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Abstract— As cloud computing has emerged as the next-

generation architecture for IT enterprises, it is challenging 

to envision a well-configured cloud environment that 

delivers services without adequate mechanisms for 

maintaining high availability, minimizing latency, and 

ensuring robustness. A notable feature of distributed cloud 

systems is their need to support a wide range of data formats 

and communication protocols. The pivotal role of 

communication protocols in facilitating seamless interactions 

among distributed components depends on their capability 

to perform real-time data and protocol conversion, ensuring 

interoperability without data loss while considering latency 

and reliability constraints. This paper proposes a prototype 

of open-source components designed to enhance distributed 

cloud infrastructure, including a protocol-aware gateway 

that performs configurable protocol transcoding. 

Additionally, the gateway component is connected to a rate-

limiting service that ensures high availability and mitigates 

network congestion. These components are seamlessly 

integrable, preserving protocol features without 

performance trade-offs. Their effectiveness is demonstrated 

through integration into the open-source Constellations 

(C12S) platform, validating their flexibility and practical 

value in real-world cloud environments. 

Keywords-Gateway; Service discovery; Rate-limiting; 

Protocol transcoding; Distributed cloud. 

I. INTRODUCTION  

In the present era, cloud computing offers extensive 

computational capabilities and facilitates on-demand 

access to a shared pool of both hardware and software 

resources. It has been introduced as the next-generation 

architecture of IT enterprises and gives great capabilities 

that ensure improved productivity with minimal costs 

while offering a better level of scalability and flexibility in 

comparison to traditional IT systems [1]. High 

performance, high availability, and scalability present 

promising features guaranteed by the migration to cloud 

computing. To minimize complexity and ensure a stable 

environment conducive to future adaptations, both 

business and regular users choose to leverage the hardware 

or software resources offered by cloud providers, aiming to 

enhance cost-effectiveness and simplify maintenance. 

It is not easy to envision a well-configured cloud 

environment delivering services without incorporating 

mechanisms for maintaining high availability, minimizing 

latency, and ensuring robustness. Moreover, addressing 

resource exhaustion and network congestion introduces a 

new set of rules that require careful consideration to ensure 

the overall health of cloud services and protect them from  

 

common misuse. To mitigate such risks, implementing a 

rate-limiting service serves as a viable solution, as a rate- 

limiting mechanism helps prevent resource exhaustion by 

temporarily blocking requests or placing them in sleep 

mode once a maximum limit has been reached. On the 

other hand, a distributed cloud aims to accommodate a 

wide range of data formats and protocols, facilitating 

seamless integration among applications. While existing 

cloud solutions are typically optimized for inter-service 

communication through RPC in a binary format, the same 

approach is not always suitable for external web clients. 

The Constellations platform is no exception. It follows the 

pattern of loosely coupled Dockerized micro-services, but 

it does not support out-of-the-box request handling beyond 

RPC, limiting straightforward interaction with external 

clients. For such scenarios, an integration of the 

component responsible for data and protocol conversion 

becomes crucial. Such a component ensures proper routing 

to the destination service without data loss, considering the 

overall network response time.  

This paper centers on the design, implementation, and 

evaluation of two integrated, open-source, platform-

independent components to maintain performance features 

crucial for a distributed cloud environment. Specifically, 

the goal is to ensure high availability and elasticity of 

communication between users and services, while 

protecting the system from excessive misuse. We propose 

a prototype gateway as the primary entry point to the 

system, which exposes Remote Procedure Calls (gRPC) as 

Hypertext Transfer Protocol (HTTP) endpoints by 

transcoding one protocol to another in a configurable 

manner. This service demonstrates that protocol awareness 

can be centralized at the entry point of a distributed cloud 

environment. It features dynamic client discovery and 

utilizes flexible configuration files for managing 

Application Programming Interfaces (APIs), eliminating 

the need to modify source code when a new service is 

discovered. Furthermore, the gateway is connected to a 

rate-limiting service to ensure availability and mitigate 

potential attacks. This service enforces limitations based 

on both system and user levels, leveraging priority queues 

and algorithms, such as token bucket, leaky bucket, and 

sliding window, to enforce fair rate control. To assess the 

proposed solution, both components are integrated with an 

open-source Constellations platform [2], which operates as 

a module within the distributed cloud infrastructure. 

