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Abstract—In applications that require group communication
and clustering, there is usually a single key for all members
of the group. This key should be updated in order to support
dynamic nature of the groups and also to handle possible node
compromise attack. In this paper, we propose a new distributed
group rekeying scheme with t-revocation capability that is
based on local collaboration of group members. Our proposed
scheme provides t-wise backward and forward secrecy. It
can be used with any key size. This scheme, in contrast to
centralized schemes, does not require a centralized rekeying
server, so the rekeying process is handled locally in the group
itself and the communication overhead is reduced. The security
of this scheme is analyzed. We have also implemented our
proposal for TinyOS and have used Avrora to simulate the
compiled binary for MICA2 motes. Simulation results show
that compared to the only published distributed scheme, our
scheme consumes less energy and has lower communication
overhead.

Keywords-Security; Key Management; Group Rekeying; Wire-
less Sensor Networks.

I. INTRODUCTION

Wireless sensor networks consist of many small low-
cost and low-power nodes that sense their environment,
process data, and communicate through wireless links [1].
These networks are often deployed in adverse or even
hostile environments. Nodes are resource-constrained and
they are often deployed in unattended manner. Due to cost
limitations, it is not practical to use tamper-proof hardware
for all nodes. Hence, an adversary can mount a physical
attack on a node and read, probably secret, data from its
memory. These issues make providing security services a
challenging task.

Grouping is a technique to do localized computation and
to reduce communication overhead in wireless sensor net-
works. The most common grouping technique is clustering.
Cluster head usually do coordination and some aggregation
to send the results back to the sink.

There is usually a group-wide key, called the group
key, shared between group members. When a node become
compromised, we remove the compromised node by not
revealing the new group key to that node. The process of
renewing the group key is called group rekeying. This is also
referred to as group key revocation in some literature.

In this paper, we review the existing schemes for group
rekeying. We propose a new group rekeying scheme which
is not based on a centralized rekeying server. We have
compared our proposed scheme with other group rekeying
schemes using various performance parameters including
communication and computation overhead.

The rest of this paper is organized as follows. Section I-A
presents preliminaries including notations and definitions
as well as description of Shamir’s secret sharing scheme.
Section II reviews existing techniques for group rekeying in
sensor networks. In Section III, we describe our proposed
scheme. Sections IV and V presents simulation results
and performance analysis, respectively. We compare our
proposed scheme with a distributed scheme in Section VI.
Finally, this paper ends with conclusions in Section VII.

A. Goals

The general goal is to develop an efficient and un-
conditionally secure rekeying scheme for wireless sensor
networks. This scheme should be able to tolerate node
compromise.

Due to hardware constraints of sensor nodes, the harsh
environments in which sensor networks are often deployed
and also security requirements, a suitable rekeying scheme
should provide:
• t-revocation capability (See Definition 1).
• t-wise forward secrecy (See Definition 2).
• t-wise backward secrecy (See Definition 2).
• On-demand rekeying: a suitable scheme should provide

a mechanism for revoking a compromised node from
the group on-demand.

• and also low communication, computation and low
storage overhead.

In this section, we define some notations and definitions
for our proposed scheme. We also describe Shamir’s Secret
Sharing scheme. The idea of Shamir’s secret sharing scheme
is usually used in group rekeying schemes.

B. Notations and Definitions

We assume a group of n sensor nodes, deployed closely
to each other within a large scale sensor network. A group
consists of n− 1 group members and one group controller.
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The group controller is responsible for the management of
the group. Each group member has an ID i > 0, and a secret
key shared with the group controller. There is a group key
K shared with all group members. They use this key to get
confidentiality and/or integrity of their communication.

When needed, the group controller uses a rekeying
scheme to update K. Let us call the j-th group key (group
key of session j) Kj . Each node stores a personal secret.
Node i, stores Si as its personal secret. Si is used in the
rekeying process. This secret is known only by the node
itself.

The group controller renew the current group key when,
for example, a node become compromised. Hence, the
rekeying mechanism should have the ability not to reveal
the new group key to the compromised nodes.

