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Abstract—Genetic Algorithms (GAs) are emerging as a promis-
ing instrument for quality of service (QoS) routing in Mobile Ad
hoc Networks (MANETs). They implement an iterative process
that can solve the NP search problem of routing with multiple
QoS constraints. In each iteration new solutions are found
through the mutation and crossover genetic operations. In this
paper we focus on an existing GA tree-based application for
QoS routing in MANETs which applies the genetic operations
on a tree built from the network topology and uses fixed length
chromosomes. The chromosome encodes junctions tree crossed
by routes. This application suffers in convergence speed because
its mutation operator does not allow deep exploration of the
search space. The inefficiency of the adopted mutation operation
is more evident in networks with big size and high network
connectivity, i.e., networks with a larger search space. In this
paper, we elaborate on the tree-based application with the main
objective of improving its performance. We first introduce a
criterion for junctions tree sorting based on their distance from
the root. Later, we use chromosome properties due to the sorting
criterion to design a sequential mutation technique with adaptive
probability that allows faster convergence. We provide simulation
results showing the effectiveness of the proposed enhancements
while increasing the MANET size and connectivity.

Keywords-Genetic Algorithm; QOS routing; junctions tree;
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I. INTRODUCTION

MANETs are composed of wireless nodes that can move,
join and leave the network dynamically. They can be used in
different scenarios such as campus and disaster recovery areas
for communication between students or emergency operators.
They do not refer to a fixed infrastructure and need routing
protocols that adapt to topology changes quickly. They also
need routing algorithms that can provide quality of service
(QoS) routes, i.e., routes satisfying QoS constraints such as
delay or jitter posed by realtime applications. Therefore the
need of QoS routing for MANETs is motivating research work
on QoS protocols [1], metrics and algorithms [2]. Regarding
QoS algorithms, the Literature shows an increasing interest
around solutions based on Genetic Algorithms which can
solve NP problems. GA routing algorithms, given network
topology and QoS costs of network components, implement
genetic operations to search the best route subject to multiple
QoS constraints. This is known to be an NP problem. The
Literature discusses two main GA approaches for QoS routing

with fundamental differences in their encoding schema. An
approach employs variable length chromosomes with genes
representing the nodes along a route from source to destination
[3-5]. The other models the set of routes from source to
destination as a tree and implements a coding schema with
fixed length chromosomes [6-8]. Genes of the chromosome
encode the junctions tree. The main advantages of the tree-
based approach are due to the tree structure that avoids loops
generation during the GA process, and the fixed length of the
chromosome that allows to use simpler models for genetic
operations.

In this paper, we elaborate on the main existing tree-based
GA application for QoS routing introduced by Barolli et al. in
[6-8], and we propose enhancements that strongly improve its
performance. We have observed that the convergence of the
existing tree-based applications becomes slower while increas-
ing network connectivity and network size as the mutation
probability, which is fixed (it is equal to the inverse of the
chromosome length), does not allow deep exploration of big
search space. Available results [6] describe the algorithm scal-
ability while increasing the number of nodes in the network,
but how scalability is affected by the number of links per node
is not discussed. In addition tree-based chromosomes have to
be sorted properly to avoid generation of invalid routes with
genetic operations. Although the authors [9] are aware of this
problem they do not propose a sorting model.

To overcome the above discussed lacks, we (i) introduce
a proper sorting model for genes within the chromosome,
and (ii) propose a sequential mutation technique with adaptive
probability. The sorting model makes junctions representation
within the chromosome dependent on their depth, i.e., the
distance from the source. It avoids generation of invalid
routes from genetic operations. The mutation technique uses
a mutation probability which adapts to any specific route: it
is equal to the inverse of the junctions number crossed by
the route. The adaptive probability allows deeper exploration
of the search space and therefore faster convergence to better
QoS routes. We carry out simulations demonstrating the strong
effect of the mutation solution on the scalability of the GA
application while increasing both network size and node con-
nectivity. Study of protocols for acquisition and maintaining
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Fig. 1. (a) MANET example; (b) Tree network for source A and destination H; (c) Reduced tree network.

of topological information is out of the scope of this paper.
Any protocol able to collect topology and QoS data can be
used as the one discussed in [10]. According to this protocol
the source sends route discovery requests in flooding toward
the destination, which replays with multiple routes and per
hop QoS parameters.