The paper is organized as follows: Section 2 presents 

the related work for this research on performance in 
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distributed cloud, with a particular focus on gateways that 

ensure low latency and high availability. Section 3 

provides an overview of rate-limiting algorithms, their 

advantages, and applications. In Section 4, the gateway is 

described. Section 5 explains the implementation of a 

protocol conversion service, a rate-limiting service, and 

their integration with the open-source platform for 

configuration dissemination in a distributed cloud. The 

usability, interoperability, and limitations of the proposed 

solution are discussed in Section 6. Finally, Section 7 

presents the conclusion and future directions of the 

conducted research. 

II. RELATED WORK 

In their study, El Kafhali et al. [1] presented a 

thorough overview of cloud computing mechanisms, 

offering a systematic literature review specifically focused 

on cloud computing security issues and frameworks 

through a comprehensive survey. Their paper provided an 

overview of the fundamentals of cloud infrastructure, 

reflecting on the mechanisms to achieve scalability and 

availability, while considering proper defense against 

attacks. Latha et al. [3] conducted research that addresses 

challenges in distributed applications, focusing on client 

satisfaction, confidence, and preventing revenue losses by 

ensuring service availability. Their study developed an 

overload protection technique that relies on a URI 

configuration file, in conjunction with the Zuul gateway, 

which can filter requests before obtaining tokens. The 

token bucket rate-limiting algorithm is implemented to 

ensure traffic limitation while improving the reliability 

and availability of the cloud platform service. Despite 

integrating the gateway with rate-limiting to enhance 

availability, this research remains protocol-dependent and 

lacks protocol transcoding, which would enable flexibility 

and broaden its usage. Distributed cloud control 

approaches are also demonstrated in papers by Raghavan 

et al. [15] and in “Load balancing vs. distributed rate 

limiting: a unifying framework for cloud control” written 

by Stanojevic Rade et al. [16]. However, they do not 

describe a holistic approach with an integrated API 

gateway for monitoring and filtering requests that could 

also be protocol-agnostic. 

Ranawaka et al. [14] emphasized the need to provide a 

scalable microservice architecture that offers highly 

available and fault-tolerant operations. They implemented 

Custos, which exposes services through a language-

independent Application Programming Interface that 

encapsulates science gateway usage scenarios. This work 

primarily focuses on science-specific gateways in a 

research domain, tailored for computational experiments 

while hiding the complexities of accessing and using 

cyberinfrastructure. Although the necessity for such a 

solution is evident, the paper lacks an explanation on how 

to ensure scalability as the number of requests increases 

while protecting the platform from malicious Denial-of-

Service (DoS) attacks. 

III. RATE-LIMITING IN THE CLOUD ENVIRONMENT 

To ensure service availability and achieve high 

scalability, cloud services must protect themselves against 

excessive usage, whether it is expected or not. Cloud 

services should be developed with rate limitations in mind 

to ensure the system operates properly and avoids 

cascading failure. For increasing throughput and 

decreasing end-to-end delay over large distribution 

systems, rate limiting on either the client or server side is 

critical [3]. Our approach in this research is to implement a 

prototype rate limiting at the OSI layer 7, to prevent 

resource exhaustion and maintain system resilience. We 

propose rate control at the entry point level, paired with the 

gateway. By integrating rate limiting within gateways, API 

usage can be centrally controlled across all deployed 

nodes, ensuring uniform policy enforcement and 

simplifying management. 

