
Protocol-aware Cloud Gateway with Adaptive Rate Control

Ivana Kovacevic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: kovacevic.ivana@uns.ac.rs

Tamara Rankovic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: tamara.rankovic@uns.ac.rs

Vasilije Milic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: milic.ra208.2019@uns.ac.rs

Milos Simic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: milos.simic@uns.ac.rs

Isidora Knezevic

Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia

email: knezevic.ra47.2019@uns.ac.rs

Abstract— As cloud computing has emerged as the next-

generation architecture for IT enterprises, it is challenging

to envision a well-configured cloud environment that

delivers services without adequate mechanisms for

maintaining high availability, minimizing latency, and

ensuring robustness. A notable feature of distributed cloud

systems is their need to support a wide range of data formats

and communication protocols. The pivotal role of

communication protocols in facilitating seamless interactions

among distributed components depends on their capability

to perform real-time data and protocol conversion, ensuring

interoperability without data loss while considering latency

and reliability constraints. This paper proposes a prototype

of open-source components designed to enhance distributed

cloud infrastructure, including a protocol-aware gateway

that performs configurable protocol transcoding.

Additionally, the gateway component is connected to a rate-

limiting service that ensures high availability and mitigates

network congestion. These components are seamlessly

integrable, preserving protocol features without

performance trade-offs. Their effectiveness is demonstrated

through integration into the open-source Constellations

(C12S) platform, validating their flexibility and practical

value in real-world cloud environments.

Keywords-Gateway; Service discovery; Rate-limiting;

Protocol transcoding; Distributed cloud.

I. INTRODUCTION

In the present era, cloud computing offers extensive

computational capabilities and facilitates on-demand

access to a shared pool of both hardware and software

resources. It has been introduced as the next-generation

architecture of IT enterprises and gives great capabilities

that ensure improved productivity with minimal costs

while offering a better level of scalability and flexibility in

comparison to traditional IT systems [1]. High

performance, high availability, and scalability present

promising features guaranteed by the migration to cloud

computing. To minimize complexity and ensure a stable

environment conducive to future adaptations, both

business and regular users choose to leverage the hardware

or software resources offered by cloud providers, aiming to

enhance cost-effectiveness and simplify maintenance.

It is not easy to envision a well-configured cloud

environment delivering services without incorporating

mechanisms for maintaining high availability, minimizing

latency, and ensuring robustness. Moreover, addressing

resource exhaustion and network congestion introduces a

new set of rules that require careful consideration to ensure

the overall health of cloud services and protect them from

common misuse. To mitigate such risks, implementing a

rate-limiting service serves as a viable solution, as a rate-

limiting mechanism helps prevent resource exhaustion by

temporarily blocking requests or placing them in sleep

mode once a maximum limit has been reached. On the

other hand, a distributed cloud aims to accommodate a

wide range of data formats and protocols, facilitating

seamless integration among applications. While existing

cloud solutions are typically optimized for inter-service

communication through RPC in a binary format, the same

approach is not always suitable for external web clients.

The Constellations platform is no exception. It follows the

pattern of loosely coupled Dockerized micro-services, but

it does not support out-of-the-box request handling beyond

RPC, limiting straightforward interaction with external

clients. For such scenarios, an integration of the

component responsible for data and protocol conversion

becomes crucial. Such a component ensures proper routing

to the destination service without data loss, considering the

overall network response time.

This paper centers on the design, implementation, and

evaluation of two integrated, open-source, platform-

independent components to maintain performance features

crucial for a distributed cloud environment. Specifically,

the goal is to ensure high availability and elasticity of

communication between users and services, while

protecting the system from excessive misuse. We propose

a prototype gateway as the primary entry point to the

system, which exposes Remote Procedure Calls (gRPC) as

Hypertext Transfer Protocol (HTTP) endpoints by

transcoding one protocol to another in a configurable

manner. This service demonstrates that protocol awareness

can be centralized at the entry point of a distributed cloud

environment. It features dynamic client discovery and

utilizes flexible configuration files for managing

Application Programming Interfaces (APIs), eliminating

the need to modify source code when a new service is

discovered. Furthermore, the gateway is connected to a

rate-limiting service to ensure availability and mitigate

potential attacks. This service enforces limitations based

on both system and user levels, leveraging priority queues

and algorithms, such as token bucket, leaky bucket, and

sliding window, to enforce fair rate control. To assess the

proposed solution, both components are integrated with an

open-source Constellations platform [2], which operates as

a module within the distributed cloud infrastructure.

