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Abstract—Node localization is a fundamental capability for
several applications of Wireless Sensor Networks (WSN), such
as security surveillance, fire detection, animal behavior moni-
toring, among others. Over the last decade, node localization
in wireless sensor networks has evolved from centralized to
distributed solutions. Therefore, more demanding conditions
have arisen for new applications. These conditions come from
massive node deployment and irregular topologies, requiring
further analysis. In this paper, we present a method to
reduce the signaling overhead due to a distributed localization
procedure. This method consists of four stages: Based on the
Awerbuch’s γ synchronizer, the proposal divides the network
into clusters. The cluster size is restricted by a growing factor
defined by a cluster-head, i.e., a leader. Based on connectivity
information, the distance between each pair of nodes, belonging
to the same cluster, is calculated by the corresponding leader.
Next, each leader solves locally a particular instance of the
MultiDimensional Scaling (MDS) problem. Finally, a minimum
set of beacons is selected on each cluster. This is in order to
assemble each region into a global localization solution within
a single system of reference. In our method, we turn the
initial settlement into several smaller instances of the original
problem which can be solved simultaneously and based on local
resources. Simulation results show that this approach produces
important savings on the required message exchange.

Keywords-Localization; Partitioning; Synchronizer; Multidi-
mensional Scaling.

I. I

Wireless Sensor Networks (WSN) is an emerging tech-

nology offering a wide spectrum of potential applications,

and also a source of challenging problems to be solved

[1]. Sensor node localization is a fundamental capability

supporting most of these applications. A monitoring system,

for instance, is able to determine the source of a critical event

only if sensor nodes have accurate localization capabilities.

Position awareness can also be used to enhance routing

decisions because the nodes can send packets to their final

destination based only on the position of nearby nodes,

i.e., knowing the position of their neighbors. These routing

strategies foster local work and, as a consequence, reduce

the resource consumption [7], [11], [17].

For a small set of nodes, their individual positions can be

programmed manually. In other cases, a Global Positioning

System (GPS) may provide a convenient starting point.

Nevertheless, the utilization of a GPS is limited due to

budget constraints. Alternatively, a mobile node that is aware

of its own position may perform a comprehensive tour

across the underlying network. This mobile “coordinator”

informs to each node about its corresponding position.

It is important to recall that GPS is not recommended

for indoor deployments, because satellite signal reception

could be poor. When neither a GPS-based procedure, nor a

manual programming are feasible, an automatic localization

procedure is required.

Over the last years, an important number of proposals

addressing self-configurable localization procedures have

been published. Most of these proposals imply special-

ized solutions that perform well, merely under particular

circumstances. Only a few of them have proved to be

useful for general applications. However, even these general

methods may show a poor performance under massive node

deployment. In the meantime, technology trends show that

WSN have permeated in different sector of our lives, as

a consequence the number of deployed nodes is growing

abruptly. In this context, scalability seems to be a new

borderline in localization.

Despite of the fact that there is a well-known set of

localization techniques offering general solutions [9], [10],

[14], there are pending issues on the subject to be addressed.

Scalability is one of these requirements to be fulfilled. The

required methods developed to solve localization cannot be

directly applied on a massive node deployment, due to their

inherent message complexity, which limits the sensors en-

ergy budget. Apparently, the implicit agreement among sci-

entists suggests that partitioning is a promising direction to

address the scalability issue [18], [19]. From this approach,

the underlying network is split up into regions or clusters.

Each of the resulting clusters solves a reduced version of

the localization problem. Finally, the local solutions are
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assembled between each other, like the pieces of a puzzle,

in order to build the global solution.

The partition methods so far developed to address scala-

bility, start selecting a set of nodes; each of these appointed

nodes is in charge to build a cluster. A cluster grows inviting

its neighbor nodes to join the graph under construction.

Nevertheless, to our best knowledge, these procedures do not

control neither the cluster growth rate, nor the initial number

of appointed nodes. In Shang [16], for instance, each node

in the graph is regarded to be a cluster by itself, provided

that it is not assimilated by a bigger one. Therefore, the

partition message complexity may turn out to be excessive.

In addition, the simultaneous construction of clusters may

produce an unnecessary condition where neighbor clusters

compete for nodes which still are unassigned and, having

an impact again, on the number of exchanged messages.