Rate limiting helps prevent resource exhaustion by 

temporarily blocking requests or placing them in sleep 

mode once a maximum limit has been reached.  After the 

sleep time, the request can be forwarded from the rate 

limiter to the handling server [4]. Rate limiting has found 

use in various cases, including improving overall system 

performance, protecting against brute force or Distributed 

Denial-of-Service (DDoS) attacks, preventing web 

scraping, and preventing resource starvation. Scalable rate 

limiting is achieved using various algorithmic approaches, 

including the leaky bucket algorithm, the token bucket 

algorithm, the fixed window, the sliding log, and the 

sliding window [3]. This paper focuses on the leaky bucket 

algorithm, the token bucket algorithm, and the sliding 

window, all of which are implemented within our rate-

limiting service. The token bucket algorithm provides 

solutions for traffic shaping in packet-switched networks 

[5]. In this algorithm, when a new request arrives, the 

bucket grants one token to the requester, based on the 

availability [6]. If there are available tokens, the service 

accepts the request and removes one token from the 

bucket. If no tokens are available, the system rejects the 

request. This algorithm also requires a parameter for the 

refill rate, as it adds tokens to the bucket at a fixed rate 

defined by this parameter. It is a common choice in 

distributed systems, primarily due to its memory efficiency 

and ease of implementation.  

The sliding window algorithm imposes limits within 

fixed time intervals, allowing for precise control over 

requests in smaller time windows. It admits a specified 

number of requests in a given timeframe L. As each 

request arrives, a request counter is incremented by one. 

This process continues as long as the request counter is 

less than a specified fixed number. At the end of a window 

interval, the request counter resets. Intervals are half open, 

i.e., [t, t+L) [7]. The leaky bucket is a counter that 

increases by one up to a maximum capacity C for each 

arrival and decreases continuously at a given drain rate D 

to as low as zero; an arrival is admitted if the counter is 

less than or equal to C- 1 (so that after the arrival it will be 

less than or equal to C) [7]. The leaky bucket algorithm is 

designed to provide clients with smooth and steady 
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throughput by delaying requests rather than rejecting them 

outright. While this approach may increase latency due to 

its lack of drop behavior, it remains well-suited for use 

cases like background processing or metrics collection. 

That said, we also support two additional rate-limiting 

algorithms, giving clients the flexibility to choose the 

strategy that best fits their specific needs.  

The proposed solution emphasizes implementing API 

rate-limiting as a centralized, independent component, 

which differs from traditional methods that integrate rate-

limiting algorithms directly into individual services. By 

applying rate limiting on a system-wide basis, we gain 

finer control, allowing for multiple configurations for each 

request or service. Additionally, this approach can be 

developed and deployed separately, offering greater 

flexibility and ease of management. Having a single, 

global limit also avoids common problems related to 

communication and synchronization among multiple, 

distributed rate-limiting services [7]. 

IV. TRANSCODING HTTP TO GRPC 

While HTTP is a very popular choice due to its 

simplicity and stateless nature, some studies have shown 

that RPC outperforms HTTP in terms of response time 

and data volume [8], [9]. Moreover, 80% of the public 

APIs available follow most Representational State 

Transfer (REST) conventions, and developers are 

accustomed to that pattern, implying the need for gRPC 

APIs also to follow REST convention [10]. Additionally, 

having multiple cloud providers joined in a distributed 

cloud, cross-platform compatibility issues, and 

inconsistent call standards arise. Placing separate 

components as an API gateway alleviates these problems 

to some extent. To enhance user experience and minimize 

development costs, we propose a configurable rate-

limiting gateway that is designed to fully comply with the 

REST while retaining the advantages of remote procedure 

calls. With this, existing REST endpoints can be 

efficiently transcoded to use the RPC protocol, 

guaranteeing no data loss. Remote procedure calls heavily 

rely on Protobuf, an open-source technique for serializing 

structured data [10]. Unlike JavaScript Object Notation 

(JSON), Protobuf is optimized and runs in binary format, 

which is why it is often the preferred choice. Additionally, 

Protobuf offers a mechanism to segregate context and 

data, allowing data to be transmitted repeatedly without 

duplicating context, such as field or property names, as 

often occurs in JSON or eXtensible Markup Language 

(XML). In practice, both gRPC APIs and HTTP/JSON 

APIs serve distinct purposes, and an ideal API platform 

should offer robust support for both types.  

For protocol transcoding, the proposed gateway 

component leverages gRPC client reflection to 

dynamically discover methods, ensuring interoperability 

across services and reducing the need for manual 

adjustments. Given a hostname and port provided in the 

configuration scheme, the gateway attempts to establish a 

connection to the specific gRPC server and dynamically 

discover available services and methods without prior 

knowledge. Discovered services are later used in the 

process of protocol transcoding in order to forward data 

from the original HTTP request to the corresponding RPC 

service method. Moreover, by providing a transcoding 

feature, it is possible not only to determine what formats 

(i.e., which Protobuf messages) a server’s method uses but 

also how to convert messages between a human-readable 

format, which is dominant in HTTP, and the binary wire 

format. 