The paper is organized as follows: Section 2 presents

the related work for this research on performance in

39Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

mailto:knezevic.ra47.2019@uns.ac.rs

distributed cloud, with a particular focus on gateways that

ensure low latency and high availability. Section 3

provides an overview of rate-limiting algorithms, their

advantages, and applications. In Section 4, the gateway is

described. Section 5 explains the implementation of a

protocol conversion service, a rate-limiting service, and

their integration with the open-source platform for

configuration dissemination in a distributed cloud. The

usability, interoperability, and limitations of the proposed

solution are discussed in Section 6. Finally, Section 7

presents the conclusion and future directions of the

conducted research.

II. RELATED WORK

In their study, El Kafhali et al. [1] presented a

thorough overview of cloud computing mechanisms,

offering a systematic literature review specifically focused

on cloud computing security issues and frameworks

through a comprehensive survey. Their paper provided an

overview of the fundamentals of cloud infrastructure,

reflecting on the mechanisms to achieve scalability and

availability, while considering proper defense against

attacks. Latha et al. [3] conducted research that addresses

challenges in distributed applications, focusing on client

satisfaction, confidence, and preventing revenue losses by

ensuring service availability. Their study developed an

overload protection technique that relies on a URI

configuration file, in conjunction with the Zuul gateway,

which can filter requests before obtaining tokens. The

token bucket rate-limiting algorithm is implemented to

ensure traffic limitation while improving the reliability

and availability of the cloud platform service. Despite

integrating the gateway with rate-limiting to enhance

availability, this research remains protocol-dependent and

lacks protocol transcoding, which would enable flexibility

and broaden its usage. Distributed cloud control

approaches are also demonstrated in papers by Raghavan

et al. [15] and in “Load balancing vs. distributed rate

limiting: a unifying framework for cloud control” written

by Stanojevic Rade et al. [16]. However, they do not

describe a holistic approach with an integrated API

gateway for monitoring and filtering requests that could

also be protocol-agnostic.

Ranawaka et al. [14] emphasized the need to provide a

scalable microservice architecture that offers highly

available and fault-tolerant operations. They implemented

Custos, which exposes services through a language-

independent Application Programming Interface that

encapsulates science gateway usage scenarios. This work

primarily focuses on science-specific gateways in a

research domain, tailored for computational experiments

while hiding the complexities of accessing and using

cyberinfrastructure. Although the necessity for such a

solution is evident, the paper lacks an explanation on how

to ensure scalability as the number of requests increases

while protecting the platform from malicious Denial-of-

Service (DoS) attacks.

III. RATE-LIMITING IN THE CLOUD ENVIRONMENT

To ensure service availability and achieve high

scalability, cloud services must protect themselves against

excessive usage, whether it is expected or not. Cloud

services should be developed with rate limitations in mind

to ensure the system operates properly and avoids

cascading failure. For increasing throughput and

decreasing end-to-end delay over large distribution

systems, rate limiting on either the client or server side is

critical [3]. Our approach in this research is to implement a

prototype rate limiting at the OSI layer 7, to prevent

resource exhaustion and maintain system resilience. We

propose rate control at the entry point level, paired with the

gateway. By integrating rate limiting within gateways, API

usage can be centrally controlled across all deployed

nodes, ensuring uniform policy enforcement and

simplifying management.

