
Performance Evaluation of Software Transactional Memory Implementations

Dániel Urbán
Bell Labs, Nokia, Network Systems and Security Research

Budapest, Hungary
email: daniel.urban@nokia-bell-labs.com

Péter Fazekas
Bell Labs, Nokia, Network Systems and Security Research

Budapest, Hungary
email: peter.fazekas@nokia-bell-labs.com

Abstract—Software Transactional Memory (STM) was
introduced as a promising technology to handle memory
conflicts in parallel computing. In this paper, a performance
comparison of various STM engine implementations is
presented. The well-known Lee’s algorithm was used for
benchmarking ten different Scala based STM API variants, and
one written in Kotlin. Results compare how these
implementations scale in terms of the number of processor cores
available and how they perform in terms of running time,
compared to each other and a single threaded baseline
implementation.

Keywords – Software Transactional Memory; parallel
computing; concurrent programming; functional APIs;
performance measurement.

I. INTRODUCTION

Parallel computing has a decades long history from
emerging concepts to practical applications already in early
mainframe systems. Nowadays, concurrent programming is
applied in almost all domains from end user applications,
enterprise software to exascale computing workloads.

Concurrent threads using shared resources (such as
memory) have been identified early as a critical aspect.
Straightforward solution is to prevent threads using the
resource at the same time, therefore plethora of solutions and
approaches have been designed and implemented in various
architectures, such as using critical sections in the code,
atomic operations, locks, semaphores, mutexes, etc.

Most aforementioned approaches are using some form of
locking based solution (preventing threads to execute while
some conditions apply), which brings well known
shortcomings such as potential deadlocks, livelocks,
convoying, priority inversion, starvation, etc.

To overcome these issues, several solutions were proposed
and implemented, which are basically building on special
representation of data or programming phenomena to avoid
reading/writing shared information at the same time. The main
directions are using lock-free or wait-free data structures, such
as queues, ring buffers or stacks among others; or to basically
prevent using shared context data and apply messaging among
threads instead, such as actor model, or message passing
channels. Furthermore, several approaches are targeting the
complete avoidance of using shared mutable data, hence
eliminating the root of the problem, such as data partitioning,
thread-local storage or immutability in functional
programming.

Transactional memory was introduced in the early 90’s [1]
to overcome shared memory challenges in concurrent
programming. This approach is motivated by how

transactions work in database systems. Basically, transactions
are defined as serializable atomic instructions, that read and
ultimately tentatively write shared memory spaces. Then, a
validate operation is needed to ensure that there are no
conflicts, that is, the memory content read for the
computations and to be written as result is consistent. If
validation is successful, the thread tries committing the
changes. If the validation fails, the transaction aborts and
retries. Commit is successful if no other transactions have
modified the process’s read set and no other transaction has
read the write set, i.e., contention has not occurred since the
last validation. When the commit is successful, the changes
are made visible to other processes, otherwise the transaction
aborts and tentative changes are reverted. This transactional
model for memory operations was introduced as a low-level
Application Programming Interface (API) in [2], so that the
transactional memory is implemented in software (Software
Transactional Memory, STM). Since then, numerous
implementations have appeared, which provide these
transactional functionalities over their APIs. These differ in
various basic algorithms, data structures and optimizations
provided; in Sections III and IV, we detail the ones relevant
for our work.

The rest of this paper is organized as follows. Section II
introduces the basic algorithm used for evaluating various
STM implementations’ performance and some related work.
Section III summarizes various implementations evaluated
with this work. Section IV addresses some important details
of the implementations behind our analysis and the hardware
and software environment used. Section V shows and analyses
numerical results.

II. STM PERFORMANCE RELATED WORK

The main contribution of this paper is to provide a
comparison on the performance of various STM
implementations, focusing on the execution time of certain
multi-threaded computation tasks.

To assess STM performance, one may select proper multi-
threaded applications, for example, the authors of [3] list an
excessive number of those. Their focus is on evaluating how
the applications themselves behave with STM, in terms of size
of read/write sets, transaction lengths statistics and depth of
nested transactions, but the emphasis is not on comparing
different STM engine implementations. Another suggestion is
described in [4] as STMbench7, which is a synthetic
benchmark defining a multitude of operations on a shared data
structure.