The remaining of the paper is organized as follows. In
Section II we summarize the main aspects of the tree-based
GA approach to which we refer. In Section III we introduce
the criterion for junctions sorting and we describe the adap-
tive mutation method. Section IV provides simulation results
showing the performance improvements due to the proposed
enhancements while increasing network size and connectivity.

II. REVIEW OF GA AND THE TREE-BASED APPLICATION
FOR QOS ROUTING

GA is a heuristic method that simulates the natural evolution
process to solve optimization problems. In the following we
first introduce the GA iterative process and later we review
the existing tree-based GA application for QoS routing in
MANETs.

A. The GA iterative process

GA employes iterative processes on a set of individuals
representing a generation for each cycle [11]. Each individual
is a candidate solution and is encoded with a chromosome
composed of genes. The GA process includes two main
stochastic genetic operations, i.e., crossover and mutation.
The former is to transmit the genetic heredity from selected
parents to next generation. The parents’ selection process is
based on a fitness function which depends on constraints
of the specific problem to solve. For selected parents, the
crossover operation exchanges parts of their chromosomes
to generate new descendants. These descendants are submit-
ted to the mutation operation that changes their genes for
the new generation. Usually, the GA starts with an initial
population chosen at random and the cycle repeats until the
solution is found or termination criteria are satisfied. Bigger

population sizes guarantee solutions with better quality. The
number of evaluations of the fitness function, which increases
with the number of iterations and the size of the initial
population, measures the GA computational complexity. When
applications have stringent time constraints, fast GA hardware
implementations in FPGA can be used [12].

B. The existing tree-based method for QoS routing

In the tree-based genetic algorithm for QoS routing pro-
posed by Barolli et al. [6-9], the network (Figure1.a) is
modelled as a tree having the source node as root and
the destination node as leafs (Figure 1.b). The chromosome
structure is expressed by the tree junctions which leads to fixed
chromosome length. To compact the chromosome length a
tree reduction algorithm has been proposed [9]. Tree reduction
is carried out merging nodes having the same identifier (ID)
and the same sub-routes. In the example of Figure 1.b the
four junctions D become a single junction in the reduced tree
(Figure1.c). A number is assigned to each junction which is its
locus in the chromosome. Each gene can assume the value of
one of the adjacent junctions. Genes may be active or inactive:
a gene is active if its corresponding junction is in the route.
Gene values are assigned only to active genes. In Figure 2 the
gene encoding and an encoded route are shown.

Fig. 2. (a) Gene coding; (b) Chromosome encoding the route A−B−E−
F −G−D −H .

Genetic operations must be carried out between active
genes. In this manner, the crossover operation interchanges
sub-routes in the tree network from the junction that corre-
sponds to the crossover point, while the mutation operation
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generates a new suitable sub-route from the junction that
corresponds to the mutation point.

Regarding the fitness function, delay time (DT) and trans-
mission success rate (TSR) are used to express the QoS of a
route as in the following equation where N is the number of
links in a route:

T =

∑N
i=1 DTi∏N

i=1 TSRi

(1)

The rank selection method is used along with single point
crossover, and elitism to maintain the best solution in the
next generation. The mutation technique is not discussed, the
mutation probability is equal to the inverse of the chromosome
length.

III. ENHANCEMENTS TO THE TREE-BASED GA
APPLICATION FOR QOS ROUTING

The enhancements to the tree-based application are (a) a
proper junction sorting criterion, and (b) a novel mutation tech-
nique with adaptive probability. The junction sorting criterion
leads to a chromosome structure that depends on the junctions
depth. This feature is used to get always valid routes from
genetic operation. We also leverage on it to build the mutation
technique.

A. Junction sorting

Junction sorting is based on the distance from the junction
to the root, which is called junction depth. In the following
we first introduce the sorting criterion and later on the main
chromosome properties derived from it.

1) Depth-based sorting criterion: It consists of the follow-
ing three steps.

Step 1: Build a junction tree from the tree network with
junctions sorted according to their distance from the route. The
sorted junctions tree for the network of Figure 1 is shown in
Figure 3. In this example, the root junction A has depth equal
to 0, the junctions B and C have depth 1 and so on.

Step 2: Merge junctions for tree reduction and assign the
highest depth to them. For the example of Figure 3 this means
assigning depth 4 to the junction D.

