurements. The
used NIC was the common and well documented Intel
1000/PRO PT PCI Express card with the e1000e Linux
device driver version 1.3.10-k2. This driver implements the
New API (NAPI) operation mode introduced by the Linux
kernel from version 2.4, which determines the low-level
packet processing mechanism of the system [12]. All of the
network stack related kernel buffer and driver parameters
were optimized for intensive incoming traffic. With the
following comparative measurement session, the
characteristics of the timestamping overhead and its variation
were investigated. In order to accurately measure the
overhead of the timestamping mechanism, we modified the
original Linux kernel. Two extra timestamping checkpoints
had been inserted into the packet processing path, one just
before the execution of the packet timestamping function
__net_timestamp(), and another straight after its return point.
These two timestamps are generated by the rdtscll() function
call, which has a very low overhead, since it does not
perform any conversion. The delta value minus the
checkpoint generation overhead defines the per-packet
timestamp generation overhead. This delta value is converted

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

to a real time value in a later evaluation phase. The built-in
(kernel-time based) timestamping code performs real time
cycle-to-time conversion and therefore, it produces an
overhead with high variance, which results in low precision
and also implies significant packet loss. Offloading this
conversion task reduces timestamp generation time, which
improves precision and reduces packet loss as well.

A. Investigating precision: line-rate homogenous traffic

pattern

The first measurement scenario enables us to investigate
the precision property of both timestamping methods. In this
setup, we applied homogenous traffic patterns including
fixed packet size and fixed inter-frame gap (IFG). This
measurement type requires a high precision traffic generation
device, which produces the line-rate packet stream in
hardware. For this purpose, we applied a dedicated FPGA
packet generator with Gigabit Ethernet interface. Since the
generator and the measurement PC are directly connected,
the packet inter-arrivals as seen on wire level are determined
by the transmission rate of this device and therefore, it can be
considered constant. The measurement PC, which was a
general purpose desktop computer, performed software
based packet capturing with a modified libpcap library
supporting both timestamping methods: the generic ktime-
based and the multi-threaded one. In both cases, the
timestamping code is executed at a well defined point of the
packet processing path. For non-NAPI supported device
drivers, the software timestamping code is executed within
interrupt context by the top half interrupt handler, when the
packet is en-queued into the input packet queue of the
operating system, while with NAPI support (it is our case),
the timestamping is performed by the bottom half handler
(softIRQ) [14]. In this latter configuration, the arrival time
represented by a software timestamp indicates the moment
when the packet is de-queued from the input packet queue,
and therefore is affected by the scheduling mechanism of the
Linux kernel and the intensity of the interrupts per second on
the CPU core that the softIRQ is running on. According to
the new method, interrupt handling was disabled during the
execution of the kernel level timestamping code with the
local_irq_disable() kernel function. This involves that no
interrupt is generated for the affected CPU core until the
interrupts are re-enabled. Since the execution overhead of the
ktime-based method is higher than the multi-threaded one,
the probability of an interrupt event (executing a top half
handler) to happen during its execution is also higher. The
execution of the top half handler puts the CPU in interrupt
context, which causes jitter in the execution of the
timestamping process.

The measurement (see Fig. 2 and Fig. 3) is performed
with an artificially generated traffic pattern (pattern #1) that
complies with one direction of a single VoIP conversation
including 140 bytes packets transmitted by the traffic
generator device in each 20 ms period, which is equivalent to
2,499,860 bytes of IFG. This is a typical packet size and
transmission intensity provided by a VoIP audio codec, i.e.,
G.729.

The second measurement is also done by a synthesized
traffic pattern of a HD video stream (see Fig. 4 and Fig. 5).
Pattern #2 includes 1,368 bytes packets with a fixed 169,631
bytes of IFG value.

Since these traffics contain homogenous packet
sequences, they are suitable to measure the timestamping
methods in terms of the variance of the measured inter-
arrivals, and the order and the variance of the generation
overheads.

The synthesized VoIP traffic, due to its light packet-
arrival intensity of 20 ms, does not imply high system load.
However, during this measurement, the timestamping
overhead provided by the generic ktime-based timestamping
presents an average of 195 ns with a large deviation. In
contrast, the multi-threaded timestamping method, by
applying an effective timestamp acquisition method and
offloading several conversion tasks to the user space, results
in a low overhead, the half of that of the ktime-based one
(Fig. 2).