In a rekeying event, there might be w nodes that should
be revoked (i.e., the new group key should not be revealed
to these nodes). After the rekeying process, those nodes are
no more members of the group.

There are mainly three pieces of information that are used
in the rekeying process:
• The personal secrets, Si, that every sensor hold.
• Rekeying materials that should not be revealed and are

used by the group controller (or the rekeying server) to
compute a broadcast message.

• The broadcast message. Group members use this mes-
sage plus Si to compute the new group key.

There are three types of actors:
• Group controller which acts like a coordinator in a

rekeying event.
• Group members U = {U1, . . . , Un}, which are the

group of sensonr nodes. When a member is not ac-
cepted to be part of the group anymore, it is called
revoked.

• Network manager is a person who initialize the nodes
offline (i.e., before deployment)

Please note that we are assuming an adversary that can do
the node compromise attack and the network IDS is capable
of detecting it. The attacker can also eavesdrop the wireless
communications. To further clarify our goals, we give the
following definitions.

To further clarify our goals, we give the following defi-
nitions.

Definition 1. (Group rekeying with revocation capability)
Let t, i ∈ {1, . . . , n} and p be a prime number. In a group
rekeying Ξ, the group controller seeks to establish a new
K ∈ Fp with each group member Ui through a broadcast
message and some personal information Si it owns. In
detail:

1) Ξ is a group rekeying scheme if
a) For any group member Ui, K is determined by

Si and B.

b) For any set M ⊂ U , |M | ≤ t, and any Ui /∈M ,
the members in M are not able to learn anything
about Si.

c) No information is leaked from either the broad-
cast message or the Si alone.

2) Ξ has t-revocation capability if given any set of
revoked group members R ⊂ U such that |R| ≤ t, the
group controller can generate a broadcast message B
such that Ui /∈ R, Ui can recover K but the revoked
group members cannot recover K.

Definition 2. (t-wise backward and forward secrecy) Let
t, i ∈ {1, ..., n}, j ∈ {1, ...,m} and Kj ∈ Fp be the group
key of session j.

1) A rekeying scheme guarantees t-wise forward secrecy
if for any set R ⊆ {U1, ..., Un}, where |R| ≤ t and
all Ui ∈ R are revoked before session j, the members
in R together cannot get any information about Kj ,
even with the knowledge of group keys before session
j.

2) A rekeying scheme guarantees t-wise backward se-
crecy if for any set R ⊆ {U1, ..., Un}, where |R| ≤ t
and all Ui ∈ R joined after session j, the members
in R together cannot get any information about Kj ,
even with the knowledge of group keys after session j.

Similar definitions are also used in [2].

C. Shamir’s Secret Sharing Scheme

The idea of Shamir’s secret sharing scheme is usually
used in group rekeying schemes. It is used in our scheme
as well. The goal is to share a secret S between n people
so that t + 1 (or more) of them can recover S. For this
purpose, a random t-degree polynomial in which S = P (0)
is generated. This polynomial is evaluated over Fp, where
p greater than n. P (i) is given to person i > 0 as his/her
share. Now, t+ 1 (or more) person can recover the original
polynomial, and hence S. But having less than t+ 1 shares
do not give any information about S. See Theorem 1.

Theorem 1. Suppose the opponent knows t shares of this
polynomial. For each candidate value S′ ∈ [0, p−1] he can
construct one and only one polynomial P ′(x) of degree t
such that it satisfies conditions of shares and also P ′(0) =
S′.

By construction, these p possible polynomials are equally
likely, and thus there is absolutely nothing the opponent can
deduce about the real value of S.

Proof: Refer to [3] for the proof.

II. RELATED WORK

Mainly, there are two categories of schemes for group
rekeying in sensor networks: there are some distributed
schemes which do not rely on a rekeying server and there are
some centralized schemes which require a rekeying server
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to construct the broadcast message. It is assumed that the
rekeying server is secured and could not be compromised.
Here we review both distributed and centralized schemes,
but before that let us review some basic methods of sharing
a secret to only legitimate members that are used in some
of the schemes described later.