Step 3: Encodes the junctions within the chromosome
according to their depth in the reduced junction tree.

This criterion guarantees that genetic operations always
result in valid routes. How invalid routes can be created when
junctions are not sorted properly is shown in the example of
Figure 4. In this example, the junction D is located in the
5th gene instead of the 8th. If we perform crossover between
routes A-B-E-D-C-H and A-B-D-H with crossover point D,
an invalid descendent is generated as the 5th gene is inactive.
If the mutation operator does not change the values of this
chromosome the decoding operation does not return a route.

2) Chromosome properties due to sorting: The junction
sorting criterion also leads to the following chromosome
encoding properties:

• At most one gene encoding junctions with the same depth
may be active.

Fig. 3. (a) Junctions tree; (b) Reduced junctions tree; (c) Chromosome
structure sorted by depth

Fig. 4. (a) Single-point crossover between chromosomes sorted improperly;
(b) Invalid descendants.

• If two junctions with different depths are directly con-
nected, all the genes encoding junctions between them
are inactive.

• If a gene encodes a junction reaching the destination, then
all the following genes are inactive.

B. Sequential mutation technique with adaptive probability

The encoding chromosome properties due to junction sort-
ing described in the previous section let us design a sequential
mutation technique with adaptive probability. This is equal to
the inverse of active genes number for each chromosome. The
mutation details are the following:

(1) Apply the mutation probability to each active gene of
the chromosome sequentially until a mutation point is
found or the chromosome is ended;

(2) If the mutation point has been found, take into account
the set of adjacent nodes, excluding the current one, and
select one of them with equal probability. Deactivate the
following genes in the chromosome.
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(3) Search the chosen node in the reduced tree network;
- If this node is a junction, select one of the adjacent

nodes with equal probability for the gene of the
junction and return to step (3);

- If this node is not a junction and it is not the
destination, take into account the next element in
the tree network and return to step (3);

- If this node is the destination, the algorithm ends.
We point out that mutation is always applied once a mu-

tation point is found and the route is always valid. If D is
the highest depth level, the mutation probability range can be
expressed as follows:

1

D
≤ pm ≤ 1 (2)

In other words, the mutation probability is maximum when
source and destination nodes are directly connected, while it
is minimum when the route that connect them crosses one
junction per each depth.

IV. PERFORMANCE STUDY AND DISCUSSION

This performance study aims to show the effects of adap-
tive mutation probability on the tree-based application while
increasing the network size and connectivity. For this purpose,
we have implemented the tree-based GA application with
both the fixed mutation probability introduced in [6-9] and
the adaptive mutation probability proposed in this paper. For
both the implementations we have used the junction sorting
criterion and the mutation technique proposed in Section III-A
and Section III-B, respectively, as any description of them is
missing for the existing application. Therefore, the two imple-
mentations have the same computational cost. The implemen-
tations are made with initial population generated randomly,
linear ranking selection method, single point crossover and
elitism. The fitness function is the one in eq (1) with DT
and TSR selected randomly. Each simulation runs 1000 times
and provides the rank, i.e., the position of the solutions sorted
according to their fitness, as output. Simulations are carried
out with MATLAB.

In the following, we will refer to the two implementations
as fixed-GA and adaptive-GA, respectively.

A. Scalability while increasing the network connectivity

Figures 5 and 6 show the rank achieved by the GA appli-
cation with both fixed and adaptive mutation probability on
a sparse and dense network. The sparse and dense networks
have 3 and 5 links per node on average, respectively. These
figures also report the size of the search space (routes) and the
chromosome length. Population sizes are selected equal to 20
and 50 in the sparse and dense networks, respectively.

In the sparse network (see Figure 5), the application with
adaptive mutation probability convergences around the 10th
generation, while the applications with fixed mutation proba-
bility converges on the 20th generation. Therefore, the adaptive
mutation probability cuts by half the computation complexity,
which is equal to (population size)*(iterations number). The

performance improvements are stronger in the dense network
as shown in Figure 6. In this scenario the application with
adaptive mutation probability convergences around the 50th
generation, while the native application is still far to converge.
This because dense network does have big chromosome length
L and the fixed mutation probability equal to 1/L is too small
for a deep exploration of the search space.