V. IMPLEMENTATION AND THE USE CASE 

Configurable, highly available cloud services, namely a 

gateway and rate-limiting service, are integrated within the 

configuration dissemination tool in the distributed cloud. 

This tool is part of the Constellations, an open-source, 

distributed cloud platform [2]. The main objective of the 

tool is to enable cloud-like services for users who would 

benefit from highly elastic deployments, while also taking 

latency and privacy requirements into account. To achieve 

so, the tool offers streamlined processes for infrastructure 

provisioning, application life cycle, and behavior 

management [10]. As the platform has multiple services 

distributed across the cloud that communicate using gRPC 

protocol, adding a rate-limiting gateway only increased its 

heterogenity and improved the response rate. 

A. Gateway 

The gateway solution offers a flexible approach for 

exposing gRPC calls as REST endpoints. Instead of 

burdening each service with boilerplate code to enable 

transcoding, this approach delegates the protocol 

conversion logic to a dedicated service acting as a proxy 

between the platform's end clients and the internal 

services. It uses the flexibility of the configuration file to 

avoid source code alterations that would otherwise be 

mandatory and are common in other prominent gateway 

implementations [12]. 

Within the configuration file, the highest level of API 

description is an API group, which encompasses versioned 

descriptions for the gRPC methods intended for exposure. 

These methods are grouped based on their purpose, 

allowing for the inclusion of gRPC methods from various 

services and applications. Bundling the APIs into API 

groups simplifies access to the methods needed for specific 

purposes, eliminating the need to search through an 

extensive list of APIs from each service to locate a 

particular method. A description of each gRPC method 

includes the REST route, HTTP method type (e.g., GET, 

POST), and the gRPC service that hosts it. The method's 

name serves as a key in a map during the dynamic 

generation of routes, and it must match the name in the 

source service. The configuration also includes the port of 

the gateway and the addresses of the gRPC services used. 

These addresses are kept internal to the gateway and are 

inaccessible from outside sources, meaning they cannot be 

directly reached via either gRPC or HTTP requests. The 

example of the configuration file is shown in Figure 1. The 

service registry, as a separate component within the 

gateway, allows services to register their endpoints, which 

are then stored in a configuration file. In the event of a 

failure, the gateway utilizes this configuration file to route 
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requests, eliminating the need to ping each service 

individually to collect routes. 

Upon initializing the gateway, the configuration file is 

loaded, and for each gRPC service listed, a corresponding 

Client object is instantiated. Each client object includes an 

attribute called DescriptorSource, which is derived from 

the gRPC reflection mechanism and participates in 

obtaining a list of exposed gRPC methods from each 

client. However, this solution relies on gRPC services 

having reflection enabled, which allows clients to access 

detailed information about the Protobuf APIs they expose, 

including the specifications of each request and response, 

as well as their attributes. To invoke gRPC calls, this 

service depended on the Go library grpcurl [13]. This 

decision was beneficial because grpcurl efficiently 

converts HTTP data to gRPC data, simplifying the 

procedure. Moreover, grpcurl supports request headers 

during invocation, which was crucial for later 

authorization between services. 

The process of HTTP route generation consists of 

several parts: 

1. Generation of sub-routers for every group, 

2. Sub-routing groups based on the version, 

3. Assigning a path to each route based on the 

method name from the configuration file, 

4. Creating a middleware that integrates a handler 

function and HTTP method type for each route.   

The second step provides fine-grained configuration of 

routes, combining group and version, resulting in each 

method being mapped with its version and group, allowing 

for easier maintenance of clients in the future, based on the 

current API version. All of these parameters are required 

to create a complete path for each method. The full path is 

created in the third step, using the exact method name 

previously read from the configuration file. The final step 

is to prepare the router for gRPC method invocation. To 

achieve this, HTTP endpoints are wrapped into the 

middleware, which performs preprocessing and validation 

before the actual gRPC call. The transcoding process is 

validated against GET, POST, PUT and DELETE HTTP 

methods, with and without custom HTTP headers. To 

extract parameters from routes, the gateway uses regular 

expressions and then performs implicit type conversion. 