Rate limiting helps prevent resource exhaustion by

temporarily blocking requests or placing them in sleep

mode once a maximum limit has been reached. After the

sleep time, the request can be forwarded from the rate

limiter to the handling server [4]. Rate limiting has found

use in various cases, including improving overall system

performance, protecting against brute force or Distributed

Denial-of-Service (DDoS) attacks, preventing web

scraping, and preventing resource starvation. Scalable rate

limiting is achieved using various algorithmic approaches,

including the leaky bucket algorithm, the token bucket

algorithm, the fixed window, the sliding log, and the

sliding window [3]. This paper focuses on the leaky bucket

algorithm, the token bucket algorithm, and the sliding

window, all of which are implemented within our rate-

limiting service. The token bucket algorithm provides

solutions for traffic shaping in packet-switched networks

[5]. In this algorithm, when a new request arrives, the

bucket grants one token to the requester, based on the

availability [6]. If there are available tokens, the service

accepts the request and removes one token from the

bucket. If no tokens are available, the system rejects the

request. This algorithm also requires a parameter for the

refill rate, as it adds tokens to the bucket at a fixed rate

defined by this parameter. It is a common choice in

distributed systems, primarily due to its memory efficiency

and ease of implementation.

The sliding window algorithm imposes limits within

fixed time intervals, allowing for precise control over

requests in smaller time windows. It admits a specified

number of requests in a given timeframe L. As each

request arrives, a request counter is incremented by one.

This process continues as long as the request counter is

less than a specified fixed number. At the end of a window

interval, the request counter resets. Intervals are half open,

i.e., [t, t+L) [7]. The leaky bucket is a counter that

increases by one up to a maximum capacity C for each

arrival and decreases continuously at a given drain rate D

to as low as zero; an arrival is admitted if the counter is

less than or equal to C- 1 (so that after the arrival it will be

less than or equal to C) [7]. The leaky bucket algorithm is

designed to provide clients with smooth and steady

40Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

throughput by delaying requests rather than rejecting them

outright. While this approach may increase latency due to

its lack of drop behavior, it remains well-suited for use

cases like background processing or metrics collection.

That said, we also support two additional rate-limiting

algorithms, giving clients the flexibility to choose the

strategy that best fits their specific needs.

The proposed solution emphasizes implementing API

rate-limiting as a centralized, independent component,

which differs from traditional methods that integrate rate-

limiting algorithms directly into individual services. By

applying rate limiting on a system-wide basis, we gain

finer control, allowing for multiple configurations for each

request or service. Additionally, this approach can be

developed and deployed separately, offering greater

flexibility and ease of management. Having a single,

global limit also avoids common problems related to

communication and synchronization among multiple,

distributed rate-limiting services [7].

IV. TRANSCODING HTTP TO GRPC

While HTTP is a very popular choice due to its

simplicity and stateless nature, some studies have shown

that RPC outperforms HTTP in terms of response time

and data volume [8], [9]. Moreover, 80% of the public

APIs available follow most Representational State

Transfer (REST) conventions, and developers are

accustomed to that pattern, implying the need for gRPC

APIs also to follow REST convention [10]. Additionally,

having multiple cloud providers joined in a distributed

cloud, cross-platform compatibility issues, and

inconsistent call standards arise. Placing separate

components as an API gateway alleviates these problems

to some extent. To enhance user experience and minimize

development costs, we propose a configurable rate-

limiting gateway that is designed to fully comply with the

REST while retaining the advantages of remote procedure

calls. With this, existing REST endpoints can be

efficiently transcoded to use the RPC protocol,

guaranteeing no data loss. Remote procedure calls heavily

rely on Protobuf, an open-source technique for serializing

structured data [10]. Unlike JavaScript Object Notation

(JSON), Protobuf is optimized and runs in binary format,

which is why it is often the preferred choice. Additionally,

Protobuf offers a mechanism to segregate context and

data, allowing data to be transmitted repeatedly without

duplicating context, such as field or property names, as

often occurs in JSON or eXtensible Markup Language

(XML). In practice, both gRPC APIs and HTTP/JSON

APIs serve distinct purposes, and an ideal API platform

should offer robust support for both types.

For protocol transcoding, the proposed gateway

component leverages gRPC client reflection to

dynamically discover methods, ensuring interoperability

across services and reducing the need for manual

adjustments. Given a hostname and port provided in the

configuration scheme, the gateway attempts to establish a

connection to the specific gRPC server and dynamically

discover available services and methods without prior

knowledge. Discovered services are later used in the

process of protocol transcoding in order to forward data

from the original HTTP request to the corresponding RPC

service method. Moreover, by providing a transcoding

feature, it is possible not only to determine what formats

(i.e., which Protobuf messages) a server’s method uses but

also how to convert messages between a human-readable

format, which is dominant in HTTP, and the binary wire

format.