A. Underlying Methods

In this section, we review some general solutions to
the problem of revealing a secret to non-revoked group
members. These solutions are underlying method for most
of the group rekeying schemes for wireless sensor networks.

1) Method 0 (Naive): Every group member should have
a secret key shared with the group controller. The group
controller can encrypt Kj with this secret key for each
member and send the message to the appropriate member.
The communication overhead of this scheme is O(n) where
n is the number of group members.

2) Method 1: In this scheme, each member has an ID i >
0. A t-degree random polynomial P (x) which is evaluated
over Fp (p is prime) is constructed and shares of it (i.e.,
P (i)) are pre-distributed to group members. The secret to
be revealed is K = P (0).

Suppose that w = t. The group controller reveals shares
of revoked members. At this point, every non-revoked group
members have t + 1 shares and can recover the original
polynomial so non-revoked group members can evaluate
K = P (0).

This scheme has been proposed in [4]. It can also be
used for w < t if the group controller reveals shares of w
revoked-members plus shares of arbitrarily selected w − t
dummy members.

3) Method 2: In [2], the group controller randomly picks
a 2t-degree masking polynomial h(x) = h0 + h1x + ... +
h2tx

2t over a finite field Fp where p is prime. Each group
member i gets its personal secret Si = h(i) from the group
controller.

Given a set of revoked group members R =
{ r1, r2, ..., rw}, w ≤ t, the group controller randomly picks
a t-degree polynomial p(x) and constructs q(x) = K−p(x).
Then the controller distributes the shares of the t-degree
polynomials p(x) and q(x) to non-revoked sensors using
the following broadcast message:

B = {R}
∪{P (x) = g(x)p(x) + h(x)}
∪{Q(x) = g(x)q(x) + h(x)}

where g(x) = (x − r1)(x − r2)...(x − rw). If any non-
revoked group member i receives such a broadcast message,
it evaluates polynomials P (x) and Q(x) at point i. and gets
P (i) = g(i)p(i) + h(i) and Q(i) = g(i)q(i) + h(i).

Because member i knows h(i) and g(i) 6= 0, it can
compute p(i) = P (i)−h(i)

g(i) and q(i) = Q(i)−h(i)
g(i) . Member

i can then compute the new group key K = p(i) + q(i).
The revoked members (which are not member of the group
anymore) cannot compute K because g(i) = 0,∀i revoked.

As it is proved in [2], this schemes is unconditionally
secure rekeying scheme with t-revocation capability. It also
provides t-wise backward and forward secrecy.

B. Distributed Schemes

In [5], a group rekeying protocol has been proposed. In
this protocol, rekeying materials are preloaded into each
node. Each member distributes encrypted shares of its
rekeying materials to other nodes which will be returned
back to the node in a rekeying event. There is also some
improvements to their basic protocol, B-PCGR, which im-
proves its security. To the best of our knowledge, this is the
only published distributed group rekeying scheme for sensor
networks.

C. Centralized Schemes

In [6], Danio and Savio have proposed a group key
revocation protocol for wireless sensor networks that has
communication overhead of O(log n), instead of O(n) in
naive scheme (see Subsection II-A1). This protocol also
provides a lightweight key authentication using one-way
hash chains. In this protocol, each node has a symmetric
key shared with the keying server. They have proposed to
use a (binary) tree of hash chains. Leaves are assigned to
group members and each group member has the current key
in the hash chain of the nodes which are in the path between
this leaf and the root.

Authors have shown that using this structure, the number
of messages are reduced to O(log n) but some of the
messages should be sent to more than one member. But the
drawback of this scheme is that it does not provide backward
secrecy and that is due to the use of hash chains of keys.

In [7], a self-healing group key revocation has been
proposed. In this protocol, lifetime of the group is divided
into some intervals and nodes can authenticate the new group
key using a dual hash chain. There is no communication
overhead for revocation and it can tolerate rekeying message
loss (the self-healing property of this scheme).