To prevent unauthorized access, the middleware includes a 

check for authorization tokens, verifying each request 

before directing it to the destination service. This process 

helps eliminate redundant calls to services with restricted 

access, enhancing security and improving response time. 

Once the gRPC method is invoked and completed 

successfully, the response is returned as a byte buffer. 

Additionally, the gRPC status codes are mapped to their 

corresponding HTTP response codes. This mapping is 

particularly helpful in case of errors, as it enables the 

provision of informative messages that explain why the 

error occurred. 

B. Rate limiter 

The rate-limiting service provides customizable rate-

limiting mechanisms per request at both the application 

and system layers. Limitations are designed per client. In 

our scenario, clients refer to end users of the constellation 

platform. However, distinct rate limiters can be created 

based on the requirements of cloud services, irrespective 

of client types. Full support for managing rate limiters is 

also provided, enabling rate or type updates, safe deletion, 

and optional parameters. To support flexible request 

control, the prototype offers multiple rate-limiting 

algorithms that clients can choose from based on their 

specific needs. To apply safety measures against API 

overuse, we first define a rate-limiting strategy. Every rate 

limiter is assigned a unique ID in the format of user_id-

method_id. For seamless integration, method_id 

corresponds to a method name retrieved from gRPC 

clients in the gateway. As this data is already extracted 

and prepared for routing to the desired service, no further 

querying or communication with other services is 

necessary. Given that this ID is treated as a regular 

expression, any notation is allowed, making it usable not 

only for gRPC methods but also for users or organizations 

that require limited access to resources. For instance, it is 

possible to configure access limitations for authenticated 

users and request origins, forbidding usage from multiple 

devices simultaneously. Apart from ID, the rate limiter is 

also described with TYPE, REQ_LIMIT, PRIORITY, 

PERIOD, and BURST. Attribute TYPE is directly related 

to supported rate-limiting algorithms, currently limited to 

gateway: 

  route: /apis 

  port: 5555 

services: 

  Kuiper: kuiper:5000 

  ExampleService: example:9001 

  RateLimitService: rate_limiter_service:8080 

groups: 

  core: 

    v1: 

      CreateExample: 

        method_route: /example-route 

        type: POST 

        service: ExampleService 

      PutStandaloneConfig: 

        method_route: /configs/standalone 

        type: PUT 

        service: Kuiper 

Figure 1. Example of a YAML gateway configuration.  

 

&pb.RateLimiter { 

        id: "user1-PutStandaloneConfig", 

        Name: "PutStandaloneConfig", 

        UserName: "user1", 

        Type: "tokenBucket", 

        Priority: 1, 

        ReqLimit: 1, 

        Period: 60, 

        Burst: 1, 

        Idle: 2 

    } 

Figure 2. Code snippet demonstrating a rate limiter object 

 

 

42Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances



token bucket, leaky bucket, and sliding window. The total 

number of allowed requests within a specified period is 

determined by the combination of the attributes 

REQ_LIMIT and PERIOD. A period of time can be 

expressed in seconds. This additional parameter enables 

services to create rate limiters tailored to internal service 

metrics. These metrics might incorporate temporal factors, 

such as the number of served requests during specific 

periods of the day. Parameter BURST stands for the 

maximum number of concurrent requests that the API can 

handle, and it is used to regulate throttling in the token 

bucket algorithm. With larger bursts, the network may 

need to allocate more resources per connection [7].  

The rate limiter also supports a priority queueing 

mechanism that can be utilized to favor users who are 

most frequently rejected due to system limitations. 

Priority can be handled at either the method or user level, 

where critical, time-sensitive methods have higher 

priority, while tracking or monitoring methods can be 

accessed with a delay. A lower PRIORITY value means a 

higher priority in the queue; thus, a value of 1 indicates 

the highest priority. If the userName is not provided, 

PRIORITY refers to the method. It is also possible to 

define an IDLE parameter for slow connections. This 

parameter and priority queueing are optional and can be 

deactivated based on system needs. The example of a rate 

limiter is shown in Figure 2. This rate limiter is set to 

allow only one request per minute, using the token bucket 

algorithm. It is defined for the user with the highest 

priority. Only one rate limiter can be active per client–

request combination. This aligns with the notion of a fixed 

number of requests per user, as offered by cloud provider 

subscription plans. Any changes made to the rate limiter 

will override previous settings and reset the number of 

available tokens.  