In contrast, our proposal provides a control on the number

of nodes which are initially appointed to start the graph

partitioning. It also offers a parameter k, that allows to

“modulate” the growth rate and, indirectly, the order of the

resulting clusters, which has a deep impact on the message

exchange and time complexity.

In this work, we have addressed the localization problem

for a wireless sensor network with arbitrary topology, where

the nodes are deployed at fixed but unknown positions. It

is also assumed that the nodes do not have implemented a

complementary device to estimate either, power range or

distance. The method that we introduce consists of four

consecutive stages: in the first stage, the underlying graph

associated with the network is partitioned with our modified

method. In the second stage, for each of the resulting

clusters, the appointed starting node calculates the distance

in terms of hops, between every couple of nodes belonging

to the same cluster. In the third stage, each leader solves

locally a particular instance of the multidimensional scaling

problem. Finally, in the last stage, a minimum set of three

beacons is deployed on each cluster, to assemble each region

into a global solution within a single system of reference.

The rest of this document includes the following parts: In

Section II, we formally define the problem and introduce the

related work. In Section III, we describe the stages of our

method and present a collection of performance assessments.

In Section IV, we present the analysis of the results. Finally,

we present our final remarks in Section V.

II. D  RW

From the point of view of graph theory , a network is

modeled by a graph G = (V, E), with an edge between any

two nodes that can communicate directly with each other. In

most of the cases, the multi-hop radio network is modeled

as a Unit Disk Graph (UDG). In a UDG G = (V, E), there

is an edge u, v ∈ E if and only if the Euclidean distance

between u and v is less than or equal to 1.

An embedding of a graph G = (V, E) in the Euclidean

plane is a mapping f : V → �
2, i.e., each vertex v j,

j = 1, 2, . . . , n is identified by a point x j ∈ �
2 in the

plane. A realization of a unit disk graph G = (V, E),

in the Euclidean plane is an embedding of G such that

u, v ∈ E ↔ d( f (v), f (u)) ≤ 1, where d is the Euclidean

distance between two points. Therefore, localization consists

of the realization of a unit disk graph in the Euclidean plane.

Localization is also considered as an optimization problem

because given a set of measured distances between nodes

that build a network, it is necessary to estimate the position

of each node on a plane, up to rotations and translations.

This is, while the error between the measured distances and

the resulting distances from the estimated positions should

be minimized. Practitioners introduce nodes with fixed and

known locations, called beacons or anchors, in order to help

the system to settle the reference coordinates.

In a sensor network in �2 there are two types of nodes:

common sensors and anchors. A common sensor j is a node

which position has to be estimated and, it is denoted by

x j ∈ �
2, j = 1, 2, . . . , n. In contrast, each anchor k, has a

well known position ak ∈ �
2, k = 1, 2, . . . ,m. Let di j be the

Euclidean distance between a pair of common nodes i and j,

and let d jk the Euclidean distance between a common node

j and an anchor k.

There are unknown pairs of distances for some cases, so

the pairs of nodes, for which mutual distances are known,

are denoted as (i, j) ∈ Nx distance between sensor and sensor

and ( j, a) ∈ Na between sensor and anchor pair, respectively.

The localization problem in �2 can be stated as: given

m anchor locations ak ∈ �
2, k = 1, 2, . . . ,m and some

distance measurements di j, (i, j) ∈ Nx, d jk, ( j, k) ∈ Na, find

the locations of common sensors, such that (ideally)

|xi − x j|
2=d2i j, ∀(i, j) ∈ Nx (1)

|x j − xk |
2=d2jk, ∀( j, k) ∈ Na (2)

In many instances of the problem, noisy measurements

introduce uncertainty on the calculations. Under such con-

ditions, the problem can be reformulated as follows,

min {|xi − x j|
2 − d2i j} (3)

min {|x j − xk |
2 − d2jk} (4)

Notice that, anchors provide to the system with a fixed and

absolute reference. Otherwise, when there are not anchors

at all, the solution shows only relative positions. In other

words, the “drawing” of the solution of the original network

can be rotated, reflected or translated.