However, we wanted to use a computing problem that has
practical significance and enables a comparable

31Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

benchmarking between various STM engine
implementations; thus, the problem should be well
parallelizable, the effect of concurrency should be significant,
and the level of concurrency should be controllable via setting
the inputs to the problem.

Therefore, as in [5]-[7], we selected the well-known
circuit-board routing problem and used Lee’s algorithm [8] to
solve it. Circuit routing has practical significance when
designing connections among electronic components on a
surface, where crossing of connections (routes) is forbidden
or has significant extra cost. In its simplest form, the surface
is represented as a two-dimensional grid of square cells,
representing potential insertion points of components and
potential placeholders for connections.

Lee’s algorithm has a number of source-destination pair
cells (endpoints needing connections) as input. For a given
source-destination pair, the algorithm starts with an expansion
phase. This basically starts a “wave” from the source,
searching all neighboring (along the edges of the square) cells
and enumerating them with their distance from the source.
This breadth-search continues from every neighboring cell to
the neighbors of those (which are second neighbors to the
source), until the search reaches the destination or the edge of
the surface. In general, any cell might be occupied by an
already existing route; these cells are not enumerated and not
taken into account in the next phase of the algorithm.

The second phase is the backtracking, when from the
destination to the source a list of cells is found, their
enumeration should be in decreasing order. As there are
multiple such routes, the particular implementation should
rank those and select the optimal one. Typically, the shortest
route, or the route with the least turns, or routes that are closer
to blocked cells, etc. could be selected. This final phase of the
algorithm is referred to as laying the route. As mentioned
above, if a cell is already occupied by a route, it is not
considered in the expansion phase, hence the backtracking
will efficiently find routes avoiding occupied cells. Naturally,
a laid route will occupy its cells for any later runs of the
algorithm. Figure 1 shows a basic example of Lee’s algorithm
without occupied cell, the left Figure shows the expansion
phase, while on the right the backtracking is represented with
a laid route between source (S) and destination (D). Figure 2
visualizes the algorithm in the case where there are already
occupied cells on the board (denoted by black).

As for parallel computing, it is apparent that this algorithm can
be implemented in a way that multiple source-destination
pairs are being calculated in parallel, using a shared data
representing the grid of cells. It is easy to see how contention
is occurring if a thread reserves a route in backtracking, while
the other counts it in expansion. It is also evident that a grid
with large number of cells but short routes (source-destination
are close to each other) is well parallelizable with lower
chance of contention, while in smaller grids with relatively
long routes, contention will occur with higher probability.

As mentioned, [5] proposed Lee’s algorithm as a
benchmark for STM. The authors implemented the algorithm
using Java and evaluated various optimizations in handling
the transactions, assessing the number of routes the algorithms
found. That work was expanded in [6], and evaluated STM
performance in terms of abort ratio, wasted work and number
of transactions in realistic large circuits. In [7], a Ruby based
STM implementation was evaluated, in terms of finding the
routes on modest difficulty grids.

III. IMPLEMENTATIONS

Due to the practical significance of STM, naturally there
is rich support in various programming languages, in the
forms of various libraries, or being implemented in the
standard library. Without the need to be exhaustive, some
examples are as follows. Haskell, as a purely functional
language suitable for parallel programming, has native STM
support through its standard library. Similarly, Clojure has this
kind of built-in STM support. In C/C++, STM is not natively
supported, but throughout the years several libraries were
built, such as stmmap, or cpp_stm_free, etc., but none of the
implementations were standardized yet. Similarly, Java offers
several STM implementation libraries, examples are JVSTM,
Deuce or DSTM2. Naturally, these extensions exist in all the
other popular languages as well, such as in Ruby, Rust or
Golang.