To minimize response time, a caching mechanism is 

implemented in the rate-limiting service. This mechanism 

stores the current state of the rate limiter in a cache 

memory for a specified period, reducing the number of 

calls to the database. The cache is updated each time a 

service modifies the rate limiter object. However, 

inconsistencies can arise due to network delays and 

concurrent updates, which may allow clients to exceed 

rate limits before the state is synchronized. Achieving 

strong state consistency can introduce significant 

overhead, resulting in longer processing times and 

reduced performance. To address this issue, we decided to 

integrate with Redis due to its ability to perform 

operations in memory, which reduces latency and makes it 

suitable for high-traffic environments where rate limits 

need frequent checking and updating. 

C. Integration with the Constellations platform 

As an evaluation, developed components are 

integrated with an open-source platform within a 

distributed cloud infrastructure to facilitate two-way 

protocol conversion and manage resource availability by 

enforcing rate control. To illustrate the flow of the 

transcoding process, Figure 3 depicts a scenario in which 

two clients send identical requests within a predefined 

timeframe. Requests are sent to the service responsible for 

configuration management within the Constellations 

platform. The service responsible for this feature is 

represented as a constellation service in a diagram. For 

example, in Figure 3, we demonstrate two calls to an 

endpoint that has a system rate limit of one request per 

minute. After receiving a request, the gateway uses 

DescriptorSource to determine the actual method name 

bound to the received HTTP request. Based on the 

configuration file, it maps parameters (if any) and 

Figure  3. Sequence flow demonstrating the integration of gateway and rate-limiting services with the Constellations platform
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converts the request payload to a byte stream suitable for 

the Protobuf format. The method name from the 

configuration is then used in a direct gRPC call to the rate-

limiting service. The IsRequestAllowed method in the rate-

limiting service searches for a rate limiter object based on 

its ID and then examines the rate limiter type to determine 

whether a request can be executed at the moment.  

If an optional parameter is provided, the rate limiter 

service is also responsible for checking the user priority. 

Based on the examination of parameters, if the limit is 

reached, the method returns a false flag. Given the flag 

value, the gateway decides whether to invoke the actual 

gRPC method and transfer the request. As shown in Figure 

3, for the second client, the rate limit is reached, and the 

request is blocked immediately. The same sequence is 

followed in case where a thousand users concurrently send 

identical requests, and the control rate is shown in Table 1, 

for each rate-limiting algorithm.  

In Table 1, we compared the average latency 

introduced by different rate-limiting algorithms 

implemented in our service. We sent 1000 requests to the 

same route, configured to use the token bucket, leaky 

bucket, and sliding window algorithm, with the same 

reqLimit parameter set to 10. This seemed reasonable, 

considering the configuration is per IP address, and the 

average response time without a rate limit for the route 

was approximately 100-200ms. Both client IP address and 

Constellations’ server were connected to the same internal 

network. Control rate is measured for the system rate 

limiter, representing the ratio between the number of 

successful and the number of rejected requests (those with 

429 status code). Average latency represents the ratio 

between regular response time and response time when the 

rate limiter is applied. 

TABLE I.  A COMPARISON OF RATE-LIMITING ALGORITHMS 

 Token bucket Leaky Bucket Sliding Window 

avg. 

response 

time 

0.097s 1.001s 0.095s 

avg. 
latency 

0.074s 0.043s 0.022s 

control 

rate 
0.1273 / 0.1235 

total time 

(~1000 
req) 

10.502s 13.253s 10.084s 

This approach enhances performance by minimizing 

unnecessary calls to the destination service while also 

providing the possibility to enforce a global rate limit that 

a user can achieve, regardless of the cloud service being 

accessed. As shown in Table 1, the control rate for the 

leaky bucket is not calculated, since all requests pass with 

a slight delay. Therefore, it is a client’s responsibility to 

define the rate limit in advance, choosing the most 

appropriate algorithm depending on the use case. The 

transcoding process occurs at the beginning of the request 

call. It takes less than 5 ms, which turned out to be 

negligible performance-wise, especially considering that 

mapping is performed in the beginning, and no additional 

handling of routes is needed.   