V. IMPLEMENTATION AND THE USE CASE

Configurable, highly available cloud services, namely a

gateway and rate-limiting service, are integrated within the

configuration dissemination tool in the distributed cloud.

This tool is part of the Constellations, an open-source,

distributed cloud platform [2]. The main objective of the

tool is to enable cloud-like services for users who would

benefit from highly elastic deployments, while also taking

latency and privacy requirements into account. To achieve

so, the tool offers streamlined processes for infrastructure

provisioning, application life cycle, and behavior

management [10]. As the platform has multiple services

distributed across the cloud that communicate using gRPC

protocol, adding a rate-limiting gateway only increased its

heterogenity and improved the response rate.

A. Gateway

The gateway solution offers a flexible approach for

exposing gRPC calls as REST endpoints. Instead of

burdening each service with boilerplate code to enable

transcoding, this approach delegates the protocol

conversion logic to a dedicated service acting as a proxy

between the platform's end clients and the internal

services. It uses the flexibility of the configuration file to

avoid source code alterations that would otherwise be

mandatory and are common in other prominent gateway

implementations [12].

Within the configuration file, the highest level of API

description is an API group, which encompasses versioned

descriptions for the gRPC methods intended for exposure.

These methods are grouped based on their purpose,

allowing for the inclusion of gRPC methods from various

services and applications. Bundling the APIs into API

groups simplifies access to the methods needed for specific

purposes, eliminating the need to search through an

extensive list of APIs from each service to locate a

particular method. A description of each gRPC method

includes the REST route, HTTP method type (e.g., GET,

POST), and the gRPC service that hosts it. The method's

name serves as a key in a map during the dynamic

generation of routes, and it must match the name in the

source service. The configuration also includes the port of

the gateway and the addresses of the gRPC services used.

These addresses are kept internal to the gateway and are

inaccessible from outside sources, meaning they cannot be

directly reached via either gRPC or HTTP requests. The

example of the configuration file is shown in Figure 1. The

service registry, as a separate component within the

gateway, allows services to register their endpoints, which

are then stored in a configuration file. In the event of a

failure, the gateway utilizes this configuration file to route

41Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

requests, eliminating the need to ping each service

individually to collect routes.

Upon initializing the gateway, the configuration file is

loaded, and for each gRPC service listed, a corresponding

Client object is instantiated. Each client object includes an

attribute called DescriptorSource, which is derived from

the gRPC reflection mechanism and participates in

obtaining a list of exposed gRPC methods from each

client. However, this solution relies on gRPC services

having reflection enabled, which allows clients to access

detailed information about the Protobuf APIs they expose,

including the specifications of each request and response,

as well as their attributes. To invoke gRPC calls, this

service depended on the Go library grpcurl [13]. This

decision was beneficial because grpcurl efficiently

converts HTTP data to gRPC data, simplifying the

procedure. Moreover, grpcurl supports request headers

during invocation, which was crucial for later

authorization between services.

The process of HTTP route generation consists of

several parts:

1. Generation of sub-routers for every group,

2. Sub-routing groups based on the version,

3. Assigning a path to each route based on the

method name from the configuration file,

4. Creating a middleware that integrates a handler

function and HTTP method type for each route.

The second step provides fine-grained configuration of

routes, combining group and version, resulting in each

method being mapped with its version and group, allowing

for easier maintenance of clients in the future, based on the

current API version. All of these parameters are required

to create a complete path for each method. The full path is

created in the third step, using the exact method name

previously read from the configuration file. The final step

is to prepare the router for gRPC method invocation. To

achieve this, HTTP endpoints are wrapped into the

middleware, which performs preprocessing and validation

before the actual gRPC call. The transcoding process is

validated against GET, POST, PUT and DELETE HTTP

methods, with and without custom HTTP headers. To

extract parameters from routes, the gateway uses regular

expressions and then performs implicit type conversion.

To prevent unauthorized access, the middleware includes a

check for authorization tokens, verifying each request

before directing it to the destination service. This process

helps eliminate redundant calls to services with restricted

access, enhancing security and improving response time.

Once the gRPC method is invoked and completed

successfully, the response is returned as a byte buffer.