But there are some drawbacks. The revocation could not
be done on-demand, network manager should plan for the
revocation time in advance. And also there is an implicit
assumption that the adversary is not able to compromise
group nodes and hence, could not read the keying materials
in their memory.

Another protocol for updating group key has been pro-
posed in [8]. They adapt the secret-sharing revocation
scheme that is explained in Subsection II-A2 for sensor
networks by reducing the computation overhead. A central-
ized group rekeying scheme has been proposed in [9]. The
underlying rekeying scheme is very similar to Method 2 (see
Subsection II-A3) that is also used in [10].
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D. Motivation

While centralized schemes require a secured rekeying
server and also a secure connection between the group con-
troller and the rekeying server, the only published distributed
scheme [5] has a large communication overhead.

A secured rekeying server might not be applicable for
some applications in which the network is being deployed
in adverse environments. In addition to computation and
communication overhead of the aforementioned distributed
scheme, it has another drawback. In order to provide t-
revocation capability, the underlying IDS should provide
each group member with the information of compromised
nodes.

We propose to distribute shares of required materials for
a rekeying event (which are stored in the rekeying server
in centralized solutions) between group members using a
method inspired by [5]. The group controller uses these
shares and constructs a broadcast message similar to [2]
(see Subsection II-A3). In this scheme, a rekeying server
is not required and as we show in the following sections,
the energy consumption of the proposed scheme is less than
[5].

III. A NEW GROUP REKEYING SCHEME

In this section, we describe our proposed group rekeying
scheme for wireless sensor networks. The goal is to build
a distributed group rekeying scheme with t-wise backward
and forward secrecy without the need of a secured rekeying
server. A group consists of n − 1 group members and one
group controller. Let R = {r1, r2, ..., rw} be the set of group
members to be revoked in rekeying event j.

In this scheme, shares of required rekeying materials are
pre-distributed between group nodes. In a rekeying event,
they deliver their shares to the group controller and the
group controller uses these shares to compute the broadcast
message. Group members renew the group key using this
message. Note that all polynomials are evaluated over Fp
where p is prime. In this scheme, t < n, 1 ≤ λ ≤ 2t and
µ ≥ t are system parameters. µ ≤ n is assumed. We’ll
discus how to choose these parameters later.

A. Details

The initialization process is as follows. These operations
are done offline by the network manager:

1) Generate the random polynomial h(x, y). The degree
of x and y are 2t and λ, respectively.

2) Generate the random polynomial e(x, y, u). The de-
gree of x, y and u are 2t, λ and µ, respectively and
t ≤ µ ≤ 2t.

3) Let h′(x, y) be a polynomial defined as h′(x, y) =
h(x, y) + e(x, y, 0);

4) Then h(i, y) and e(x, y, i) are predistributed (or sent
by the sink) to group member i. Actually, λ+1 group
members should have e(x, y, i), but for the sake of

fault tolerance, we may distribute to more than λ +
1 members. Note that h(i, y) and e(x, y, i) are one
and two variate polynomials, respectively. They are
the result of evaluation of polynomials h and e for
each group member i.

5) h′(x, y) is kept by the group controller.
The j-th rekeying process (revealing j-th group key, Kj)

is as follows:
1) The group controller sends a request to µ + 1 group

members for sending their shares of e. Note that we’ve
assumed µ ≤ n.

2) They send back e(x, j, i) to the group controller, where
i is the ID of the member. To prevent eavesdropping,
encryption might be used in this step. Shares can be
encrypted with a pairwise key between group member
i and the group controller. In this case, any encryption
scheme might be used. Based on the used encryption
algorithm and key length, group members and the
group controller consume energy for this process.

3) As the group controller receives shares, it follows the
steps:
• The group controller constructs e(x, j, u) by solv-

ing µ+1 (µ+1)-variable linear equations. It then
computes h(x, j) = h′(x, j)− e(x, j, 0).

