
 

Abstract—Recently, rateless codes have attracted 

much attention in the communications research 

community. The most well known being Luby transform 

codes, were the first practical realisation of record-

breaking sparse-graph codes for binary erasure 

channels. These codes have the advantage of not 

requiring a priori knowledge of specific channel 

conditions and lends itself to application in 

nondeterministic wireless networks. This paper revisits 

the Luby transform fountain code, predecessor of the 

well known Raptor codes, and proposes a novel 

parameterised probabilistic degree distribution,  which 

is used in the encoding process, along with the belief 

propagation decoding algorithm.  By combining 

piecewise-defined convex functions and running a non-

symmetric Kullback-Leibler divergence measure 

between the expected and actual  degree distributions, 

we optimise our degree distribution and substantiate a 

significant reduction in reception overhead and symbol 

operations. This will support such forward error 

correction codes in efficient multimedia communication 

systems. Our proposition was implemented over a 

WiMAX network and the  practical results obtained 

indicate that a few conditions are sufficient to define an 

optimal encoding process. 

 
Keywords-Rateless Codes; Universal Codes; Belief Propagation; 
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I.  INTRODUCTION 

 Binary linear rateless coding is an encoding method that 

can generate potentially infinite parity check bits for any 

given fixed-length binary sequence as they do not have a 

fixed rate as the case for conventional codes. Fountain codes 

constitute a class of rateless codes, which were first 

discovered in by Luby. [1] Luby Transform (LT) codes are 

linear rateless codes that transform k information symbols 

into infinite coded symbols. Regardless of the statistics of 

the erasure events on the channel, we can send as many 

encoded packets as needed in order for full recovery of the 

source data. Typically N = k(1 + ε) packets are needed to 

successfully decode the original input message with a 

certain degree of probability where ε is the overhead. Each 

encoded symbol is generated independently and randomly, 

where the randomness is governed by the so-called Robust 

Soliton distribution. Luby's main theorem proved that there 

exists bounds around the belief propagation decoding failure 

probability as a function of reception overhead, that for a 

value c given N received packets, the decoding algorithm 

will recover the k source packets with probability 1 - δ. [1] 

[8] For large k (thousands), the Robust Soliton distributions 

have shown good performance. For smaller k Markov chain 

approaches have been implemented, which also showed 

good results. One conclusion to this study was that in a well-

chosen parametric form of the degree distribution, just a few 

parameters need to be tuned in order to get maximal 

performance. [3] Given the work already done, optimal 

forms of parameterised degree distributions for different 

message lengths continue to provide an interesting problem. 

In this paper we will investigate a new parameterised degree 

distribution shaped by convex functions and test its 

performance on a WiMAX network in real world scenarios, 

where random channel noise introduce packet loss.   

 The rest of this paper is organised as follows: In Section 

2, we review the theory of rateless encoding and believe 

propagation (BP) decoding, in particular the LT process and 

probabilistic degree distributions (PDD). In Section 3, we 

present our proposed optimised degree distribution, utilising 

a set of piecewise convex functions  shaping the ideal 

degree distribution to an improved solution as presented in 

literature, after reviewing related performance enhancing 

methods. We analyse the computational cost, and 

performance of our proposition in Section 4 and show 

results of emulation and practical implementation of our 

suggested solution. We finally state our conclusion and 

future work in Section 5. 

II.  PRELIMINARIES 

A. LT codes 

LT codes proposed by Luby in 1998 are the first codes fully 

realising the digital fountain concept. [1][4] They are 

rateless, i.e., the number of generated encoded packets are 

potentially limitless, and encoded symbols are generated on 

the fly. [8] 

 

1) Encoding of LT code: Randomly choose the degree d of 

the packet from a key element in the process, the so-called 

degree distribution. The encoded symbol is then generated 

by choosing dn blocks from the original file uniformly at 

random. The value of the encoded symbol is the bitwise 

exclusive-or of the dn neighbours. The encoding operation 

defines a irregular sparse graph connecting encoded symbols 

to source symbols. 

 

2) Decoding of LT codes: Decoding is done iteratively by 

using the Belief Propagation decoding algorithm. First we 

release a encoded symbol of degree-one, with complete 

certainty, and subtract the connected symbols from each 

received packet by taking an exclusive-or between the 

packet and the known symbols. This procedure removes all 

edges connected to the source packets and is repeated until 

all source symbols are recovered. The set of covered input 

symbols that have not yet been processed is called the 

ripple. This process is well illustrated in most fountain code  
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literature. [5][6][8] Algorithm 1 and 2 demonstrates the 

encoding and decoding procedures respectively. 