Different techniques have been proposed to measure the

distances that make up the input set of the localization
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problem. These techniques can be classified into two main

categories: range-based and connectivity-based (also called

range free). The former depends on a physical signal ex-

changed between two points which value is a function of

the length, or relative position, of the line of sight from

transmitter to receiver. e.g., Angle of Arrival (AoA), Time

of Arrival (ToA), and Received Signal Strength (RSS).

The downside of range-based techniques is that they

require additional hardware that may impact on the price

of individual nodes. Besides, they can be very sensitive

to environmental conditions. In contrast, connectivity-based

techniques depend on the number of hops separating any pair

of nodes. In this case, it is assumed that two nodes sharing

an edge are separated, at most, by one distance unit. For

both categories, indirect measurements may be propagated

to other nodes in the network using a distributed procedure,

such as the Distance-Vector algorithm (DV), where each

node successively sends all the distances and the paths to

reach the destinations that it already knows.

Research on localization methods has produced reason-

able methods that offer excellent performance when the

deployed sensors make up a dense and globally uniform

network. Among the most relevant proposals, we found that

Shang et al. [15] demonstrated the use of a data analy-

sis technique called “MultiDimensional Scaling” (MDS) in

estimating positions of unknown nodes. First, using basic

connectivity or distance information, a rough estimate of

relative node distances is made. Then, classical MDS (which

basically involves using eigenvector decomposition) is used

to obtain relative maps of the node positions. Finally, an

absolute map is obtained by using the known node positions.

This technique works well with few anchors and reasonably

high connectivity. For instance, for a connectivity level of 12

and 2% anchors, the error is about half of the radio range.

Suppose we could count on the matrix X, where each

of its rows codes the position of a point on an Euclidean

space. It is possible to calculate the square of the distances

between any pair of points in this collection, according to

the following expression

D(X)2 = c1T + 1cT − 2XXT = c1T + 1cT − 2B (5)

where c is a vector made up with the elements from the

diagonal of XXT . Then, we left and right multiply by a

centering matrix and by the factor −1/2 to obtain

−
1

2
HD(X)2H=−

1

2
H(c1T + 1cT − 2XXT )H

=−
1

2
Hc1TH −

1

2
H1cTH +

1

2
H(2B)H

=−
1

2
Hc0T −

1

2
H0cT +HBH = B (6)

The first two parts of the equation are canceled since

centering a vector made up with 1’s produces a vector made

up with 0’s only (1TH=0). In turn, as we assume that the

columns in X have a mean equal to 0, the centering matrices

around B can be dismissed. Now we can see that if were

able to factorize B, according to an eigendecomposition, it

will turn out that QΛQT = (QΛ1/2)(QΛ1/2)T = XXT . There

exist a tool that carries out this decomposition: the so-called

power method, which is an iterative algorithm of complexity

O(n3), where n is the number of unknown positions. We

also tested an optimization approach, called the majorization

method, which also is an iterative algorithm of complexity

O(n2), but it is not based on eigendecomposition [3], [8].

III. M     

A synchronizer is a set of techniques that enables an

asynchronous system to emulate a synchronous behavior. To

support this emulation, each node should be able to proceed

with the next step of the given algorithm, only when it

is granted that all the participants have accomplished the

preceding step [13]. A node under these condition is said to

be “safe”.

Awerbuch [2] introduced three types of synchronizers: the

α type, where each node exchanges messages with all its

neighbors to let them know that it is safe. The β type, where

a spanning tree is previously built. Here, a node sends a

message to the root when the current step has finished. Once

the root has collected these messages from each node, it

broadcasts back a new message to the nodes on the tree, in

order to notify the overall safety.

Finally, in the γ synchronizer the underlying graph is

partitioned into a forest. Each of the resulting trees, also

called cluster, runs a local version of the β synchronizer.

However, when the nodes of a given cluster have finished the

current step, the root exchanges messages with its neighbor

trees to let them know of its local condition. When a root

recognizes this condition on each of its neighbor subgraphs,

it broadcasts back a new message to the nodes of its cluster

to notify the overall safety.

The γ synchronizer requires an initialization procedure to

split up the underlying graph in a set of disjoint clusters.

The construction of a cluster starts when a given node,

still unexplored, is appointed as a leader. The new leader

begins aggregating layers to the cluster under construction.