Additionally, the gRPC status codes are mapped to their

corresponding HTTP response codes. This mapping is

particularly helpful in case of errors, as it enables the

provision of informative messages that explain why the

error occurred.

B. Rate limiter

The rate-limiting service provides customizable rate-

limiting mechanisms per request at both the application

and system layers. Limitations are designed per client. In

our scenario, clients refer to end users of the constellation

platform. However, distinct rate limiters can be created

based on the requirements of cloud services, irrespective

of client types. Full support for managing rate limiters is

also provided, enabling rate or type updates, safe deletion,

and optional parameters. To support flexible request

control, the prototype offers multiple rate-limiting

algorithms that clients can choose from based on their

specific needs. To apply safety measures against API

overuse, we first define a rate-limiting strategy. Every rate

limiter is assigned a unique ID in the format of user_id-

method_id. For seamless integration, method_id

corresponds to a method name retrieved from gRPC

clients in the gateway. As this data is already extracted

and prepared for routing to the desired service, no further

querying or communication with other services is

necessary. Given that this ID is treated as a regular

expression, any notation is allowed, making it usable not

only for gRPC methods but also for users or organizations

that require limited access to resources. For instance, it is

possible to configure access limitations for authenticated

users and request origins, forbidding usage from multiple

devices simultaneously. Apart from ID, the rate limiter is

also described with TYPE, REQ_LIMIT, PRIORITY,

PERIOD, and BURST. Attribute TYPE is directly related

to supported rate-limiting algorithms, currently limited to

gateway:

 route: /apis

 port: 5555

services:

 Kuiper: kuiper:5000

 ExampleService: example:9001

 RateLimitService: rate_limiter_service:8080

groups:

 core:

 v1:

 CreateExample:

 method_route: /example-route

 type: POST

 service: ExampleService

 PutStandaloneConfig:

 method_route: /configs/standalone

 type: PUT

 service: Kuiper

Figure 1. Example of a YAML gateway configuration.

&pb.RateLimiter {

 id: "user1-PutStandaloneConfig",

 Name: "PutStandaloneConfig",

 UserName: "user1",

 Type: "tokenBucket",

 Priority: 1,

 ReqLimit: 1,

 Period: 60,

 Burst: 1,

 Idle: 2

 }

Figure 2. Code snippet demonstrating a rate limiter object

42Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

token bucket, leaky bucket, and sliding window. The total

number of allowed requests within a specified period is

determined by the combination of the attributes

REQ_LIMIT and PERIOD. A period of time can be

expressed in seconds. This additional parameter enables

services to create rate limiters tailored to internal service

metrics. These metrics might incorporate temporal factors,

such as the number of served requests during specific

periods of the day. Parameter BURST stands for the

maximum number of concurrent requests that the API can

handle, and it is used to regulate throttling in the token

bucket algorithm. With larger bursts, the network may

need to allocate more resources per connection [7].

The rate limiter also supports a priority queueing

mechanism that can be utilized to favor users who are

most frequently rejected due to system limitations.

Priority can be handled at either the method or user level,

where critical, time-sensitive methods have higher

priority, while tracking or monitoring methods can be

accessed with a delay. A lower PRIORITY value means a

higher priority in the queue; thus, a value of 1 indicates

the highest priority. If the userName is not provided,

PRIORITY refers to the method. It is also possible to

define an IDLE parameter for slow connections. This

parameter and priority queueing are optional and can be

deactivated based on system needs. The example of a rate

limiter is shown in Figure 2. This rate limiter is set to

allow only one request per minute, using the token bucket

algorithm. It is defined for the user with the highest

priority. Only one rate limiter can be active per client–

request combination. This aligns with the notion of a fixed

number of requests per user, as offered by cloud provider

subscription plans. Any changes made to the rate limiter

will override previous settings and reset the number of

available tokens.

To minimize response time, a caching mechanism is

implemented in the rate-limiting service. This mechanism

stores the current state of the rate limiter in a cache

memory for a specified period, reducing the number of

calls to the database. The cache is updated each time a

service modifies the rate limiter object. However,

inconsistencies can arise due to network delays and

concurrent updates, which may allow clients to exceed

rate limits before the state is synchronized. Achieving

strong state consistency can introduce significant

overhead, resulting in longer processing times and

reduced performance. To address this issue, we decided to

integrate with Redis due to its ability to perform

operations in memory, which reduces latency and makes it

suitable for high-traffic environments where rate limits

need frequent checking and updating.