 

Algorithm 1: LT Encoding 
1: repeat 

2:   choose a degree d from degree distribution p(d) 

3:   choose uniformly at random d input symbols n(i1),.,n(id).   

4:    calculate value n(i1) xor n(i2) xor ...  xor n(id) 

5: until  stop bit received 

 

Algorithm 2: LT Decoding  
1:  repeat 

2:     if d = 1 packet in buffer 

3:      n(j) ← recover j  

4:     for all n(j) in buffer : v includes n(j) do 

5:       d ← d - 1            (reduce degree) 

6:       v ← v xor n(j)    (update value) 

7:     end for 

8:  until  all input symbols recovered 

 

 The complexity of BP, prominent in the decoding of LT 

codes, is essentially the same as the complexity of the 

encoding algorithm [1] i.e., there is exactly one symbol 

operation performed for each edge in the bipartite graph 

between the source symbols and the encoded symbols 

during both encoding and decoding. Therefore, the 

computational complexity of this algorithm is linear in the 

average degree of the degree distribution multiplied by the 

size of the source block. [6] BP will, however, fail when 

output nodes of degree-one exhaust and various algorithms 

i.e., Gaussian Elimination (GE) have been suggested 

[5][8][11] to counter this failure. However, this adds 

undesirable running time where fast decoding is required, 

especially for large matrices. For small code block lengths 

GE could be used efficiently, since BP requires a larger 

overhead for small block sizes. For this reason it is 

extremely important to find a degree distribution to 

effectively reduce reception overhead and the number of 

symbol operation for any block size.  

 

B. Degree Distributions 

 The LT process described in [1] helps explain the design 

and analysis of a good degree distribution for the LT codes 

by comparing the process to the well known balls in bins 

problem, where encoded symbols are analogous to balls and 

input symbols are analogous to bins. The analysis of this 

problem shows that N = kln(k/δ) balls are needed on 

average to ensure that each of the k bins is covered by at 

least one ball, with probability at least 1 − δ. This classic 

process can be viewed as a special case of the LT process, 

where all encoded symbols have degree-one and released 

simultaneously. It is shown in [1] that the Ideal Soliton 

distribution in (1), ensures that just over k encoding symbols 

with the sum of their degrees being O(kln(k/d)) will suffice 

to cover all k input symbols and produces the least number 

of symbol operations.  

 Luby further explained that the goal of the degree 

distribution design is to slowly release encoding symbols as 

the process evolves and to keep the ripple size small to 

prevent redundant coverage. The ripple should also be large 

enough to prevent it from disappearing prematurely. An 

ideal property required by a good distribution is that input 

symbols are added to the ripple at the same rate as they are 

processed. The Ideal Soliton in Fig. 1 displays this desired 

behaviour. 
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Figure 1: Ideal Soliton degree distribution for k = 100 input 

symbols. 

 

 The expected degree of an encoding symbol for this 

distribution is the harmonic sum up to k: 

 

                       
   ≈ ln(k)                          (2) 

 

 

 This means that in order to cover all the input symbols the 

degrees of all the encoding symbols needs to be around        

kln(k) and the Ideal Soliton compresses this into the least 

number of encoding symbols possible. This distribution, 

however ideal in theory, turned out to be quite fragile in 

practice, since the slightest variation in its expected 

behaviour can cause the ripple to disappear prematurely. 

 The Robust Soliton distribution from [1] ensures the 

ripple size stays large enough at each decoding step so that it 

never disappears completely and that few released encoding 

symbols are redundantly covered by input symbols already 

in the ripple. The Robust Soliton distribution (3) was 

designed so that the expected ripple size is roughly     
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 The small-d end of τ ensures that the decoding process 

starts with a reasonable ripple size and the larger spike at d 

= k/R ensures all source packets are connected, keeping the 

ripple large enough. The expected number of encoded 
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packets required at the receiver to ensure that the decoding 

can run to completion, with probability 1 - δ has now 

increased to N = kZ. Where the normalising factor becomes                           

               . The Robust Soliton distribution is 

shown in Fig. 2. 

 

 

Figure 2: Robust Soliton degree distribution for k = 100, c = 0.1 

and δ = 0.5. 

 

 Theoretical analysis of the properties of the Robust 

Soliton distribution is given in [1] where pessimistic 

estimates was used to prove the amount of encoding 

symbols necessary for full recovery of an input message. 