It is expected that a new layer that joins the cluster should

contain, at least, as many nodes as, k times the total number

of nodes already in the cluster. When this condition is not

met, the cluster construction stops. Then, a new leader is

found and the procedure starts again. Here, there is a special

link, called “preferred”, between the former tree and the

new one about to be settled. This link fixes a relationship

between the “ancestor” cluster and its “successor”. When the

cluster stops growing and a new node cannot be appointed,

the leader in charge turns the control back to its ancestor tree.
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k=0.7
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Figure 1. Building clusters with different values of k.

In due time, the receiving leader looks for a node to start a

new successor tree, otherwise it also turns the control back

to its own ancestor tree. According to this rule, the initial

leader is able to recognize the moment when the partition is

finished. The graph has been exhaustively explored and each

node has been incorporated to a given tree. Our partitioning

technique is based on a cluster growth parameter k. While

the original work does not consider the values of k < 1, our

implementation supports any value of k > 0. Nevertheless,

when the partition process works under these “suboptimal”

growth rate, each cluster grows with a very slow pace and

the average cluster order increases.
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Figure 2. The benefits of partitioning

Besides this original partition procedure, herein called the

“serial” partitioning, in this work we propose a new approach

called the “concurrent” partitioning which once a cluster

stops growing, each node in the border of the cluster selects a

neighbor not yet assigned. Each of the newly selected nodes

concurrently receives a signal permission to build a new

cluster and as a result, preferred links between clusters are

implicitly defined. In contrast to the original procedure, a

given cluster, does not turn back the control to its ancestor

when there is not any further place to explore. This feature

does not preclude the further start of the next stage of our

global localization method.

Figure 1 shows the behavior of the proposed partitioning

algorithm for three values of k: 0.7, 1 and 2, respectively.

Our partitioning approach shows similarities with the

work presented in [4], [12]. In contrast, our method does not

have as many cluster construction rules as they do. Potential

conflicts on the nodes’ assignation are solved with a very

simple rule: a free node, i.e., a node not yet assigned to a

cluster, decides to be part of the first cluster that accepts it.

Otherwise it will eventually turn into a new cluster leader

on its own.

We developed a first assessment assuming that the system

runs the localization procedure without a previous partition-

ing, then it is run by choosing a partitioning with different

orders, i.e., the number of nodes on the resulting clusters.

Figure 2 shows the overall message complexity associated

to each test. Results show that partitioning saves expenses

by several orders of magnitude.

In a second evaluation, we decided to compare the serial

and the concurrent partitioning stages, for a value of k = 1.

We test both over 50,000 different networks with 600 nodes

each, which have been generated randomly. Our results

provide a 95% confidence.

In the second stage of our localization procedure, a local

instance of the Bellman-Ford [6] algorithm is executed

on each of the resulting clusters to calculate the shortest
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Table I
R         

Variables Serial concurrent

Finalization Timea 809.25 213.01

Messages Transmittedb 28146.73 25445.32

Transmitted Messages per Nodec 49.77 45.81

Leader’s Transmitted Messagesb 1920.82 2091.70

Leader’s Transmitted Messagesc 111.79 83.07

Avg. Number of Resulting Clusters 4.37 11.98

Avg. Cluster Size 19.336 11.11

a assuming that a message is transmitted using a time unit
b average total number of messages
c average individual number of messages

path between every couple of nodes belonging to the same

cluster. The length of each path is considered a substitute

for the Euclidean distance between nodes, which is required

in the following stage. The routing algorithm requires the

whole set of links that make part of the induced subgraph.

In the original work, each node exchanges messages with

all its neighbors, to calculate the shortest path between

any couple of nodes. This approach produces a message

complexity O(|V |3), where |V | is the order of the underlying

graph, i.e., the total number of nodes that make part of

the graph. However, in wireless sensor networks, message

transmission is an event that has a major impact on the

nodes’ energy supply. For this reason, we developed an

alternative approach: using the tree that spans its cluster,

each node sends to the root its neighbors list. The leader

which is appointed as the root, collects this information to

build a model of the underlying graph and then it runs a

centralized version of the routing algorithm. This method has

a complexity O(|V |) on the number of exchanged messages.