C. Integration with the Constellations platform

As an evaluation, developed components are

integrated with an open-source platform within a

distributed cloud infrastructure to facilitate two-way

protocol conversion and manage resource availability by

enforcing rate control. To illustrate the flow of the

transcoding process, Figure 3 depicts a scenario in which

two clients send identical requests within a predefined

timeframe. Requests are sent to the service responsible for

configuration management within the Constellations

platform. The service responsible for this feature is

represented as a constellation service in a diagram. For

example, in Figure 3, we demonstrate two calls to an

endpoint that has a system rate limit of one request per

minute. After receiving a request, the gateway uses

DescriptorSource to determine the actual method name

bound to the received HTTP request. Based on the

configuration file, it maps parameters (if any) and

Figure 3. Sequence flow demonstrating the integration of gateway and rate-limiting services with the Constellations platform

43Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

converts the request payload to a byte stream suitable for

the Protobuf format. The method name from the

configuration is then used in a direct gRPC call to the rate-

limiting service. The IsRequestAllowed method in the rate-

limiting service searches for a rate limiter object based on

its ID and then examines the rate limiter type to determine

whether a request can be executed at the moment.

If an optional parameter is provided, the rate limiter

service is also responsible for checking the user priority.

Based on the examination of parameters, if the limit is

reached, the method returns a false flag. Given the flag

value, the gateway decides whether to invoke the actual

gRPC method and transfer the request. As shown in Figure

3, for the second client, the rate limit is reached, and the

request is blocked immediately. The same sequence is

followed in case where a thousand users concurrently send

identical requests, and the control rate is shown in Table 1,

for each rate-limiting algorithm.

In Table 1, we compared the average latency

introduced by different rate-limiting algorithms

implemented in our service. We sent 1000 requests to the

same route, configured to use the token bucket, leaky

bucket, and sliding window algorithm, with the same

reqLimit parameter set to 10. This seemed reasonable,

considering the configuration is per IP address, and the

average response time without a rate limit for the route

was approximately 100-200ms. Both client IP address and

Constellations’ server were connected to the same internal

network. Control rate is measured for the system rate

limiter, representing the ratio between the number of

successful and the number of rejected requests (those with

429 status code). Average latency represents the ratio

between regular response time and response time when the

rate limiter is applied.

TABLE I. A COMPARISON OF RATE-LIMITING ALGORITHMS

 Token bucket Leaky Bucket Sliding Window

avg.

response

time

0.097s 1.001s 0.095s

avg.
latency

0.074s 0.043s 0.022s

control

rate
0.1273 / 0.1235

total time

(~1000
req)

10.502s 13.253s 10.084s

This approach enhances performance by minimizing

unnecessary calls to the destination service while also

providing the possibility to enforce a global rate limit that

a user can achieve, regardless of the cloud service being

accessed. As shown in Table 1, the control rate for the

leaky bucket is not calculated, since all requests pass with

a slight delay. Therefore, it is a client’s responsibility to

define the rate limit in advance, choosing the most

appropriate algorithm depending on the use case. The

transcoding process occurs at the beginning of the request

call. It takes less than 5 ms, which turned out to be

negligible performance-wise, especially considering that

mapping is performed in the beginning, and no additional

handling of routes is needed.

VI. DISCUSSION

In this research, we propose a solution to address

issues in multiprotocol environments, emphasizing the

need for cloud services to communicate in a predefined

manner. Most cloud platforms support RPC internally and

require additional time and resources to expose RPC

methods as REST endpoints. Instead of the time-

consuming process of refactoring existing services, we

propose integration with a component that already offers

protocol conversion and enables straightforward

migration with API versioning. Therefore, we developed a

protocol-aware gateway responsible for transcoding

HTTP to RPC, following reconfigurable mapping of

routes. This approach proved helpful in different settings

as it supports both client reflection and the set of

configuration rules described in YAML files, enabling

proper connection between service methods and REST

endpoints. Having this configuration separated from the

internal logic of the connected services in the cloud

reduces development time while making management

easier. Its scheme is tested against routes with query

parameters, path parameters, authorization, and custom

headers, as well as with a request body, and it performs

transcoding without data or header information loss. It can

differentiate between unauthorized and authorized

methods, preventing misuse, and could leverage access

control measures if they are implemented further in the

cloud environment. Moreover, the solution only requires

following the schema pattern and can be easily integrated

into existing cloud infrastructures, which we have

demonstrated by incorporating it with the Constellations

platform. However, since the proposed transcoding

process heavily relies on the configuration file to extract

routes, it is important to note that a strong automated

YAML scheme validation is needed in order to minimize

ambiguity and reduce the risk of errors.

Furthermore, this prototype relies on I/O operations to

read the configuration and to track changes as new routes

are added. This did not come as a bottleneck for the

current setup, but it should be monitored as the number of

services grows in the cloud. One possible approach would

be to partition the configuration by services or their

deployment location and scale horizontally. We integrated

a protocol-aware gateway with the rate limiter and

demonstrated its strong properties in precision rate control

and manageability. With its priority queueing and system-

agnostic features, it effectively enhances system safety

and ensures alignment with platform requirements. Such

granularity can be a trade-off between rate-limiting

accuracy and performance; therefore, it is up to end users

to decide whether to include fine-tuning of requests or

not.

VII. CONCLUSION

The paper presents mechanisms for achieving desired

performance features in a distributed cloud environment,

with a focus on high availability, scalability, and

robustness. To achieve these goals, we demonstrated the

integration of two prototype components, namely the

gateway and rate-limiting service, with an existing

44Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

configuration dissemination solution. The prototype

emphasizes its ease of adoption, platform-agnostic design,

and the ability to enforce consistent communication

patterns without sacrificing flexibility or performance.

Key contributions include enabling protocol transcoding

from HTTP to gRPC calls with reflection for method

discovery, facilitating the transcoding of HTTP headers

and body to Protobuf messages, and, in the opposite

direction, packaging byte streams into readable HTTP

responses in JSON format, while also ensuring proper

status code mapping. This addressed the necessity for

each service to expose both HTTP and gRPC endpoints.

Additionally, it enhanced the availability of each service

by maintaining communication within the platform on

gRPC, thus boosting efficiency. Furthermore, the

gateway, paired with an independent rate-limiting service,

eliminates the need for each service to alter its internal

logic or modify request implementation to manage and

regulate network congestion. System rate limiting

manages and controls overall network flow within the

platform, while also allowing for the creation of specific

limitations on a per-request or priority basis, which

emerges as a suitable solution for subscription plans

structured around request rates from cloud providers. As

part of our future work, we aim to enhance rate-limiting

capabilities by making them adjustable based on service

telemetry and monitoring, and to extend the current

solution to support distributed rate-limiting. Additionally,

the goal is to further research prototype performance and

general applicability by integrating it with more real-

world solutions.

ACKNOWLEDGMENT

 Funded by the European Union (TaRDIS,

101093006). Views and opinions expressed are however

those of the author(s) only and do not necessarily reflect

those of the European Union. Neither the European Union

nor the granting authority can be held responsible for

them.

This research has been supported by the Ministry of
Science, Technological Development and Innovation
(Contract No. 451-03-65/2024-03/200156) and the
Faculty of Technical Sciences, University of Novi Sad
through project “Scientific and Artistic Research Work of
Researchers in Teaching and Associate Positions at the
Faculty of Technical Sciences, University of Novi Sad”
(No. 01-3394/1).

REFERENCES

[1] S. El Kafhali, I. El Mir, and M. Hanini, “Security Threats,
Defense Mechanisms, Challenges, and Future Directions in
Cloud Computing,” Archives of Computational Methods in
Engineering, vol. 29, no. 1, Apr. 2021, doi:
https://doi.org/10.1007/s11831-021-09573-y.

[2] “constellations” GitHub. [Online] Available from:
https://github.com/c12s [retrieved: 06, 2025]

[3] V. L. Padma Latha, N. Sudhakar Reddy, and A. Suresh
Babu, “Optimizing Scalability and Availability of Cloud
Based Software Services Using Modified Scale Rate
Limiting Algorithm,” Theoretical Computer Science, Jul.
2022, doi: https://doi.org/10.1016/j.tcs.2022.07.019.