This was simplified to be N = k + O(       
 

 
  ) and the 

average degree of an encoding symbol was shown to be D = 

O(ln(
 

 
)). A typical Robust Soliton distribution, normalised 

using (4), is illustrated below in Fig. 3.  
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Figure 3: Robust Soliton degree distribution for k = 100, c = 0.1 

and δ = 0.5. 

 A lot of previous work studying the various performance 

aspects of LT codes and their applications [7][9][10] have 

implicitly accepted the Robust Soliton degree distribution as 

sufficient and optimal. This is a sound assumption from the 

theoretical proofs presented in [1]. However, many of these 

studies present limited effort in deriving a optimal 

parameterised form of the degree distribution or even an 

practical implementation of a general LT code over an 

actual network. Our work is centred around the potential use 

of LT codes as an AL-FEC for media distribution, we have 

chosen not to test k values larger than 1000. Too much 

latency is introduced while waiting for the large amounts of 

encoded symbols, and in various other works we have seen 

that very small values introduce high reception overhead. 

Therefore, we have chosen to test both  k = 100 and k = 

1000 block sizes. The analysis of the Robust Soliton 

distribution based on probability and statistics is sound only 

if k is infinite. In practice however, the behaviour of the LT 

code will not match the mathematical analysis exactly, 

especially for small k. Typical results for the Robust Soliton 

degree distribution is illustrated below in Table I. The 

constant c = 0.1 were chosen as it produced an acceptably 

low standard deviation and overhead mean. 

 

TABLE I.  TYPICAL RESULTS FOR THE ROBUST SOLITON DEGREE 

DISTRIBUTION 

Input 

Symbols 

(k) 

 

δ 

 

Z 

Mean Std Mean Std 

N Symbol Operations 

100 

0.01 1.89 172.49 17.64 1007 166 

0.1 1.51 149.26 14.41 858 153 

0.9 1.24 135.69 13.21 704 139 

1000 

0.01 1.43 1373.65 39.92 14364 1232 

0.1 1.28 1256.70 33.37 12521 1113 

0.9 1.16 1171.99 33.11 10488 1128 

 

  

Interestingly enough we see that by increasing δ beyond 1 

the efficiency increases even more. In the original case 

where it is used to predict failure of decoding, this parameter 

becomes more accurate only when a linear congruential 

generator is used for random number generation. [10]  

 The focus of our work is on finding a more efficient 

parameterised degree distribution to reduce the number of 

symbol operations and amount of overhead with small 

deviation.   

III. PROPOSED OPTIMISED DEGREE DISTRIBUTION 

 By combining convex functions and the expected ripple 

size         
 

 
  from the Luby transform a new set of 

equations can be derived to shape the Ideal Soliton 

distribution to optimise the amount of symbol operations 

and overhead N. The expected ripple size determining the 

position of the spike somewhere on d, ensures that all 

unprocessed input symbols are covered. [1] However, 

instead of keeping the weight at d = k/R a constant, (6) and 

(7) distributes the expected area exponentially over k, which 

maintains a good ripple size throughout the decoding steps 

by ensuring ample symbol connections. If  Z  is close to 1, 

(where Z ≥ 1) we expect the optimal amount of symbol 

operations. Parameters c1, c2 and c3 determine the curvature 

and area supplementary to the Ideal Soliton PDD, which is 

proportional to the average degree of an encoded symbol. 

Tweaking these parameters leads to an optimal solution if 
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the correct distributed area is added to the correct location 

on the degree distribution. 

A. Piecewise functions used to shape the PDD 

 Fig. 4 illustrates the shape of each exponential function 

given by (5), (6) and (7). The parameters c1, c2 and c3 are 

used to alter the amplitudes and curvatures of each set. By 

changing these parameters, the total area under the graph 

(affecting Z) can be modified to reduce  N  by keeping D ≥ 

O(ln(k)). 
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Figure 4: Scaled illustration of piecewise-defined Exponential 

functions used to shape the new PDD  

 

B. Discrete Kullback-Leibler optimisation approach  

 The Kullback Leibler distance in (8) can be interpreted as 

a natural distance function from a "true" probability 

distribution p to a "target" probability distribution q. In each 

set of decoded samples of N, the average of the best degree 

distributions becomes our target degree distribution. The 

PDD is shaped accordingly and the process continues 

recursively until the Kullback Leibler distance converges to 

zero. 

 

                        
  

  
                      (8) 

 

 

  C.  Practical Implementation over WiMAX  

 Our test setup consisted of a WiMAX micro base station 

and  Si indoor CPE 2.5. Consecutive tests were run to 

determine the effect of SNR and packet loss on the LT code 

as an application layer implementation. The simple network 

management protocol (SNMP) was used to retrieve channel 

information from  the base station's client burst profiles. The 

WiMAX system slots in this receiver to transmitter feedback 

for adaptive physical layer modulation purposes. The 

WiMAX network setup and AL-FEC screenshots are 

illustrated in Figs. 5 - 7.  