• Let g(x) = (x− r1)(x− r2)...(x− rw);
Generate a t-degree random polynomial p(x);

• Let q(x) = Kj − p(x).
Broadcast the following message to the group
members:

B = {R}
∪{P (x) = g(x)p(x) + h(x, j)}
∪{Q(x) = g(x)q(x) + h(x, j)}

4) Non-revoked group member i could evaluate polyno-
mials P (x) and Q(x) at point i, and gets P (i) =
g(i)p(i) + h(i, j) and Q(i) = g(i)q(i) + h(i, j).
Since for non-revoked group members g(i) 6= 0,
they can compute p(i) = P (i)−h(i,j)

g(i) and q(i) =
Q(i)−h(i,j)

g(i) . The new group key is Kj = p(i) + q(i).

B. Example

Here’s a simple example of our proposed scheme with
four group members and one group controller. We assumed
t = λ = µ = 2. Figure 1 shows their location. From the
initialization process (See Figure 2), group member i has
h(i, y) and e(x, y, i) and the group controller has h′(x, y).
Assume that in 7th rekeing member 4 is the one to be
removed; That is R = {4}. Group controller asks non-
revoked members to send their shares. Member i sends back
e(x, 7, i) (See Figure 3). As in Figure 4 Group controller
computes the broadcast message B and broadcast it to
all members (See Figure 5). Non-revoked members (i.e.,
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member 1, 2 and 3) can get the new group key K7 while
revoked member 4 cannot (See Figure 6).

�����
��
Group Controller

m1

m2

m3

m4

Figure 1. Location of a group controller and 4 group members

�����
��
h′(x, y)

m1h(1, y), e(x, y, 1)

m2h(2, y), e(x, y, 2)

m3h(3, y), e(x, y, 3)

m4h(4, y), e(x, y, 4)

Figure 2. After initialization process; group member i has h(i, y) and
e(x, y, i) and the group controller has h′(x, y).

C. How to Choose System Parameters

This scheme can handle up to t revocations in one
rekeying event. In order to compromise the whole group,
an adversary should compromise the group controller plus
µ+1 (or more) group members. In order to guarantee t-wise
backward and forward secrecy, t ≤ µ should be considered.

Having larger µ does not straighten backward and forward
secrecy. However it makes it harder for the adversary to
compromise e polynomial. The adversary should capture µ+
1 group members in addition to the group controller.

Group members do not reveal their original share to the
group controller. Instead, they send a session share for that
specific session. Although they send it encrypted, in order
to enhance the security of this scheme, we put a constrain

�����
��
m
?

e(x, 7, 1)

1

m�
e(x, 7, 2)

2

m
6

e(x, 7, 3)

3

}4

Figure 3. 7th rekeying: Group members sending their shares to the group
controller; Member 4 to be revoked; In other word R = {4}

�����
��
Compute h(x, 7) = h′(x, 7)− e(x, 7, u)
Compute B

m1

m2

m3

}4

Figure 4. 7th rekeying: Group controller receives shares and compute
h(x, 7) and the broadcast message B.

�����
��
B

m1

m2

m3

}4

'

&

$

%
Figure 5. 7th rekeying: Group controller broadcast B; Anyone can receive
B.
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�����
��
m1K7

m2K7

m3K7

}4

Figure 6. 7th rekeying: Group members (members 1,2 and 3) can compute
the new group key but revoked member(s) (member 4) cannot get the new
group key since g(4) = 0.

that knowing less than λ + 1 session share of a node
do not provide any information about the original stored
share. Based on the cryptographic algorithm that is used for
sending the shares, 1 ≤ λ ≤ 2t should be chosen.

D. Fault Tolerance

In the proposed scheme, like other schemes where the
group controller is responsible for sending the broadcast
message, the group controller is a single point of failure. In
order to tolerate k failures in the group controller, it could
be possible to have k group controllers (only one of them
is active at a time). But group nodes should be able to trust
k group controllers instead of one.

If h becomes compromised, the whole rekeying mecha-
nism is compromised. In order to tolerate k compromises of
h polynomial, it is possible to have k distinct instances of
the scheme with k group controllers. So each group member
has k personal secrets.