During our evaluations we focused on STM
implementations in Scala and one written in Kotlin; in the
following we briefly recap these. We selected Scala as our
main focus, because of its popularity as a functional
programming language supporting concurrent and parallel
programming on the Java Virtual Machine (JVM). Scala
offers a variety of STM APIs to test. We also looked at Kotlin,
as a similar, but less functional programming language. Our
goal was to compare both purely functional and imperative
STM APIs.

Figure 1. Lee’s algorithm

Figure 2. Lee’s algorithm with occupied cells

32Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

Cats STM [10] is a Scala library enabling composable in-

memory transactions. It implements fine grained optimistic
concurrency handling with no global locks; automatic retries
and composing complex transactions out of elementary ones
with its purely functional API. Cats STM supports using
multiple runtimes. Also, Cats STM does not have a built-in
transactional array, or similar type, so in the implementation
we store grid matrices in array of transactional variables.

CHOAM’s Rxn [11] is our own Scala based
implementation. It does not use locks, instead it uses a lock-
free multi-word compare-and-swap algorithm [17] to commit
transactions. It has both a purely functional, and an imperative
API; these use the same underlying engine, so we were able
to compare their performance. Rxn is technically not a full-
featured STM, but it is close enough: it does not have Haskell-
style modular blocking (i.e., the orElse combinator), but that
is not necessary for parallelizing Lee’s algorithm. It has a
built-in Ref.Array type (transactional array), which we use for
the board matrices.

The next implementation we tested is based on Kyo [12],
a library for algebraic effects in Scala. One of its built-in
effects is STM. This STM implementation uses fine-grained
locking and has a purely functional API. We run the
transactions on Kyo’s own runtime with its default
configuration. For the board matrices we use an array of
transactional variables (Array[TRef[A]]), because Kyo does
not have a built-in transactional array type.

ScalaSTM is a lightweight STM implementation [13][14]
inspired by the STM API in the Haskell standard library. It has
a mostly imperative API and uses fine-grained locking. It also
has a sophisticated contention manager for retrying
conflicting transactions. We use ScalaSTM’s built-in TArray
(transactional array) for the board matrices.

ZSTM is an implementation in the ZIO concurrency
framework [15]. It has a purely functional API, similar to the
one in the Haskell standard library. We run the ZSTM
transactions on their own zio.Runtime and we use ZSTM’s
TArray for the board matrices.

The Kotlin implementation we tested is within the Arrow
concurrency framework [16]. The algorithm is written in
Kotlin, with a thin Scala wrapper. The API of arrow-fx-stm is
inspired by Haskell’s STM package, but it is nevertheless
mostly imperative. We run the STM transactions on the
default coroutine dispatcher of Kotlin. We use TArray for the
grid matrices.

During the evaluation of results in Section 0, we refer to
two possible basic solutions for STM with regards to the
implementations listed above, that is opacity and early

release. Opacity [19] is a consistency property specifically for
STM systems. The consistency of committed transactions is
usually guaranteed by all STM systems (e.g., by performing a
validation step during commit). However, an opaque STM
also guarantees the consistency of all running transactions.
That is, a transaction in an opaque STM is never able to
observe an inconsistent view of memory. Conversely, a
transaction in a non-opaque (i.e., transparent) STM might
observe such an inconsistent view, and then later (e.g., when
trying to commit) detect the inconsistency, roll back, and
retry. Depending on the specific logic of a transaction, the lack
of opacity could lead to observing violation of invariants,
which in turn could lead to, e.g., out-of-bounds reads or
infinite loops. On the other hand, if an STM guarantees
opacity, it will typically need to roll back and retry
transactions more often, which could lead to performance
degradation.

The authors of [18] proposed early release as an
optimization for STM transactions. This is a mechanism to
remove items from the read set of a transaction, in effect
releasing those memory locations earlier than the commit of
the transaction (because the transaction does not need them
anymore). On one hand, this has the potential to reduce the
number of conflicts the transaction encounters, thus
potentially increasing performance. On the other hand, the
released memory locations will not be part of any later
automatic validation (e.g., during commit), so early release
must be used with care, to preserve the correctness of the
transaction.