TABLE I. TIMESTAMPING OVERHEAD FOR PATTERN #1

Timestamping methoda Overhead average

[ns]

Overhead

variance [ns]

Generic ktime 195.2762 176.0954

Multi-thread TS 73.49326 3.793385

a. Homogenous traffic of 140-byte packets with 2,499,860 bytes of IFG

Moreover, the variance provided by the overhead values
is also significantly lower (Table 1 and 2). Considering the
measurement results, we can find out that both the effective
resolution and the precision of the timestamps are
significantly improved with the new timestamping method.
Fig. 2 represents some extreme high values in the inter-
arrival times measured by the ktime-based method (green
bars), while these large values are not present in the result of
the multi-threaded measurement. The smaller deviation of
the multi-threaded solution implies higher timestamping
precision.

Figure 2. Density points of the timestamp generation overheads for the

generic method and the multi-threaded one.

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

Figure 3. Density points of the packet inter-arrival times

We observed that the large inter-arrival values are in
correlation with the large timestamping overhead values.
Accordingly, we can assume that the large variance of the
generation overhead drives to a very low precision
representation of the packet inter-arrival times and could lead
to false measurement results. Since there is a high correlation
between the generation overhead and the measured arrival
time, the low variance of the overhead is the key factor to get
high timestamping precision. Whereas the overhead values
of the generated traffic fall in a relatively small range, small
histogram bins should be chosen.

This applies to the inter-arrival time graph, too. The
histogram bars are spaced loosely and so, to make both
measurement results represent on the same histogram.

Figure 4. Density points of the timestamp generation overheads for the

generic method and the multithreaded one.

Later in this section, we will investigate the root cause of
the large variance represented by the generic ktime-based
method.

TABLE II. TIMESTAMPING OVERHEAD FOR PATTERN #2

Timestamping methoda Overhead average

[ns]

Overhead

variance [ns]

Generic ktime 173.3606 177.1197

Multithread TS 70.84912 8.197374

a. Homogenous traffic of 1368-byte packets with 169,631 bytes of IFG

Nevertheless, the new multi-threaded timestamping
method introduced in this paper, is a dedicated software-
based method, that improves the resolution as well as the
precision of the traffic measurement. Besides its primary
benefits, its low generation overhead has also a positive side-
effect: since it is less CPU intensive than the ktime-based
one, capturing intensive network traffic will result in lower
packet loss rate on any generic PC (see Fig. 6a and Fig. 6b).
The auto-correlation analysis of the overhead series showed
that the system with the new method has a high memory.
Accordingly, based on the current overhead value, future
overhead values can be predicted with a higher probability,
which implies higher system stability and improved
timestamp precision. If the intensity of the packet arrivals is
higher, as with the second measurement, the difference in the
measured properties becomes more obvious (see Fig. 4 and
Fig. 5).

B. Investigating packet loss ratio within the system

We also investigated the packet loss rate during the
capturing process in case of both methods. Extreme low
overhead values (< 25 ns) derive from the instruction
caching mechanism of the applied CPU architecture (Fig. 4).
Each measurement round was performed with fixed packet
size and fixed IFG combination. 20,000 packets were
transmitted each time by the hardware accelerated traffic
generator presented earlier, which was directly connected to
the measurement PC. The generated packets were captured
by the dumpcap application. According to the results
presented in Fig. 6a and Fig. 6b, the loss ratio with the multi-
threaded timestamping method is improved. Since this
method uses a low overhead access to the TSC register and
offloads all of the conversion tasks from the kernel space to a
dedicated user thread.

Figure 5. Density points of the packet inter-arrival times

98Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

This free time becomes available (within the kernel
space) to the kernel scheduler to give it away to another CPU
intensive softIRQ tasks that are parts of the packet
processing subsystem.

Figure 6. a) Packet loss ratio in function of the packet size b) Packet loss

ratio in function of the inter-frame gap

Moreover, the execution of the conversion code in user
space is more tolerant to delay. These benefits directly affect
the packet processing performance and thus the loss ratio.
When the CPU core, dedicated for the execution of the
packet processing softIRQ, gets full load for a relatively long
time period then the NIC’s private queue reaches its
maximum length and packet loss will happen.