Fig. 5. Comparison between fixed-GA and adaptive-GA in sparse networks

Fig. 6. Comparison between fixed-GA and adaptive-GA in dense networks

Figures 7 and 8 show the convergence curves of the GA
application with adaptive mutation for different population
sizes. We have used them to set the population size of the
previous simulations. The population size of 20 guarantees
convergence to the optimum solution on the 20th generation
in the sparse network. The one of 50 for the dense network
guarantees convergence to a suboptimal solution on the 50th
generation. We recall that (see Section II-A) the popula-
tion size should be selected according to the desired trade-
off between computation complexity and quality of solution,
which depends on the specific application and the computation
features of the mobile nodes. The total computation cost and
delay of any tree-based GA application also depends on the
tree generation and reduction procedure which increases with
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Fig. 7. Performance for different population sizes in sparse networks

Fig. 8. Performance for different population sizes in dense networks

the solutions space. Note that it is around 458.000 for the
dense network with 5 links per node. MANET scenarios with
high mobility speed poses constraints on the delays for route
discovery, therefore the applicability of the algorithm in high
connected networks depends on the mobility speed.

B. Scalability while increasing the network size

The effects of network size on the GA application conver-
gence is shown in Figures 9, 10 and 11 with networks of
20, 30 and 40 nodes, respectively. The connectivity density
is of 3 links per node on average.Simulations are made
with population size equal to the number of nodes. QoS
DT/TSR parameters are selected and network topologies are
generated randomly per each of the 1000 simulations. Given
the population size, the total number of generations is chosen
according to the convergence of the faster application, which
is always the one with adaptive mutation probability.

The results in Figure 9 show that, although the implementa-
tion with adaptive mutation probability has higher convergence
speed, the behavior of the other implementation is similar
as it was expected from the results in Figure 5. Improve-
ments on performance increase in the bigger networks. In

Fig. 9. Comparison between fixed-GA and adaptive-GA for a network with
20 nodes

Fig. 10. Comparison between fixed-GA and adaptive-GA for a network with
30 nodes

Fig. 11. Comparison between fixed-GA and adaptive-GA for a network with
40 nodes
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these networks, while the applications with adaptive mutation
probability converge to the optimum or a close to optimum
solution, the GAs with fixed probability provide low quality
solutions (see Figure 10 and 11). The reason is the same
pointed out for high connected networks: bigger networks have
larger search space and longer chromosome and then a fixed
mutation probability does not allow deep exploration of the
search space.

Note that the number of routes does not increases linearly
with the number of nodes. When the search space explodes
the computational cost of the tree-generation process may be
prohibitive. In these networks the GA application can be used
with clustering architectures to work on smaller search spaces.
This is similar to what done by the authors of [13]. They divide
the network in zone and apply a GA-based algorithm with
variable length chromosomes for inter-zone routing. Objective
of our future study is verifying how to apply the GA tree-based
approach on clustering architectures.

C. Statistics for the simulation results

As statistics for the simulation results we consider the
standard deviation. We report in Table I rank and standard
deviation for the first results of Figure 5. Note that the standard
deviation decreases while increasing the generation number.
This is also true for all the other simulations.

TABLE I
STANDARD DEVIATIONS FOR RESULTS IN FIGURE 5

Generations Fixed-GA Adaptive-GA
Rank Standard Deviation Rank Standard Deviation

12 1,54 1,19 1,10 0,40
14 1,42 1,03 1,06 0,32
16 1,34 0,92 1,04 0,26
18 1,27 0,84 1,03 0,24
20 1,21 0,74 1,02 0,19

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed enhancements to the exist-
ing tree-based GA application for QoS routing in MANETs.
We have discussed how the fixed mutation probability adopted
for this application does not allow a deep exploration of
the search space and therefore leads to slow convergence or
convergence to solutions with low QoS. We have introduced
a criterion for junction sorting based on the junction depth
and we have proposed a sequential mutation technique with
adaptive probability. The adaptive probability of the mutation
technique allows a deeper exploration of the search space,
which leads to faster convergence and better QoS solutions
for given generations. We have shown with simulation results
that the adaptive mutation probability strongly improve the
performance of the tree-based GA application, particularly
in big or highly connected networks. Future purposes will
be about the application of the GA tree-based approach to
clustering architectures.
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