IV. IMPLEMENTATION ARCHITECTURE AND TEST

ENVIRONMENT

To enable better understanding of the results, main design
and implementation considerations are introduced in the
following subsections.

A. Design and implementation

The bases of main building blocks of the software
implemented to test performance of various STM
implementations is shown in Figure 3. The first block is
responsible for parsing the input file given to the algorithm;
that contains the description of the board (grid) and the source-
destination (S-D) pairs between which the routes are to be
laid. Then there is an initial optimization, as for all the source-
destination pairs a simple grid-distance is calculated, and S-D
pairs are sorted in increasing order. For those pairs that have
the same grid-distance, a pseudorandom shuffling is applied,
to reduce the number of trivial conflicts (because S-D pairs
with coordinates close to each other are often also specified
close to each other in the input files). Lee’s algorithm will be
then executed on the S-D pairs in this order.

In this implementation, a small generalization of Lee’s
algorithm is introduced, compared to the basics shown in
Section II. Namely, in this version, we still allow routes to
cross in the grid. In terms of route laying on a circuit board,
this mimics the case when there can be multiple layers.
However, in this version of the algorithm we assign a cost to
the routes. That is, we assign a unit cost to each cell allocated
for a route and if another route crosses an already existing one,

Figure 3. Functional blocks of the implementation

Input file
parsing

Input routes
S-D pairs

preprocessing

Lee’s
algorithm STM API

API
wrapper

33Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

there is a double cost associated to that cell within this next
route. Similarly, if a third route is to be laid using this same
cell, that would again double this cell’s cost (hence it would
cost four units) and so on, each layer doubles the cost
(exponentially rising cost). Finally, the algorithm selects the
route with the lowest cost. Note that the original version of the
algorithm that does not allow route crossing is a subset of this
approach with allocating infinite cost to route crossing.

The parallelization is handled in the following manner: the
S-D pairs are evaluated in parallel batches that have the size
equivalent to available CPU threads. Whenever a thread
finishes (a route for an S-D pair is laid), the next one from the
ordered list starts. Note that the algorithm finishes when an S-
D route is found; when the transaction should abort and restart
for example due to validation error or commit error, that is
handled by the STM engine itself.

In Figure 3 the functional blocks of the algorithm, the
tested STM API (listed in Section II) and a block labelled as
”API wrapper” are interwoven. This is because we have
implemented the algorithm for each STM API in a way that
the implementation natively uses the API and its data
structures, therefore, the very implementation code is specific
to the given API. For example, for a functional API a function
itself can be passed, hence the STM engine itself can call
”back” to the algorithm.

The API wrapper part in the Figure is specific to testing
the ScalaSTM API. Namely, ScalaSTM was tested in an
idiomatic way, using its default imperative API. However, as
in general we would like to harness the strengths of functional
programming, we have also implemented and tested a thin
layer, that wraps the ScalaSTM API in a monadic (purely
functional) API similar to that of Cats STM. This way we can
also get some ideas about the overhead of a monadic
(“programs as values”) API in Scala. (We have considered
creating a unified API for all the STM libraries, and
implementing Lee’s algorithm only once, using this API.
However, as measurements on the wrapped ScalaSTM API
showed significant performance degradation due to the
wrapping, we have not done this.) We summarize all the
variants we implemented, and the STM libraries we used in
Table I.

CHOAM has both a purely functional and an imperative
API; it also has various optimization options. To compare the
performance effect of these variations, we have implemented
four versions of Lee’s algorithm with CHOAM:

 One using the default (purely functional and safe)
API (RxnSolver).

 An optimized one, which uses “early release” [18]
to make the transaction log smaller
(ErtRxnSolver). This optimization would not be
safe in arbitrary transactions, but as discussed in
[5], it is safe for Lee’s algorithm. This version also
uses non-opaque (i.e., “transparent”) reads [19], to
further decrease the probability of conflicts.

 Another optimized version, which uses “tentative
reads”, as an alternative implementation of early
release (ErRxnSolver).