VI. CONCLUSION

A multi-threaded timestamping method for end-to-end
QoS evaluation has been introduced, which provides low
kernel context overhead by eliminating the built in clock
source API inside the kernel and offloading the conversion
tasks to a dedicated processing thread in the user space. In
contrast to the solution of Pásztor et al., this method
implements a multi-threaded design that supports on-the-fly
timestamp conversion and multi-layer application. The main
goal of the design was to minimize kernel context
timestamping overhead during packet capturing in order to
improve timestamping precision and increase effective
resolution. The performance properties of the new solution
have been evaluated and compared against the generic kernel
time based timestamping mechanism available in the Linux
kernel. We showed that the overhead of our new method is
half of the generic one enabling multi-layer timestamping
and the variation of the overhead that determines the
precision property of the timestamping is also significantly
improved. Over the main benefits, this solution has a positive
side effect: the packet loss rate, while capturing high
intensity network traffic, is decreased, since the new method
requires less CPU resource in kernel context, furthermore the
execution of the offloaded timestamp conversion tasks can
be delayed due to the scheduling policy of the user space.
Though our method was implemented on Linux system, it is
not necessarily limited to this OS and the x86-based
processors. It can be adapted to environments built on multi-
core processors with counting registers (linear increment)
and kernels capable of binding packet processing threads to
specific cores (affinity).

ACKNOWLEDGMENT

The publication was supported by the TAMOP-4.2.2.C-
11/1/KONV-2012-0001 project. The project has been
supported by the European Union, co-financed by the
European Social Fund.

This research was supported by the European Union and
the State of Hungary, co-financed by the European Social
Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-
0001 ‘National Excellence Program’.

REFERENCES

[1] TSC, Intel64 and IA-32 Architectures SoftwareDeveloper’s
Manual. Online. Available from:
http://download.intel.com/products/processor/manual/325462.
pdf, [retrieved: august, 2013]

[2] Linux kernel source: Linux/arch/x86/include/asm/timer.h.
Online. Available from:

http://www.kernel.org/, [retrieved: august, 2013]

[3] P. Orosz and T. Skopko, “Software-based Packet Capturing
with High Precision Timestamping for Linux,” 5th
International Conference on Systems and Networks
Communications, August 22-27, 2010, Nice, France,
Proceeding pp. 381-386.

[4] P. Orosz, T. Skopko, and J. Imrek, “Performance Evaluation
of the Nanosecond Resolution Timestamping Feature of the
Enhanced Libpcap,” 6th International Conference on Systems
and Networks Communications, ICSNC 2011, October 23-28,
2011, Barcelona, Spain, ISBN 978-1-61208-166-3,
Proceeding pp. 220-225.

[5] P. Orosz and T. Skopko, “Performance Evaluation of a High
Precision Software-based Timestamping Solution for
Network Monitoring,” the International Journal on Advances
in Software, ISSN 1942-2628, 2011 Vol 4. No. 1 & 2 pp. 181-
188.

[6] P. Orosz, T. Skopko, and J. Imrek, “A NetFPGA-based
Network Monitoring System with Multi-layer Timestamping:
Rnetprobe,” NETWORKS 2012, 15th International
Telecommunications Network Strategy and Planning
Symposium, October 15-18, 2012, Rome, Italy, Proceeding
pp. 1-6.

[7] J. Micheel, S. Donnelly, and I. Graham, “Precision
timestamping of network packets,” 1st ACM SIGCOMM
Workshop on Internet Measurement, November 1-2, 2001,
San Francisco, California, USA, Proceeding pp. 273-277.

[8] G. Iannaccone, C. Diot, I. Graham, and N. McKeown,
“Monitoring very high speed links,” 1st ACM SIGCOMM
Workshop on Internet Measurement, November 1-2, 2001,
San Francisco, California, USA, Proceeding pp. 267-271.

[9] J. Coppens, E.P. Markatos, J. Novotny, M. Polychronakis, V.
Smotlacha, and S. Ubik, "SCAMPI - A Scaleable Monitoring
Platform for the Internet," 2nd International Workshop on
Inter-Domain Performance and Simulation (IPS 2004),
Budapest, Hungary, 22-23 March 2004

[10] A.A. Heyde, “Investigating the performance of Endace DAG
monitoring hardware and Intel NICs in the context of Lawful
Interception,” CAIA Technical Report 080222A, august 2008.

[11] A. Pásztor and D. Veitch, “PC Based Precision Timing
Without GPS,” ACM SIGMETRICS 2002, Proceeding pp. 1-
10.

[12] Linux NAPI device driver packet processing framework.
Online. Available from:

http://www.linuxfoundation.org/collaborate/workgroups/netw
orking/napi, [retrieved: august, 2013]

99Copyright (c) IARIA, 2013. ISBN: 978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications

