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Abstract— In this work, we are focusing on the enhancement of 

end-to-end QoS evaluation by improving the performance and 

the functionality of packet timestamping. Accordingly, a new 

software-based multi-layer timestamping method is 

introduced, which implements a multi-threaded offloading 

mechanism. Compared to the available generic kernel-time 

based solutions, it provides not only higher precision but also 

lower kernel level overhead and thus lower packet loss without 

using any special hardware component. These improvements 

make the proposed method a more efficient basis for multi-

layer QoS measurement performed on-the-fly on the 

communication endpoint, which may result in a better QoS-

QoE correlation. The efficiency of the solution is validated 

against the generic, kernel-time based timestamping using 

their Linux implementations. 
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I.  INTRODUCTION 

With the emergence of 1 Gbit/s and faster access 
networks and with the increasing demand for their packet 
level monitoring,  the dominance of the purely software 
based network measurement tools, operating on generic 
desktop PCs, gradually decreased. Considering the high 
transmission rate on the monitored network link, the 
resolution and precision of software timestamping methods 
and the lossy packet procession provided by a generic 
Network Interface Card (NIC) became a serious bottleneck 
of traffic analysis. The drawbacks of the software-based 
packet capturing are already investigated by several papers 
(see Section II). As primary effect, using low resolution and 
precision software timestamps leads to an incorrect 
representation of the packet inter-arrival times, since the 
generation of these timestamps is performed within a shared 
resource environment, where the timestamping process, as 
any other process, is scheduled by the OS scheduler 
subsystem and competes for CPU time. The common kernel-
time based solutions operate with large overhead and high 
variance, which could be a bottleneck of precise QoS 
measurement. The final 64-bit Time of Day (ToD) format of 
the software timestamp is calculated within the kernel space 
on-the-fly, based upon an arbitrary kernel clock-source (High 
Precision Event Timer (HPET), Advanced Configuration and 
Power Interface (ACPI), Timestamp Counter (TSC), etc.), 
which, by executing several conversion functions upon 
packet reception, results in a large packet processing 
overhead. Among other complex packet processing tasks, the 

timestamp calculation is implemented within the packet 
reception softIRQ, which, due to its complexity, produces 
excessive CPU load. The OS scheduling mechanism and the 
large timestamping overhead provides a very low precision 
timestamping output, while the intensive CPU usage of 
softIRQ results in packet loss. All these effects make end-to-
end Quality of Service (QoS) evaluation that includes flow 
level delay, jitter, packet loss, and reordering measurement, 
very ineffective on high speed communication links. 
Nevertheless, today’s hardware accelerated network 
monitoring devices are designed to operate on aggregated 
backbone link, not on an access link belonging to one single 
endpoint node. In contrast, monitoring QoS level of real-time 
media services on the communication endpoint itself should 
be a reasonable option and this is the point where the 
software-based on-the-fly QoS evaluation comes in. 
However, QoS evaluation (including timestamping) requires 
CPU and other resources and therefore it should be 
performed with low overhead without degrading the 
performance of the monitored real-time media 
communication. 

We are facing three rudimental problems: low resolution 
and low precision of the timestamps, and large overhead. 
The resolution of the software timestamp, as in case of any 
timestamping mechanism, depends on the resolution of the 
applied hardware clock source, the length of the data 
structures that store the generated timestamp value, and the 
granularity of the clock-to-time conversion. Enhancing the 
microsecond resolution up to one nanosecond is not a 
particularly big challenge, since today’s x86 and x64 CPUs 
operate at 1+ GHz and support the constant Time Stamp 
Counter (TSC) register, which acting as a kernel clock 
source enables the timestamping subsystem to generate 
timestamps with 1 ns resolution [1]. The constant rate 
property assures the register value to be incremented with a 
fixed rate according to the maximum CPU frequency, 
independently of the current operational mode. 

High resolution time measurement is already supported 
by the Linux kernel from version 2.6.27 [2]. All we have to 
do is to provide an unconverted 64-bit path for these high 
resolution timestamps up to the user space monitoring 
application. To achieve this goal, we previously enhanced 
the common libpcap library to natively handle the 
nanosecond resolution timestamps provided by the kernel 
[3][4][5]. Unfortunately, the enhancement of the resolution 
alone does not imply high time precision. The primary 
bottleneck - the large deviation of the generation overhead - 
decreases the precision to an unacceptable level. Moreover, 
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the large CPU overhead of the built-in timestamp generator 
mechanism could lead to a serious amount of packet loss 
during the real-time conversation. To overcome this 
problem, a new timestamping method was designed and 
implemented, which is based on a multi-threaded offloading 
approach. The timestamping process is split into two 
separate phases. The primary goal was to achieve minimal 
timestamping overhead in kernel context with very low 
variation (see Section III). Even if we know that it is 
impossible to provide a precision close to the hardware-
based timestamping solutions, a realistic goal was to 
significantly exceed the precision level of the existing 
software-based solutions available on generic multi-core 
architectures. A hardware accelerated approach of multi-
layer timestamping is already presented in our previous 
paper [6]. However, in this proposal, we introduce a purely 
software based timestamping solution with low overhead and 
low variance, which enables to apply the method for multi-
layer timestamping on generic PCs without any hardware 
acceleration. 

Another critical aspect of packet processing is the packet 
loss ratio caused by the capturing itself. Beyond the benefits 
related to timestamp precision, the proposed timestamping 
method significantly decreases the packet loss compared to 
the large overhead kernel-time (ktime) based timestamping 
mechanisms. Active QoS monitoring of real-time media 
applications can therefore benefit from this method. 

The rest of the paper is organized as follows. Section II 
gives a summary of related works in the field of high 
precision software-based packet timestamping. Theoretical 
background of our multi-threaded timestamping method is 
described in Section III and its Linux based implementation 
is presented in Section IV. We evaluated the performance of 
the introduced method using comparative laboratory 
measurements in Section V. Finally, Section VI concludes 
the presented work. 

II. RELATED WORKS 

In the last decade, several research projects focused on 
the challenges of high performance network monitoring, 
especially triggered by the emergence of the 1+ Gbps 
networking technologies [7][8]. While most of them are 
hardware accelerated solutions, some projects investigated 
the possible performance enhancement of the software-based 
network monitoring suites. Coppens et al. introduced a new 
scalable network monitoring platform called SCAMPI [9], 
which supports dedicated hardware accelerated monitoring 
boards as well as generic NICs for packet capturing. Heyde 
et al. investigated the loss property of the Intel NIC-based 
packet capturing in the context of Lawful interception [10]. 
Pásztor et al. presented a high resolution, low overhead 
timestamping method based on the CPU’s TSC register [11]. 
Their timestamping proposal includes an offloading 
mechanism based on a post-processing phase. In our work, 
we defined two parallel goals: improving the performance of 
the offloading method proposed by Pásztor et al., and also 
decreasing the packet loss ratio during the capture process. 
The TSC clock source has high resolution as well as high 
precision, as already investigated in [11]. However, the 

software timestamping methods, relying on the TSC register 
as clock source, have a very limited overall precision due to 
the large generation overhead and the OS scheduling (within 
the shared resource environment). These bottlenecks do not 
enable these methods to provide adequate precision for high 
speed QoS evaluation. 

III. THEORETICAL BACKGROUND 

Our proposed timestamping mechanism’s primary 
benefit is its ultra-low timestamp generation overhead and 
the low variance of this overhead on most of the generic 
purpose multi-core system. The applied clock source is the 
TSC clock cycle register, which is read by a custom, high 
priority kernel process at packet arrival, then, the obtained 
value is passed to the higher level packet processing 
application, which offloads the clock-to-time conversion. 
The original method proposed by Pásztor et al. performed 
the conversion in a separated post-processing phase and did 
focus neither on enhancing the packet processing 
performance nor its multi-layer application. In contrast, our 
overhead reduction and precision improvement is gained by 
the combination of  following two ideas.  

A. Decreasing timestamping overhead and packet loss ratio 

within the kernel space  

The packet processing softIRQ, which implements 
kernel-level timestamping functionality, should be statically 
assigned to an otherwise idle CPU core by directly altering 
its core affinity. Instead of providing the final timestamp 
format, timestamping within the softIRQ context should 
include the acquisition of the TSC value only, which requires 
not more than 24 clock cycles to be performed. Then, this 
64-bit clock cycle value, which represents the moment when 
a packet reaches the kernel’s network stack, is preserved 
with the packet within its path up to the conversion thread. 
For further improvement of timestamp precision, all 
interrupts are disabled on the assigned CPU core during the 
execution of the timestamping code. 

B. Offloading timestamp conversion to the user space 

The cycle-to-time conversion should be done on-the-fly 
by a dedicated user space thread of the multi-thread 
capturing process. After conversion, the nanosecond 
resolution timestamps, which is now in time of day format, 
should be sent back to the main packet processing thread. 
The dedicated timestamp conversion thread is also running 
on an otherwise idle CPU core and therefore it provides a 
very low conversion overhead (Fig. 1).  

The combination of these two ideas does not just reduce 
timestamping overhead and improve the precision, but 
significantly decreases the kernel-level packet loss ratio at 
high arrival rates: by offloading the cycle-to-time 
conversion, the low level processing of each incoming 
packet requires lower CPU resource and thus, more packets 
can be accepted by the kernel networking subsystem within 
the same time interval without resource exhaustion.  To 
maintain the low loss ratio up to the capture application, 
large packet buffers should be applied at the higher levels of 
the kernel space. Our comparative measurements validate the 
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performance parameters of the proposed method using its 
Linux based implementation (see Section V).  

 
Figure 1.  The new timestamping method produces a raw timestamp value 

in kernel space with very low overhead and implements the offloading of 
the cycle-to-time conversion by a dedicated processing thread in user 

space. 

In network measurement, the precision of timestamping 
is a criterion more important than the low clock offset, 
especially for measuring packet inter-arrival times and 
round-trip delays at one single point of the network (e.g., 
active probing). On a generic purpose PC without any 
additional hardware, the TSC clock cycle register is the 
optimal choice for high precision packet timestamping, since 
it has a very low rate error (< 0.3 ppm) as presented in [11]. 
The multi-core architecture and the new multi-threaded 
offloading method together can provide enough processing 
capacity to fulfill the requirements of high precision packet 
timestamping.  

The proposal of Pásztor et al. is based upon Fast Ethernet 
measurements. Today, Gigabit Ethernet is widely used for 
connecting endpoints to the network. Our multi-threaded 
timestampig solution was therefore validated using intensive 
traffic patterns on 1 Gbps network links. Intensive traffic on 
a Gigabit Ethernet link may involve high packet rate with 
inter-arrival times below 1 s. The timestamping mechanism 
must provide enough resolution and precision to realistically 
interpret packet arrivals even at high rate. The resolution and 
precision capabilities of the software-based timestamping are 
determined by the generation overhead and its variance. 
Accordingly, the desirable overhead of packet timestamping 
should be well below the 1 s order to represent the inter-
arrival times. 

On a single core system, even with our multi-threaded 
offloading method, it is hard to demonstrate such a low 
timestamp generation time since it is not possible for the 
packet processing softIRQ to be assigned to an idle CPU 
core. Accordingly, we assume, that a generic multi-core CPU 
with constant TSC register is available for the measurement 
task. 

IV. IMPLEMENTATION OF THE PROPOSED METHOD 

We decided to implement our method under Linux since 
it has sophisticated interrupt handling and scheduling 
mechanisms. As a first step, we modified the kernel's packet 
timestamping code by replacing the complex and relatively 
time-consuming calls by a simple RDTSC instruction. In the 

unmodified kernel, timestamps are generated by calling 
ktime_get_real() that queries the system's clock source and 
calculates a wall-clock time. RDTSC is an x86 CPU 
instruction that reads the CPU's TSC register. When 
compared to the built-in timestamping method, executing 
RDTSC takes shorter time, just about 24 clock cycles on a 
decent Intel CPU. Since the generated values are not 
represented in wall-clock format, they need to be post-
processed later. 

As a further optimization, we locked the packet 
processing softIRQ to a specific CPU-core. It ensures that no 
other interrups are intefering with timestamping and the 
packet processing functions. Multiple CPU cores don't 
necessarily keep their TSC counters in sync. Locking the 
softIRQ to a specific core also ensures that the read TSC 
values are acquired from only one CPU. The cycle to ToD 
conversion should be done in the user-space, utilizing 
another core. The off-line processing is elaborate when doing 
long-term capturing. Therefore, we modified the libpcap 
library to do the conversion at packet receiption. The capture 
application should query the CPU frequency and report it to 
libpcap to be able to the conversion. We locked the dumpcap 
application to another core. By using a multi-threaded 
design, libpcap could utilize more than one core for 
converting the timestamps. 

V. EVALUATION OF THE TIMESTAMPING PERFORMANCE 

Comparative measurements and statistical analysis of the 
measurement output data are used to validate the 
performance parameters of the new multi-threaded 
offloading method for software timestamping. The 
investigated parameters for both methods (the kernel-time 
based and the multi-threaded one) involve the per-packet 
overhead of the timestamping process, the variance of the 
overhead for the processed packets and the overall packet 
loss ratio within the system. A generic purpose PC with Intel 
Core i7 K-2600 2.93 GHz CPU and Linux non-preemptive 
kernel 2.6.39.2 was set up for all of our measurements. The 
used NIC was the common and well documented Intel 
1000/PRO PT PCI Express card with the e1000e Linux 
device driver version 1.3.10-k2. This driver implements the 
New API (NAPI) operation mode introduced by the Linux 
kernel from version 2.4, which determines the low-level 
packet processing mechanism of the system [12]. All of the 
network stack related kernel buffer and driver parameters 
were optimized for intensive incoming traffic. With the 
following comparative measurement session, the 
characteristics of the timestamping overhead and its variation 
were investigated. In order to accurately measure the 
overhead of the timestamping mechanism, we modified the 
original Linux kernel. Two extra timestamping checkpoints 
had been inserted into the packet processing path, one just 
before the execution of the packet timestamping function 
__net_timestamp(), and another straight after its return point. 
These two timestamps are generated by the rdtscll() function 
call, which has a very low overhead, since it does not 
perform any conversion. The delta value minus the 
checkpoint generation overhead defines the per-packet 
timestamp generation overhead. This delta value is converted 
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to a real time value in a later evaluation phase. The built-in 
(kernel-time based) timestamping code performs real time 
cycle-to-time conversion and therefore, it produces an 
overhead with high variance, which results in low precision 
and also implies significant packet loss. Offloading this 
conversion task reduces timestamp generation time, which 
improves precision and reduces packet loss as well.  

A. Investigating precision: line-rate homogenous traffic 

pattern 

The first measurement scenario enables us to investigate 
the precision property of both timestamping methods. In this 
setup, we applied homogenous traffic patterns including 
fixed packet size and fixed inter-frame gap (IFG). This 
measurement type requires a high precision traffic generation 
device, which produces the line-rate packet stream in 
hardware. For this purpose, we applied a dedicated FPGA 
packet generator with Gigabit Ethernet interface.  Since the 
generator and the measurement PC are directly connected, 
the packet inter-arrivals as seen on wire level are determined 
by the transmission rate of this device and therefore, it can be 
considered constant. The measurement PC, which was a 
general purpose desktop computer, performed software 
based packet capturing with a modified libpcap library 
supporting both timestamping methods: the generic ktime-
based and the multi-threaded one. In both cases, the 
timestamping code is executed at a well defined point of the 
packet processing path. For non-NAPI supported device 
drivers, the software timestamping code is executed within 
interrupt context by the top half  interrupt handler, when the 
packet is en-queued into the input packet queue of the 
operating system, while with NAPI support (it is our case), 
the timestamping is performed by the bottom half handler 
(softIRQ) [14]. In this latter configuration, the arrival time 
represented by a software timestamp indicates the moment 
when the packet is de-queued from the input packet queue, 
and therefore is affected by the scheduling mechanism of the 
Linux kernel and the intensity of the interrupts per second on 
the CPU core that the softIRQ is running on. According to 
the new method, interrupt handling was disabled during the 
execution of the kernel level timestamping code with the 
local_irq_disable() kernel function. This involves that no 
interrupt is generated for the affected CPU core until the 
interrupts are re-enabled. Since the execution overhead of the 
ktime-based method is higher than the multi-threaded one, 
the probability of an interrupt event (executing a top half 
handler) to happen during its execution is also higher. The 
execution of the top half handler puts the CPU in interrupt 
context, which causes jitter in the execution of the 
timestamping process. 