 A version which (unlike the other three) uses the
imperative API of CHOAM (ImpRxnSolver). It
has no early release, or other extra optimization
(thus, it can be seen as the direct imperative
equivalent of RxnSolver).

We run the various implementations on asynchronous
runtimes they are designed for. When they are not designed
for a specific runtime, we run them on the thread-pool of Cats
Effect. We configure these runtimes by turning off features
which could have a negative performance impact.

The transactions in these implementations of Lee’s routing
algorithm are read heavy, but at the end they always write to
some locations (to lay a route). This means that read-only
transactions, and transactions which only access a very small
number of memory locations are not measured.

We also have implemented a sequential (non-parallelized)
version of the same algorithm, which serves as the baseline
for comparison to the parallel ones. This sequential
implementation is intentionally not very well optimized,
because we wanted to compare it to similarly high-level and
easy-to-use STMs.

All the implementations used for this benchmarking are
available as open source [20].

Figure 4. Completion time for simple input

Figure 5. Completion time for simple input, zoomed

34Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

B. Experimental setup

We run the benchmarking software described above on the
Java Virtual Machine (JVM). This is packaged into a Docker
container, because we wanted the measurement software to be
portable and easily automatable, and the measurement easily
reproducible.

The server used has two Intel Xeon E5-2680 v3 processors
running at 2.5 GHz, with 12 physical cores, that is 24 cores in
total. During the measurements hyperthreading was disabled,
therefore each thread is running on a physical core. Turbo
boost was also disabled. During the measurements, one
control parameter is the number of cores allocated to the JVM,
and the software itself implements parallelization in a way that
the number of available cores is queried from the JVM.

The server is equipped with 256 Gbytes of physical
memory, but the JVM heap size was configured to be 16
Gbytes. All the implementation is based on Scala 3.7.0 and
OpenJDK 21.0.7 (Corretto).

We used three inputs (circuit boards for laying routes) with
different sizes in terms of the number of cells in the grid and
number and length of routes to be laid, as will be discussed in
the next section: a well parallelizable simple synthetic input,
a modest one, and a complex one coming from real circuitry.

The algorithm for laying routes in the simple and moderate
complexity boards was continuously run for 300 seconds for
each input, and for each implementation, for a given number
of available CPUs. Based on the completion times needed for
solving an input (see next section), this results in several
hundreds to several thousands of runs for each data point. For
the complex input, due to its excessive complexity, 20 runs
were performed for each data point.

We used the Java Microbenchmark Harness (JMH) [21] to
perform the measurements, in its default time-based “average
time” benchmark mode. In this mode JMH repeatedly calls a
benchmark method until a timeout of 10 seconds is reached
(JMH calls this 1 iteration). JMH performs the measurements
in a forked JVM (i.e., it launches a separate process just for
the measurement); we configured it to repeat this forking 6
times. We performed 5 warmup iterations and 5 measurement
iterations (that is, 50+50 seconds total per fork); the
measurement results of the warmup iterations are ignored, and
the execution times of the benchmark method during the

measurement iterations are averaged. (An exception to this is
the last complex input, where we used the “single-shot” mode
of JMH, resulting in the average of 20 benchmark method
executions, as mentioned above.) The purpose of the warmup
iterations is to avoid measuring in a “cold” JVM, i.e., in which
the just-in-time compiler (JIT) did not yet optimize the
running methods.

V. RESULTS AND EVALUATION

The charts in this Section show the results of our
measurements. On the vertical axis, we show the completion
time, i.e., the time required (in seconds) to solve one particular
input board. The curves show the average time required to run
on the input; the shaded area shows a 99.9% confidence
interval (it is not visible on some of the curves). The horizontal
axis shows the number of CPU cores available to the solvers.
This way we can analyze the scalability of the various STM
engines when used for parallelization.

Figures 4 and 5 show measurement results for a 200×200
circuit board with 90 routes (i.e., source-destination pairs),
which is the simple input. The routes are all very short (10),
the solutions are trivial (each is a straight line), and they never
cross each other. (This board is a smaller version of the board
called “simple” in [6].) Thus, solving this synthetic input is, in
theory, perfectly parallelizable. While this is not a realistic
circuit board, we use it to measure the ability of the various
STM engines to exploit the potential parallelism (which is
very high here). Figure 4 shows results for all the STM
engines and variants we measured. The smaller results (i.e.,
results for the faster implementations) are not visible on that
chart, so they are shown in Figure 5 (which is essentially the
zoomed in version of the bottom of Figure 4).

In Figure 4, we can see that the slowest STM
implementation on this particular input is Cats STM (labeled
CatsStm). As we increase the number of cores, at first it scales
well until around 4 cores; then performance starts to degrade.
We suspect the reason for this is the behavior of the locks used
under higher contention (Cats STM uses the built-in locks of
Cats Effect, which use a single atomic reference). Even at the
best point in the chart (at 4 cores), this engine is slower than
the non-parallelized baseline implementation (Baseline in the
chart). The reason for this is probably (at least in part) the high

Figure 7. Moderate complexity input, zoomed

Figure 6. Moderate complexity input

35Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

overhead of the immutable and purely functional data
structures used by Cats STM.

In the same chart, we can see that the STM engine of Kyo
(labeled KyoStm) seems to scale well with the number of
processors, although there is less and less improvement the
more cores are used (this is expected of any parallelization
scheme that requires some coordination between cores). On
the other hand, ZSTM seems unable to scale beyond 2 cores;
we suspect the reason is that the locks it uses are blocking
physical threads, and its runtime does not seem to start other
threads, or compensate somehow for these threads that are not
doing useful work.

On Figure 5 we can see the implementations which are
able to solve this input much faster. All of them show a scaling
curve similar to KyoStm (i.e., they scale well, but the
improvements are smaller and smaller). If we compare the
default ScalaSTM implementation (ScalaStm), and its variant
wrapped in a purely functional API (WrStm), we can see that
the purely functional API has a very significant overhead
(around 2-3 times slower). We see similar, but smaller
differences between the solvers using the functional and
imperative APIs of CHOAM (RxnSolver and ImpRxnSolver
respectively). The variants using the various forms of early
release (ErRxnSolver and ErtRxnSolver) show little or no
performance advantage over RxnSolver; this is expected, as
early release is used to decrease the number of conflicting
transactions, and due to the nature of the input, there are no
(or very few) conflicting transactions here. (ErtRxnSolver is
even slower here, due to the overhead associated with that
particular implementation of early release.)

Figures 6 and 7 show results for another input with
moderate complexity, a “small but realistic board”
(testBoard.txt from [7]). This board is 75×75, and has 203
routes to solve, both short and long. This input has lots of
potential conflicts, so we expect solving it to scale worse with
the number of cores. (As before, some implementations are
significantly faster than others, so Figure 7 shows the zoomed-
in lower part of Figure 6.)

As expected, we see the implementations becoming only
modestly faster as the number of cores increases, or not at all.
An interesting exception to this is ErtRxnSolver, which seems
to scale very well from 1 to 5 cores (and it is mostly flat after
that). We suspect this is due to the relatively high overhead of

implementing early release this way, which is then able to be
overcome by more parallelism (allowed by using early release
and non-opaque reads to decrease transaction conflicts).

As Figure 6 shows, the slowest implementation is Cats
STM as previously. The fact that it is the slowest on both
inputs suggests that it has very high single-threaded overhead
(probably due to the immutable data structures used and the
purely functional API).

The STM engine of Kyo shows some limited ability to
scale, but despite this, it is slower than ZSTM, which (as
before) does not scale well. This contrasts with the previously
discussed results, where Kyo’s superior scalability was able to
overtake ZSTM at 4 cores.

Interestingly, none of these three implementations
(CatsStm, KyoStm, ZSTM) is faster than the baseline non-
parallelized implementation (on this input).

In Figure 7 we see the results of the faster implementations
on the same input. All of them are faster than the Baseline
(non-parallelized) version. The fact that they are faster even
on a single core (i.e., no parallelism) is because we did not
bother optimizing the baseline (we wanted to compare
“conveniently coded”, high level implementations). As
mentioned before, all of them show no or limited scaling.
Interestingly, ScalaStm (and its purely functional variant,
WrStm) show only performance degradation with more cores
(i.e., they are fastest with 1 core). This suggests that they are
unable to exploit the very limited potential parallelism of this
input.

RxnSolver and ErRxnSolver show modest scaling, (but
still, they are slower than ScalaSTM). Of the two,
ErRxnSolver is the faster: as expected, using early release
helps to reduce transaction conflicts.

The fastest implementation (on this input) is ArrowStm,
which scales reasonably well, and overtakes ScalaSTM at 3
cores.

Figure 8 shows our measurement results on a complex real
circuit board of a memory module (board “mem” in [6]). This
is a 600×600 board, with 3101 routes to solve. As this board
is much bigger and more complicated than the previous two,
solving it requires orders of magnitude more time (minutes

Figure 8. Completion time of complex realistic board

TABLE I. SUMMARY OF THE IMPLEMENTED VARIANTS
Name STM library API style

CatsStm Cats STM functional

RxnSolver

CHOAM

functional

ErRxnSolver functional

ErtRxnSolver functional

ImpRxnSolver imperative

KyoStm Kyo functional

ScalaStm
ScalaSTM

imperative

WrStm functional

ZSTM ZIO functional

ArrowStm Arrow imperative

36Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

instead of fractions of seconds as before). For this input, we
do not show results for Cats STM, ZSTM or Kyo as they
showed limited performance even for the moderately complex
board.

As for the previous input, we see all the (faster)
implementations improving on the Baseline (even at 1 core).
ScalaSTM is the fastest here, showing an interesting curve:
when running on multiple cores, it is first slower than on 1
core, but slowly getting faster, and overtaking its single-core
performance at 6 cores. We suspect ScalaSTM has some
optimizations specifically for single-threaded execution. (Its
purely functional version, WrStm shows the same scaling
behavior, but with a significant overhead due to the API
wrapping). As before, ArrowStm performs well, and scales
well, but in this case, cannot overtake ScalaSTM.

Comparing the various versions implemented with
CHOAM, we see the unoptimized, purely functional variant
(RxnSolver) being generally the slowest (and much slower
than Scala STM). The variant ErRxnSolver (using early
release) shows a significant improvement, which grows as the
number of cores increases (this is expected, as the potential
for conflicts is bigger with more cores, and early release
reduces these conflicts). ErtRxnSolver (which uses both early
release and non-opaque reads) starts slower (as before, due to
the bookkeeping overhead of this particular implementation),
but scales much better, overtaking all the other CHOAM
variants, but it is still unable to overtake ArrowStm. Again,
this scaling behavior is expected, like for testBoard.txt.

VI. CONCLUSIONS AND FUTURE WORK

Considering all the measurement results detailed in the
previous section, we make the following observations.

Comparing purely functional APIs with their imperative
counterparts (i.e., WrStm with ScalaStm, and RxnSolver with
ImpRxnSolver), we see overheads from around 30% to around
300% for the purely functional APIs. This is probably due to
the purely functional APIs allocating an enormous amount of
very small objects, which stresses the garbage collector of the
JVM.

If we compare all the functional APIs with all the
imperative ones, we see a similar trend: imperative ones tend
to be faster (as expected). However, there is a significant
difference in performance between the functional ones
themselves, so there is clearly a way to decrease their
overhead.

The Kotlin implementation (ArrowStm) performs
consistently well and scales well. This is probably in part due
to its imperative nature, but we suspect it might also have
something to do with it being executed on the Kotlin co-
routine scheduler. All the other implementations run on
runtimes of Scala effect systems, which tend to schedule tasks
differently from the coroutine scheduler. We leave examining
the precise effect of the scheduler behavior on STM
performance for future work.

On inputs where we expect transaction conflicts, using
early release (and non-opaque reads) shows a clear
performance advantage. This is expected, as these
optimizations aim to decrease the number of conflicts, and
they succeed at that goal.

Preliminary profiling shows that both Cats STM and
ZSTM spend a considerable portion of their execution time
maintaining the transaction log. This is not surprising, as the
transactions we measured here are relatively big (i.e., their
logs contain a lot of entries), especially for the last input (the
memory module). Thus, optimizing their log data structures is
a potential future performance improvement for these STM
engines.

REFERENCES
[1] M. Herlihy, J. E. B. Moss, “Transactional Memory:

Architectural Support for Lock-Free Data Structures” ACM
SIGARCH Computer Architecture News, Volume 21, Issue 2,
1993, pp. 289 - 300.

[2] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
“Software transactional memory for dynamic-sized data
structures”, PODC '03: Proceedings of the twenty-second
annual symposium on Principles of distributed computing,
2003, pp. 92 – 101

[3] J. Chung et al., “The common case transactional behavior of
multithreaded programs”, Proceedings of the Twelfth
International Symposium on High-Performance Computer
Architecture, 2006, pp. 266–277

[4] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7: a
benchmark for software transactional memory”, ACM
SIGOPS Operating Systems Review, Volume 41, Issue 3, pp.
315 - 324

[5] I. Watson, C. Kirkham, and M. Lujan, “A Study of a
Transactional Parallel Routing Algorithm,” 16th International
Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), Brasov, Romania, 2007, pp. 388-
400

[6] M. Ansari et al., “Lee-TM: A Non-trivial Benchmark Suite for
Transactional Memory”. In: Bourgeois, A.G., Zheng, S.Q.
(eds) Algorithms and Architectures for Parallel Processing.
ICA3PP 2008. Lecture Notes in Computer Science, vol 5022.

[7] C. Seaton, “Context on STM in Ruby”, online
https://chrisseaton.com/truffleruby/ruby-stm/ accessed:
17/6/2025

[8] C. Y. Lee, “An Algorithm for Path Connections and Its
Applications,” in IRE Transactions on Electronic Computers,
vol. EC-10, no. 3, pp. 346-365, Sept. 1961, doi:
10.1109/TEC.1961.5219222

[9] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7: A
benchmark for software transactional memory”. EuroSys ’07:
Proceedings of the 2nd European Systems Conference, pp.
315–324. ACM Press, March 2007.

[10] T. W. Spence, Cats STM, online
https://github.com/TimWSpence/cats-stm/, accessed:
18/6/2025

[11] D. Urban, CHOAM, online: https://github.com/durban/choam
, accessed: 18/6/2025.

[12] Online: https://getkyo.io/ , accessed: 18/6/2025
[13] N. Bronson, Scala-STM, online: https://github.com/nbronson/

accessed: 18/6/2025.
[14] N. Bronson, H. Chafi, and K. Olukotun, “CCSTM: A Library-

Based STM for Scala”. Proceedings of the First Annual Scala
Workshop. Lausanne, 2010

[15] Online:
https://github.com/zio/zio/tree/series/2.x/core/shared/src/main
/scala/zio/stm , accessed: 18/6/2025

[16] Online: https://arrow-kt.io/learn/coroutines/stm/ , accessed:
18/6/2025

[17] R. Guerraoui, A. Kogan, V. Marathe, and I. Zablotchi,
“Efficient Multi-word Compare and Swap,” in Proceedings of

37Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

the 34th International Symposium on Distributed Computing,
Virtual Event, Oct. 2020.

[18] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer,
“Software transactional memory for dynamic-sized data
structures”. In Proceedings of the twenty-second annual
Symposium on Principles of Distributed Computing, pages 92–
101, 2003.

[19] R. Guerraoui, M. Kapalka, “On the Correctness of
Transactional Memory”. In PPoPP ‘08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 175–184, New York, NY, USA,
2008. ACM.

[20] D. Urban, stm-benchmark, online:
https://github.com/nokia/stm-benchmark, accessed: 19/6/2025
Online: https://openjdk.org/projects/code-tools/jmh/ accessed:
19/6/2025

[21] Online: https://openjdk.org/projects/code-tools/jmh/ ,
accessed: 19/6/2025

38Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