When a leader has estimated the distances between any

couple of nodes belonging to its cluster, it starts the third

stage of our procedure: it solves a local instance of the

MultiDimensional Scaling problem (MDS) i.e., it transforms

a distance matrix into a list of vectors coding the positions

where nodes can be preliminary located. We evaluated three

alternatives, see Figure 3: a) the classical eigendecomposi-

tion, b) a second iterative procedure called the majorization

method, i.e., Scaling by Majorizing a Complicated Function

(SMACOF), and c) the combination of both. In this last

procedure, we build a preliminary solution using method a)

which is further supplied as a new input to method b). As

it could be expected, this combined approach offers the best

results. Nevertheless, the second alternative offers nearly

the same quality under a lower price. Let us recall that

eigendecomposition has a complexity order equal to O(n3),

where n is the number of unknown positions. In contrast,

majorization’s complexity is O(n2).

To the authors’ best knowledge, all the preceding work

based on range free distance estimation assume a fixed hop

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 20  40  60  80  100  120  140

lo
ca

li
za

ti
o
n
 e

rr
o
r

network size

network density = 10.779 nodes/R

eigendecomposition
SMACOF

eigendecomposition+SMACOF

(a)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 20  40  60  80  100  120  140

lo
ca

li
za

ti
o

n
 e

rr
o

r

network size

network density = 15.71 nodes/R

eigendecomposition
SMACOF

eigendecomposition+SMACOF

(b)

Figure 3. Localization error for two network densities.

length equal to one. Our contribution in this stage also

consists on a test varying the hop length between 0 and 1.

We found that, depending on the density of the underlying

graph there is a hop value that optimizes the outputs of

the MDS decomposition. These results are shown in Figure

4. We plotted the reconstruction error for ten different hop

values and for three network average densities: 4, 8 and 12

Nodes/Range. In each case exists a hop value that minimizes

the MDS reconstruction error. Also, note that the mean error

decreases due to the network density increment.

When each leader has solved the local instance of the

MDS, the geometric center of the cluster is considered at

the position (0, 0), or (0, 0, 0), whether the nodes deployment

are in 2D or 3D, respectively. This means that all clusters

are logically overlapped. In the last stage of our procedure,

we install a minimal set of beacons on each cluster in order

to perform an isometric transformation that fixes the final

coordinates of each region. And thus, a global and coherent

picture of the system has been built.

Figure 5 shows the results of localization without and

with partitioning, respectively. It is worth mentioning that
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Figure 5. A network reconstruction. Fig. (a) reconstruction without
partitioning. Fig. (b) reconstruction with partitioning.

compared to the proposal of Shang, our method achieves

similar results. Nevertheless, from Shang’s point of view in

[15], each node starts working considering itself a cluster on

its own and therefore, exchanging an excess of messages.

We bound this message complexity by growing clusters

during the first stage of our method. The underlying tree

that spans the nodes of each cluster provides an efficient

message exchange.

IV. A   

We introduced a localization procedure which consists of

four consecutive stages: in the first stage, the underlying

graph is partitioned. In the second stage, each appointed

starting node calculates the distance in hops, between every

couple of nodes belonging to its cluster. In the third stage,

each leader solves a local instance of the multidimensional

scaling problem. Finally, in the last stage, we introduce a set

of beacons on each cluster, in order to assemble each region

into a coherent solution within a single system of reference.

Our partitioning technique is based on a cluster growth

parameter k. We realized that a value of k > 1 offers

better solutions in terms of: i) time to solve stage one, ii)

it dramatically reduces the amount of resources involved on

the overall procedure, iii) the reduced overall expenses are

shared among a bigger number of participants, and iv) it

produces more accurate solutions.

In the downside, we consider that the last stage limits

the applicability of our method, but we have also identified

that in order to overcome this limitation it is necessary

to review the connection step between neighbor clusters,

during partitioning. It is known that the rigidity of a graph

is a desired property that facilitates its realization in an

Euclidean space. Therefore, the more connections there are

between neighbor clusters, the more rigid is the resulting

combined graph [5]. If the number of links between clusters

is maximized, then it is possible to use a minimal number

of beacons to fix a global coordinated system.