VI. DISCUSSION 

In this research, we propose a solution to address 

issues in multiprotocol environments, emphasizing the 

need for cloud services to communicate in a predefined 

manner. Most cloud platforms support RPC internally and 

require additional time and resources to expose RPC 

methods as REST endpoints. Instead of the time-

consuming process of refactoring existing services, we 

propose integration with a component that already offers 

protocol conversion and enables straightforward 

migration with API versioning. Therefore, we developed a 

protocol-aware gateway responsible for transcoding 

HTTP to RPC, following reconfigurable mapping of 

routes. This approach proved helpful in different settings 

as it supports both client reflection and the set of 

configuration rules described in YAML files, enabling 

proper connection between service methods and REST 

endpoints. Having this configuration separated from the 

internal logic of the connected services in the cloud 

reduces development time while making management 

easier. Its scheme is tested against routes with query 

parameters, path parameters, authorization, and custom 

headers, as well as with a request body, and it performs 

transcoding without data or header information loss. It can 

differentiate between unauthorized and authorized 

methods, preventing misuse, and could leverage access 

control measures if they are implemented further in the 

cloud environment. Moreover, the solution only requires 

following the schema pattern and can be easily integrated 

into existing cloud infrastructures, which we have 

demonstrated by incorporating it with the Constellations 

platform. However, since the proposed transcoding 

process heavily relies on the configuration file to extract 

routes, it is important to note that a strong automated 

YAML scheme validation is needed in order to minimize 

ambiguity and reduce the risk of errors. 

Furthermore, this prototype relies on I/O operations to 

read the configuration and to track changes as new routes 

are added. This did not come as a bottleneck for the 

current setup, but it should be monitored as the number of 

services grows in the cloud. One possible approach would 

be to partition the configuration by services or their 

deployment location and scale horizontally. We integrated 

a protocol-aware gateway with the rate limiter and 

demonstrated its strong properties in precision rate control 

and manageability. With its priority queueing and system-

agnostic features, it effectively enhances system safety 

and ensures alignment with platform requirements. Such 

granularity can be a trade-off between rate-limiting 

accuracy and performance; therefore, it is up to end users 

to decide whether to include fine-tuning of requests or 

not. 

VII. CONCLUSION 

The paper presents mechanisms for achieving desired 

performance features in a distributed cloud environment, 

with a focus on high availability, scalability, and 

robustness. To achieve these goals, we demonstrated the 

integration of two prototype components, namely the 

gateway and rate-limiting service, with an existing 
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configuration dissemination solution. The prototype 

emphasizes its ease of adoption, platform-agnostic design, 

and the ability to enforce consistent communication 

patterns without sacrificing flexibility or performance. 

Key contributions include enabling protocol transcoding 

from HTTP to gRPC calls with reflection for method 

discovery, facilitating the transcoding of HTTP headers 

and body to Protobuf messages, and, in the opposite 

direction, packaging byte streams into readable HTTP 

responses in JSON format, while also ensuring proper 

status code mapping. This addressed the necessity for 

each service to expose both HTTP and gRPC endpoints. 

Additionally, it enhanced the availability of each service 

by maintaining communication within the platform on 

gRPC, thus boosting efficiency. Furthermore, the 

gateway, paired with an independent rate-limiting service, 

eliminates the need for each service to alter its internal 

logic or modify request implementation to manage and 

regulate network congestion. System rate limiting 

manages and controls overall network flow within the 

platform, while also allowing for the creation of specific 

limitations on a per-request or priority basis, which 

emerges as a suitable solution for subscription plans 

structured around request rates from cloud providers. As 

part of our future work, we aim to enhance rate-limiting 

capabilities by making them adjustable based on service 

telemetry and monitoring, and to extend the current 

solution to support distributed rate-limiting. Additionally, 

the goal is to further research prototype performance and 

general applicability by integrating it with more real-

world solutions. 
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