E. Security Analysis

According to Theorem 4, this scheme has t-revocation
capability. It also provides t-wise backward and forward
secrecy.

Theorem 2. h(x, y) is compromised if and only if
1) µ + 1 (or more) shares of e are compromised and

h′(x, y) is also compromised.
2) or 2t+ 1 of group members become compromised.

Proof: Having µ + 1 (or more) shares of e, one can
find the original e(x, y, u) by solving µ+ 1 (µ+ 1)-variable
linear equations. Knowing less than µ + 1 share, e(x, y, u)
could not be constructed. It is clear that h(x, y) could be
constructed if and only if e(x, y, u), and h′(x, y) are also
available.

Table I
MAXIMUM AND MINIMUM AMOUNT OF MEMORY CONSUMPTION IN THE

GROUP CONTROLLER (BYTES). µ = λ = t

t = 2 t = 3 t = 4 t = 5 t = 6

400 812 1440 2332 3536 Minimum
656 1200 1976 3032 4416 Maximum

Table II
MAXIMUM AND MINIMUM AMOUNT OF MEMORY CONSUMPTION IN THE

GROUP MEMBER (BYTES). µ = λ = t

t = 2 t = 3 t = 4 t = 5 t = 6

112 184 272 376 496 Minimum
164 256 364 488 628 Maximum

If 2t+ 1 group members become compromised, actually
2t+1 of h(i, y) are compromised which are enough material
to reconstruct h polynomial.

Theorem 3. This scheme has t-revocation capability. It also
provides t-wise backward and forward secrecy.

Proof: The proof is similar to the proof of Theorem 2.
Note that we have assumed t ≤ µ.

IV. IMPLEMENTATION AND SIMULATION

We have implemented our proposed scheme for TinyOS-
2.1.0 [11]. We installed TinyOS on Ubuntu Linux with
2.6.24-16-server kernel. We have used Avrora (Beta 1.7.10)
[12] to simulate the implemented code. Simulation results
are give bellow.

In our implementation, we have used dynamic memory
allocation for storing polynomials coefficients. Although
this code has been tested on a real MICAz mote [13],
we are not claiming that it is perfectly optimized. Since
the largest integer data type in TinyOS is uint64_t, we
used uint32_t for coefficients in polynomials1. So the
key length is 32 bits. We have also implemented the basic
version of the only published distributed scheme, B-PCGR
[5], using the same computation engine as ours.

A. Memory Usage

To have a better understanding of memory usage of our
implementation, we logged the amount of memory allocated
(malloc()) and freed (free()) for each phase of the
rekeying procedure.

The initially allocated memory (minimum) and the max-
imum amount of allocated memory during execution of
rekeying process in the group controller and a group member
are shown in Table I and II, respectively.

Note that these figures are only the amount of dynamically
allocated memories and does not contain memory usage of
function codes, local variables, etc.

1to be able to have multiplication of two 32-bit integers
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Table III
ENERGY CONSUMPTION OF COMPUTATION IN EACH PHASE OF THE
PROPOSED SCHEME ON A MICA2 MOTE. THE GROUP CONTROLLER

DOES STEP 3 ONCE. µ+ 1 GROUP MEMBERS DO STEP 2. ALL GROUP
MEMBERS DO STEP 4

Step 3 Step 2 Step 4
491.85 µJ 56.6 µJ 129.83 µJ t = λ = µ = 2
861.73 µJ 104.59 µJ 146.63 µJ t = λ = µ = 3
1334.56 µJ 167.32 µJ 163.39 µJ t = λ = µ = 4
1946.38 µJ 244.75 µJ 191.38 µJ t = λ = µ = 5

Table IV
ENERGY CONSUMPTION OF COMPUTATION IN EACH PHASE OF B-PCGR

ON A MICA2 MOTE. COMPUTING SHARES IS DONE IN EACH GROUP
MEMBER µ+ 1 TIMES. EACH GROUP MEMBER COMPUTES K ONCE

Computing the group key Computing shares
272.9 µJ 0.5 µJ t = µ = 2
644.71 µJ 0.62 µJ t = µ = 3

1178.03 µJ 0.79 µJ t = µ = 4
1944.11 µJ 0.99 µJ t = µ = 5

B. Energy Consumption

Although radio communications consume most of the
motes’ energy, energy consumption of computations should
also be considered. We have used Avrora to measure the
energy consumption of computations of each phase of the
rekeying procedure for our proposed scheme as well as B-
PCGR [5] in MICA2 motes.