 

Figure 5:Illustration of the WiMAX Test Setup 

 

 In almost all deployed IPTV linear media broadcasting 

services, audio and video streams are multiplexed into some 

codec transport stream. Our AL-FEC was implemented over 

the UDP stream shown in Figs. 6 - 7.   

 

 

Figure 6: Application Layer UDP encapsulated LT Fountain 

Encoder  

 

Figure 7: Application Layer UDP encapsulated LT Fountain BP 

Decoder 

 

 The radio link is a quickly varying link, often suffering 

from great interference. Physical channel conditions such as 

pathloss, fading and shadowing etc. place constraints on 

wireless signal transmissions. WiMAX inherently utilises 

advance FEC techniques such as the concatenated Reed-

Solomon Convolutional codes to overcome such destructive 

effects. For the purpose of our tests the application layer 
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measured packet loss is an indication of the system suffering 

from packet loss after the inherent FEC layers built in 

WiMAX. 

IV.  RESULTS 

Figs. 8 - 12 and Figs. 19 - 23 shows simulated and practical 

results of the improved degree distribution y(d) for k = 100 

and k = 1000. Figs. 11 - 18 and Figs. 22 - 23 illustrates 

practical results over the WiMAX network. 

 

 

Figure 8: k=100, c1=1.08, c2=2.316, c3=1, δ=4, c=0.08, Z=1.12 

 

 

Figure 9: Simulated number of packets N (mean=127.2, std=8.6) 

 

 

Figure 10: Simulated number of symbol operations (mean=648, std=121.8) 

 

 

Figure 11: Number of packets N (mean=129.2, std=10.6) 

 

 

Figure 12: Number of symbol operations (mean=660, std=132.1) 

Figs. 13 - 18 indicate practical result obtained over WiMAX 

(CPE 800m from BS) for k = 1000, c = 0.1 and δ = 0.9, 

using the Robust Soliton degree distribution. From these 

measurements it is clear that the fountain code did not suffer 

significantly when introduced to a drastic reduction in SNR.    

 

 

Figure 13: DL Signal to Noise Ratio 

 

Figure 14: DL Received Signal Strength Indication 

 

Figure 15: Number of Packets N 

 

Figure 16: Packet loss 

 

Figure 17: Number of symbol operations (mean=10434 , std=1076) 

 

 
Figure 18: Number of packets N (mean=1168 , std=28.8) 
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Figure 19: k=1000, c1=1, c2=2, c3=9.5, δ=4, c=0.08, Z=1.04 

 

 
Figure 20: Simulated number of packets N (mean=1112.7, std=64.6) 

 

 
Figure 21: Simulated number of symbol operations (mean=8012.5, 

std=987.2) 

 

 
Figure 22: Number of packets N (mean=1139, std=76) 

 

 
Figure 23: Number of symbol operations (mean=8174, std=1011) 

 

TABLE II. COMPARISON BETWEEN ROBUST SOLITON AND OPTIMISED PDD 

Input 

Symbols 

(k) 

PDD 

Mean Std Mean Std 

N Symbol Operations 

100 

y(d) 127.20 8.60 648 121 

µ(d) 135.69 13.21 704 139 

1000 

y(d) 1112.70 64.60 8012 987 

µ(d) 1373.65 39.92 14364 1232 

V.  CONCLUSION AND FUTURE WORKS 

 In this paper, we presented  an improved degree 

distribution by shaping the theoretically optimal distribution 

with convex functions until optimal results were obtained. 

Only five parameters were sufficient to define an optimal 

encoding process to reduce decoding cost and overhead. 

The practical and simulated results shown is a significant  

improvement over LT codes using the popular Robust 

Soliton as degree distribution. To the best of our knowledge 

we also introduced the first practical implementation of 

fountain codes over a WiMAX network, and presented 

useful data regarding the transmission thereof. Regarding 

LT codes, it turns out that BP alone is not efficient enough 

to get very tight bounds on decoding failure probability as a 

function of reception overhead. This was the rationale 

behind the Raptor codes [6], which combines a weak LT 

code with a traditional block code and decodes with both 

GE and BP. Future investigations include the analysis of 

Raptor codes and the design of alternative degree 

distributions with desirable properties in terms of both 

overhead and decoding complexity.      
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