The partitioning method works on any network, indepen-

dently from its topology and size. We found, in fact, that this

partitioning stage can cope with irregularities and obstacles

and, it is a necessary step to scale up any localization

algorithm. This is a well-known approach called “divide

and conquer”. The initial settlement turns in several local

instances of the original localization problem, where it is

assumed that these local instances are easier to solve than

the initial settlement and can be solved simultaneously. In

addition, this approach enforces the organization based on

local resources and being also possible to achieve coordina-

tion in a global context.

The coordination is a key capability whose complexity

depends on partitioning. If each node of the network were a

cluster by itself, it would require to exchange messages with

its immediate neighbors to achieve a coordinated action as

it is proposed in the α synchronizer. Although it is a very

fast strategy for the coordination, it can be very expensive in

terms of the overall number of messages sent on each link

of the underlying graph. In contrast, the β synchronizer can

be used where a single spanning tree could be previously
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built on the graph. And as a result, it would be necessary

a minimal number of messages to coordinate the whole

system. Whereas, the time required to achieve coordination

may be as much as the necessary to travel the tree’s longest

path.

The γ synchronizer and the concurrent version proposed

in this work find a trade-off between the number of mes-

sages and the time complexity in a coordination procedure,

including the localization process.

V. C

The method that we introduce consists of four consecutive

stages.

In the first stage, our solution comprises partitioning the

underlying communications graph as proposed in [16], [18],

[19]. However our method has a significant improvement

in reducing computational resources, since we control the

cluster grow rate, as well as the number of simultaneous

clusters under construction. Indeed, our approach shares

many ideas with the work of [4], [12].

In the second stage, for each of the resulting clusters,

there exists an appointed starting node called leader, that

calculates the distance in hop units between every couple of

nodes belonging to its cluster. This operation can be solved

using the distance-vector protocol. Nevertheless, this method

requires a message exchange that has a major impact on

the energy supply. Therefore, we developed an alternative

method which reduces the message complexity from O(|V |3)

to O(|V |).

In the third stage, each leader solves locally a particular

instance of the multidimensional scaling problem. An esti-

mation of the distances between any couple of nodes lying

on the same cluster is required as the input for this stage.

In many cases the distance in hop units is regarded as a

good alternative. Most of the authors, cited in the references,

fixed the hop length to one. We found that the density of the

underlying graph determines the optimum hop length for the

MultiDimensional Scaling (MDS) decomposition method.

Therefore, for each case there is a hop length that minimizes

the MDS reconstruction error and for the examples shown

here, the optimum hop length is around 0.7 instead of one.

Finally, in the last stage, a minimum set of three beacons

is deployed on each cluster. Beacons provide a global

reference that supports an isometric transformation of the

cluster position. This means that the cluster can be rotated

or translated to its final position within a single system of

reference.

From our point of view, the saving achieved with our

distributed method comes from different sources; evidently,

the most important is that the method works simultaneously

on the construction of several clusters. In addition and, in

contrast with our method, the γ synchronizer spends more

time on both, the selection of the next leader and appointing

the preferred links.

The proposal presented in this work shows simple but

significant contributions in each stage of the localization

method. The results show that our solution significantly

reduces the number of messages exchanged, which is in-

deed an important operation condition for wireless sensor

networks.

For future work we are planning the implementation of

our method on a real massive node deployment.
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S. Rajsbaum, and J. Urrutia, “Distributed Dynamic

Storage in Wireless Networks,” International

Journal of Distributed Sensor Networks, vol. 1,

no. 3, pp. 355–371, 2005. [Online]. Available:

http://dx.doi.org/10.1080/15501320500330695

[8] P. Groenen and I. Borg, Modern Multidimensional

Scaling, Theory and Applications. New York:

Springer-Verlag, 1997.

[9] G. Mao and B. Fidan, Localization Algorithms and

Strategies for Wireless Sensor Networks. New York:

Information Science Reference, 2009.

[10] R. Marcelin-Jimenez, M. Ruiz-Sanchez, M. Lopez-

Villasenor, V. Ramos-Ramos, C. Moreno-Escobar, and

M. Ruiz-Sandoval, Emerging Technologies in Wireless

Ad Hoc networks: Applications and Future Develop-

ment. IGI Global, 2010, ch. A survey on Localization

in Wireless Sensor Networks.
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