The measurement (see Fig. 2 and Fig. 3) is performed 
with an artificially generated traffic pattern (pattern #1) that 
complies with one direction of a single VoIP conversation 
including 140 bytes packets transmitted by the traffic 
generator device in each 20 ms period, which is equivalent to 
2,499,860 bytes of IFG. This is a typical packet size and 
transmission intensity provided by a VoIP audio codec, i.e., 
G.729.  

 

The second measurement is also done by a synthesized 
traffic pattern of a HD video stream (see Fig. 4 and Fig. 5). 
Pattern #2 includes 1,368 bytes packets with a fixed 169,631 
bytes of IFG value.  

Since these traffics contain homogenous packet 
sequences, they are suitable to measure the timestamping 
methods in terms of the variance of the measured inter-
arrivals, and the order and the variance of the generation 
overheads.  

The synthesized VoIP traffic, due to its light packet-
arrival intensity of 20 ms, does not imply high system load. 
However, during this measurement, the timestamping 
overhead provided by the generic ktime-based timestamping 
presents an average of 195 ns with a large deviation. In 
contrast, the multi-threaded timestamping method, by 
applying an effective timestamp acquisition method and 
offloading several conversion tasks to the user space, results 
in a low overhead, the half of that of the ktime-based one 
(Fig. 2). 

TABLE I.  TIMESTAMPING OVERHEAD FOR PATTERN #1 

Timestamping methoda Overhead average 

[ns] 

Overhead 

variance [ns] 

Generic ktime 195.2762 176.0954 

Multi-thread TS 73.49326 3.793385 

a. Homogenous traffic of 140-byte packets with 2,499,860 bytes of IFG 

Moreover, the variance provided by the overhead values 
is also significantly lower (Table 1 and 2).  Considering the 
measurement results, we can find out that both the effective 
resolution and the precision of the timestamps are 
significantly improved with the new timestamping method. 
Fig. 2 represents some extreme high values in the inter-
arrival times measured by the ktime-based method (green 
bars), while these large values are not present in the result of 
the multi-threaded measurement. The smaller deviation of 
the multi-threaded solution implies higher timestamping 
precision. 

 

 
Figure 2.  Density points of the timestamp generation overheads for the 

generic method and the multi-threaded one.  
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Figure 3.  Density points of the packet inter-arrival times 

We observed that the large inter-arrival values are in 
correlation with the large timestamping overhead values. 
Accordingly, we can assume that the large variance of the 
generation overhead drives to a very low precision 
representation of the packet inter-arrival times and could lead 
to false measurement results. Since there is a high correlation 
between the generation overhead and the measured arrival 
time, the low variance of the overhead is the key factor to get 
high timestamping precision. Whereas the overhead values 
of the generated traffic fall in a relatively small range, small 
histogram bins should be chosen. 

This applies to the inter-arrival time graph, too. The 
histogram bars are spaced loosely and so, to make both 
measurement results represent on the same histogram. 

 

 
Figure 4.  Density points of the timestamp generation overheads for the 

generic method and the multithreaded one. 

Later in this section, we will investigate the root cause of 
the large variance represented by the generic ktime-based 
method. 