For this purpose, codes of each phase of the rekeying
process have been run in a for loop for 100 times. The
energy consumption has been measured with and without
running loop and the difference divided by 100 is reported
for the energy consumption of that phase.

Table III and IV demonstrate the measured figures for our
proposed scheme and B-PCGR, respectively. As it is clear,
the most power hungry part of our scheme runs in the group
controller. While each phase of B-PCGR consumes an small
mount of energy, these phases should be run several times.

Figure 7 shows total energy consumption of computations
of our scheme with µ = λ = t and B-PCGR with µ = t
for n = 10. Our scheme consumes less energy compared to
B-PCGR, and the difference becomes more significant for
larger ts.

Figure 8 demonstrates how growth of n affects the total
energy consumption of computations in our scheme with
µ = λ = t = 3 and B-PCGR with µ = t = 3.

C. Computation Time

We have measured computation time of our scheme using
Avrora simulator for MICA2 motes. Table V presents the
results.
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Figure 7. Total energy consumption (µJ) of our proposed scheme and
B-PCGR for n = 10
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Figure 8. Total energy consumption (µJ) of our proposed scheme with
µ = λ = t = 3 and B-PCGR with µ = t = 3

D. Communication Overhead

Table VI and VII shows total size of the payloads that
should be sent in our scheme and B-PCGR, respectively for
n = 10. Figure 9 compares total payload size of the sent
packets in our scheme and B-PCGR for different values of
n.

Table V
COMPUTATION TIME OF OUR IMPLEMENTATION ON A MICA2 MOTE.

THE GROUP CONTROLLER DOES STEP 3 ONCE. µ+ 1 GROUP MEMBERS
DO STEP 2. ALL GROUP MEMBERS DO STEP 4

Step 3 Step 2 Step 4
22.22 ms 2.68 ms 6.39 ms t = λ = µ = 2
39.06 ms 5 ms 7.77 ms t = λ = µ = 3
60.68 ms 8.09 ms 9.48 ms t = λ = µ = 4
88.74 ms 11.98 ms 12.11 ms t = λ = µ = 5
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Table VI
TOTAL PAYLOAD SIZE IN OUR SCHEME

total size share request packet no. share packet no. broadcast message no.
120 Byte = 12 Byte ×1 +20 Byte ×3 +48 Byte ×1 t = λ = µ = 2
196 Byte = 16 Byte ×1 +28 Byte ×4 +68 Byte ×1 t = λ = µ = 3
288 Byte = 20 Byte ×1 +36 Byte ×5 +88 Byte ×1 t = λ = µ = 4
396 Byte = 24 Byte ×1 +44 Byte ×6 +108Byte ×1 t = λ = µ = 5

Table VII
TOTAL PAYLOAD SIZE IN B-PCGR FOR n = 10

total size share request packet no. share packet no.
240 Byte = 12 Byte ×10 +4 Byte ×30 t = µ = 2
320 Byte = 16 Byte ×10 +4 Byte ×40 t = µ = 3
400 Byte = 20 Byte ×10 +4 Byte ×50 t = µ = 4
480 Byte = 24 Byte ×10 +4 Byte ×60 t = µ = 5
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Figure 9. Comparison of total payload size of sent packets in our scheme
and B-PCGR

E. Source Code

The source code is available in
http://ce.sharif.edu/˜nikoonia

V. PERFORMANCE ANALYSIS

In this section, we analytically evaluate the performance
of the proposed scheme. We compare the performance of
our scheme and the only published distributed scheme in
Section VI. In the next sub-sections, we assume a group of
n sensor nodes that do their key management computations
in Fp. Hence, the key size is dlog qe.