[4] D. Goetz, M. Barton, and G. Lange, “Distributed rate
limiting of handling requests,” United States Patent
8930489, Jan. 6, 2015.

[5] L. Sarakis, N. Moshopoulos, D. Loukatos, K. Marinis, P.
Stathopoulos, and N. Mitrou, “A versatile timing unit for
traffic shaping, policing and charging in packet-switched
networks,” Journal of Systems Architecture, vol. 54, no. 5,
pp. 491–506, Sep. 2007, doi:
https://doi.org/10.1016/j.sysarc.2007.08.004.

[6] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong,
“Scalable architectures for integrated traffic shaping and
link scheduling in high-speed ATM switches,” IEEE
Journal on Selected Areas in Communications, vol. 15, no.
5, pp. 938–950, Jun. 1997, doi:
https://doi.org/10.1109/49.594854.

[7] A. W. Berger and W. Whitt, “A comparison of the sliding
window and the leaky bucket,” Queueing Systems, vol. 20,
no. 1–2, pp. 117–138, Mar. 1995, doi:
https://doi.org/10.1007/bf01158434.

[8] M. Niswar, R. A. Safruddin, A. Bustamin, and I. Aswad,
“Performance Evaluation of Microservices Communication
with REST, GraphQL, and gRPC,” International Journal of
Electronics and Telecommunication, vol. 70, no. 2, pp.
429–436, 2024, [Online] Available from:
https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.2442
5-ijet.2024.149562

[9] M. Śliwa and B. Pańczyk, “Performance comparison of
programming interfaces on the example of REST API,
GraphQL and gRPC,” Journal of Computer Sciences
Institute, vol. 21, pp. 356–361, Dec. 2021, doi:
https://doi.org/10.35784/jcsi.2744.

[10] “Protocol Buffers,” protobuf.dev. [Online] Available from:
https://protobuf.dev [retrieved: 06, 2025].

[11] T. Ranković, I. Kovačević, V. Maksimović, G. Sladić, and
M. Simić, “Configuration Management in the Distributed
Cloud,” Lecture notes in networks and systems, pp. 224–
235, Jan. 2024, doi: https://doi.org/10.1007/978-3-031-
71419-1_20.

[12] “Gateway architecture | NGINX
Documentation,” Nginx.com, 2025. [Online] Available
from: https://docs.nginx.com/nginx-gateway-
fabric/overview/gateway-architecture/ [retrieved: 06, 2025].

[13] “grpcurl package - Go Packages,” Go.dev, 2025. [Online]
Available
from:https://pkg.go.dev/github.com/fullstorydev/grpcurl
[retrieved: 06, 2025].

[14] I. Ranawaka et al., “Custos: Security Middleware for
Science Gateways,” Practice and Experience in Advanced
Research Computing, pp. 278–284, Jul. 2020, doi:
https://doi.org/10.1145/3311790.3396635.

[15] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum,
and A. C. Snoeren, “Cloud control with distributed rate
limiting,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 4, pp. 337–348, Oct. 2007, doi:
https://doi.org/10.1145/1282427.1282419.

[16] R. Stanojevic and R. Shorten, “Load Balancing vs.
Distributed Rate Limiting: An Unifying Framework for
Cloud Control,” IEEE Xplore, Jun. 01, 2009.
https://ieeexplore.ieee.org/abstract/document/5199141.

45Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

https://doi.org/10.1016/j.sysarc.2007.08.004
https://doi.org/10.1109/49.594854
https://doi.org/10.1007/bf01158434
https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.24425-ijet.2024.149562
https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.24425-ijet.2024.149562
https://protobuf.dev/
https://doi.org/10.1145/3311790.3396635
https://doi.org/10.1145/1282427.1282419

	I. Introduction
	II. Related work
	III. Rate-limiting in the cloud environment
	IV. Transcoding HTTP to gRPC
	V. Implementation and the use case
	A. Gateway
	B. Rate limiter
	C. Integration with the Constellations platform

	VI. Discussion
	VII. Conclusion
	Acknowledgment
	References