 
 

TABLE II.  TIMESTAMPING OVERHEAD FOR PATTERN #2 

Timestamping methoda Overhead average 

[ns] 

Overhead 

variance [ns] 

Generic ktime 173.3606 177.1197 

Multithread TS 70.84912 8.197374 

a. Homogenous traffic of 1368-byte packets with 169,631 bytes of IFG 

Nevertheless, the new multi-threaded timestamping 
method introduced in this paper, is a dedicated software-
based method, that improves the resolution as well as the 
precision of the traffic measurement. Besides its primary 
benefits, its low generation overhead has also a positive side-
effect: since it is less CPU intensive than the ktime-based 
one, capturing intensive network traffic will result in lower 
packet loss rate on any generic PC (see Fig. 6a and Fig. 6b). 
The auto-correlation analysis of the overhead series showed 
that the system with the new method has a high memory. 
Accordingly, based on the current overhead value, future 
overhead values can be predicted with a higher probability, 
which implies higher system stability and improved 
timestamp precision. If the intensity of the packet arrivals is 
higher, as with the second measurement, the difference in the 
measured properties becomes more obvious (see Fig. 4 and 
Fig. 5). 

B. Investigating packet loss ratio within the system 

We also investigated the packet loss rate during the 
capturing process in case of both methods. Extreme low 
overhead values (< 25 ns) derive from the instruction 
caching mechanism of the applied CPU architecture (Fig. 4). 
Each measurement round was performed with fixed packet 
size and fixed IFG combination. 20,000 packets were 
transmitted each time by the hardware accelerated traffic 
generator presented earlier, which was directly connected to 
the measurement PC. The generated packets were captured 
by the dumpcap application. According to the results 
presented in Fig. 6a and Fig. 6b, the loss ratio with the multi-
threaded timestamping method is improved. Since this 
method uses a low overhead access to the TSC register and 
offloads all of the conversion tasks from the kernel space to a 
dedicated user thread. 

 
Figure 5.  Density points of the packet inter-arrival times 

98Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-305-6

ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications



This free time becomes available (within the kernel 
space) to the kernel scheduler to give it away to another CPU 
intensive softIRQ tasks that are parts of the packet 
processing subsystem.  

 

  

Figure 6.  a) Packet loss ratio in function of the packet size b) Packet loss 

ratio in function of the inter-frame gap 

Moreover, the execution of the conversion code in user 
space is more tolerant to delay. These benefits directly affect 
the packet processing performance and thus the loss ratio. 
When the CPU core, dedicated for the execution of the 
packet processing softIRQ, gets full load for a relatively long 
time period then the NIC’s private queue reaches its 
maximum length and packet loss will happen. 

VI. CONCLUSION 

A multi-threaded timestamping method for end-to-end 
QoS evaluation has been introduced, which provides low 
kernel context overhead by eliminating the built in clock 
source API inside the kernel and offloading the conversion 
tasks to a dedicated processing thread in the user space. In 
contrast to the solution of Pásztor et al., this method 
implements a multi-threaded design that supports on-the-fly 
timestamp conversion and multi-layer application. The main 
goal of the design was to minimize kernel context 
timestamping overhead during packet capturing in order to 
improve timestamping precision and increase effective 
resolution. The performance properties of the new solution 
have been evaluated and compared against the generic kernel 
time based timestamping mechanism available in the Linux 
kernel. We showed that the overhead of our new method is 
half of the generic one enabling multi-layer timestamping 
and the variation of the overhead that determines the 
precision property of the timestamping is also significantly 
improved. Over the main benefits, this solution has a positive 
side effect: the packet loss rate, while capturing high 
intensity network traffic, is decreased, since the new method 
requires less CPU resource in kernel context, furthermore the 
execution of the offloaded timestamp conversion tasks can 
be delayed due to the scheduling policy of the user space. 
Though our method was implemented on Linux system, it is 
not necessarily limited to this OS and the x86-based 
processors. It can be adapted to environments built on multi-
core processors with counting registers (linear increment) 
and kernels capable of binding packet processing threads to 
specific cores (affinity). 
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