A. Communication Cost

In a rekeying event, µ+1 nodes should send their session
share of size (2t+ 1)× dlog qe bit to the group controller;
The group controller computes a broadcast message of size

(w+ 2× (2t+ 1))×dlog qe bits2. In the worst case, w = t.
So in the worst case, the broadcast message size is (5t +
2)× dlog qe bits

B. Computation Overhead

In a rekeying event, µ+ 1 nodes must evaluate e polyno-
mial at an specific point (i.e., j) which has a computation
overhead of O(tλ) modular arithmetic operation.

The group controller has to rebuild e polynomial and
evaluate it for u = 0 from µ + 1 shares using Gaussian
elimination which together requires O(µ2) arithmetic oper-
ation. Computing P (x) and Q(x) for the broadcast message
requires O(t2) modular arithmetic operation.

Finally, group members need to do O(t) modular arith-
metic operation to recover K.

So the computation overhead of a rekeying operation for
the group controller is O(t2 +µ3) and the average computa-
tion overhead for each group member is O(t) + µ+1

n O(tλ).

C. Storage Requirements

The group controller stores h′(x, y) which is (2t + 1) ×
(λ+ 1)×dlog qe bits. Group member i should store h(i, y)
and e(x, y, i) which needs (λ+ 1)× dlog qe and (2t+ 1)×
(λ+ 1)× dlog qe bits, respectively.

VI. COMPARISON

In this section, we conclude our comparison between our
proposal and the only published distributed scheme. Table
VIII provides a comparison between our proposed scheme
and B-PCGR [5]. Note that by the communication overhead,
we mean the number of bits that should be sent and not the
traffics that are forwarded by the nodes due to the routing
process. Both schemes provide t-wise backward and forward
secrecy. They also provide on-demand rekeying.

2We assume dlog qe bit IDs
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Table VIII
COMPARISON OF GROUP REKEYING SCHEMES. L = dlog qe IS THE KEY

SIZE.

Our Scheme B-PCGR [5]
Attacker Model Active Active
On-demand rekeying Yes Yes
t-wise forward secrecy Yes Yes (for µ > t)
t-wise backward secrecy Yes Yes (for µ > t)
System Model Distributed Distributed
Total point-to-point
communication
overhead (bits)

(µ+1)× (2t+1)×L n× (µ+ 1)×L

Broadcast communica-
tion overhead (bits)

(5t+ 2)× L none

Computation overhead
for each nodes

O(t2) + µ+1
n
O(λ2)

Modular arithmetic op-
eration

O(µ3 + (n +
1)× t2) modular
arithmetic opera-
tion

Computation overhead
for the group controller

O(µ3 + t2) Modular
arithmetic

none

Storage overhead for
each node (bits)

(2t+1)× (λ+1)×L (n+1)(t+1)×L

In order to provide these features, B-PCGR needs to have
an underlying IDS with the capability to inform all group
members about the compromised nodes which costs more
complexity of the IDS and more communication overhead.
While in our proposal, only the group controller needs to
have such information.

Our scheme consumes less energy in its computations (see
Section IV-B). It also have lower communication overhead
(see Section IV-D).

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new distributed group
rekeying scheme which does not require a secure rekeying
server and is based on local collaboration of group members.
We have evaluated analytically the performance and the
security of this scheme.

We have also implemented our proposal for TinyOS and
used Avrora to simulate the compiled binary for MICA2
motes. Energy consumption, memory usage and communi-
cation overhead have been reported. Simulation results show
that comparing to the only published distributed scheme, our
scheme consumes less energy in its computations and has
lower communication overhead.

Most of the group rekeying schemes, including our pro-
posed scheme, rely on one group controller. A failure
in the group controller could damage the whole group.
This problem is not addressed in the literature. Our future
work includes the study of the impact of multiple group
controllers. Choosing the optimum key size in order to
minimize energy consumption of the encryption, decryption
and rekeying processes is another issue that we will study
in our future work.
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