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Abstract—Software Transactional Memory (STM) was 
introduced as a promising technology to handle memory 
conflicts in parallel computing. In this paper, a performance 
comparison of various STM engine implementations is 
presented. The well-known Lee’s algorithm was used for 
benchmarking ten different Scala based STM API variants, and 
one written in Kotlin. Results compare how these 
implementations scale in terms of the number of processor cores 
available and how they perform in terms of running time, 
compared to each other and a single threaded baseline 
implementation.  

Keywords – Software Transactional Memory; parallel 
computing; concurrent programming; functional APIs; 
performance measurement. 

I.  INTRODUCTION 

Parallel computing has a decades long history from 
emerging concepts to practical applications already in early 
mainframe systems. Nowadays, concurrent programming is 
applied in almost all domains from end user applications, 
enterprise software to exascale computing workloads. 

Concurrent threads using shared resources (such as 
memory) have been identified early as a critical aspect. 
Straightforward solution is to prevent threads using the 
resource at the same time, therefore plethora of solutions and 
approaches have been designed and implemented in various 
architectures, such as using critical sections in the code, 
atomic operations, locks, semaphores, mutexes, etc. 

Most aforementioned approaches are using some form of 
locking based solution (preventing threads to execute while 
some conditions apply), which brings well known 
shortcomings such as potential deadlocks, livelocks, 
convoying, priority inversion, starvation, etc. 

To overcome these issues, several solutions were proposed 
and implemented, which are basically building on special 
representation of data or programming phenomena to avoid 
reading/writing shared information at the same time. The main 
directions are using lock-free or wait-free data structures, such 
as queues, ring buffers or stacks among others; or to basically 
prevent using shared context data and apply messaging among 
threads instead, such as actor model, or message passing 
channels. Furthermore, several approaches are targeting the 
complete avoidance of using shared mutable data, hence 
eliminating the root of the problem, such as data partitioning, 
thread-local storage or immutability in functional 
programming. 

Transactional memory was introduced in the early 90’s [1] 
to overcome shared memory challenges in concurrent 
programming. This approach is motivated by how 

transactions work in database systems. Basically, transactions 
are defined as serializable atomic instructions, that read and 
ultimately tentatively write shared memory spaces. Then, a 
validate operation is needed to ensure that there are no 
conflicts, that is, the memory content read for the 
computations and to be written as result is consistent. If 
validation is successful, the thread tries committing the 
changes. If the validation fails, the transaction aborts and 
retries. Commit is successful if no other transactions have 
modified the process’s read set and no other transaction has 
read the write set, i.e., contention has not occurred since the 
last validation. When the commit is successful, the changes 
are made visible to other processes, otherwise the transaction 
aborts and tentative changes are reverted. This transactional 
model for memory operations was introduced as a low-level 
Application Programming Interface (API) in [2], so that the 
transactional memory is implemented in software (Software 
Transactional Memory, STM). Since then, numerous 
implementations have appeared, which provide these 
transactional functionalities over their APIs. These differ in 
various basic algorithms, data structures and optimizations 
provided; in Sections III and IV, we detail the ones relevant 
for our work. 

The rest of this paper is organized as follows. Section II 
introduces the basic algorithm used for evaluating various 
STM implementations’ performance and some related work. 
Section III summarizes various implementations evaluated 
with this work. Section IV addresses some important details 
of the implementations behind our analysis and the hardware 
and software environment used. Section V shows and analyses 
numerical results. 

II. STM PERFORMANCE RELATED WORK 

The main contribution of this paper is to provide a 
comparison on the performance of various STM 
implementations, focusing on the execution time of certain 
multi-threaded computation tasks.  

To assess STM performance, one may select proper multi-
threaded applications, for example, the authors of [3] list an 
excessive number of those. Their focus is on evaluating how 
the applications themselves behave with STM, in terms of size 
of read/write sets, transaction lengths statistics and depth of 
nested transactions, but the emphasis is not on comparing 
different STM engine implementations. Another suggestion is 
described in [4] as STMbench7, which is a synthetic 
benchmark defining a multitude of operations on a shared data 
structure. 

However, we wanted to use a computing problem that has 
practical significance and enables a comparable 
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benchmarking between various STM engine 
implementations; thus, the problem should be well 
parallelizable, the effect of concurrency should be significant, 
and the level of concurrency should be controllable via setting 
the inputs to the problem. 

Therefore, as in [5]-[7], we selected the well-known 
circuit-board routing problem and used Lee’s algorithm [8] to 
solve it. Circuit routing has practical significance when 
designing connections among electronic components on a 
surface, where crossing of connections (routes) is forbidden 
or has significant extra cost. In its simplest form, the surface 
is represented as a two-dimensional grid of square cells, 
representing potential insertion points of components and 
potential placeholders for connections.  

Lee’s algorithm has a number of source-destination pair 
cells (endpoints needing connections) as input. For a given 
source-destination pair, the algorithm starts with an expansion 
phase. This basically starts a “wave” from the source, 
searching all neighboring (along the edges of the square) cells 
and enumerating them with their distance from the source. 
This breadth-search continues from every neighboring cell to 
the neighbors of those (which are second neighbors to the 
source), until the search reaches the destination or the edge of 
the surface. In general, any cell might be occupied by an 
already existing route; these cells are not enumerated and not 
taken into account in the next phase of the algorithm. 

The second phase is the backtracking, when from the 
destination to the source a list of cells is found, their 
enumeration should be in decreasing order. As there are 
multiple such routes, the particular implementation should 
rank those and select the optimal one. Typically, the shortest 
route, or the route with the least turns, or routes that are closer 
to blocked cells, etc. could be selected. This final phase of the 
algorithm is referred to as laying the route. As mentioned 
above, if a cell is already occupied by a route, it is not 
considered in the expansion phase, hence the backtracking 
will efficiently find routes avoiding occupied cells. Naturally, 
a laid route will occupy its cells for any later runs of the 
algorithm. Figure 1 shows a basic example of Lee’s algorithm 
without occupied cell, the left Figure shows the expansion 
phase, while on the right the backtracking is represented with 
a laid route between source (S) and destination (D). Figure 2 
visualizes the algorithm in the case where there are already 
occupied cells on the board (denoted by black).  

As for parallel computing, it is apparent that this algorithm can 
be implemented in a way that multiple source-destination 
pairs are being calculated in parallel, using a shared data 
representing the grid of cells. It is easy to see how contention 
is occurring if a thread reserves a route in backtracking, while 
the other counts it in expansion. It is also evident that a grid 
with large number of cells but short routes (source-destination 
are close to each other) is well parallelizable with lower 
chance of contention, while in smaller grids with relatively 
long routes, contention will occur with higher probability. 

As mentioned, [5] proposed Lee’s algorithm as a 
benchmark for STM. The authors implemented the algorithm 
using Java and evaluated various optimizations in handling 
the transactions, assessing the number of routes the algorithms 
found. That work was expanded in [6], and evaluated STM 
performance in terms of abort ratio, wasted work and number 
of transactions in realistic large circuits. In [7], a Ruby based 
STM implementation was evaluated, in terms of finding the 
routes on modest difficulty grids.   

III. IMPLEMENTATIONS 

Due to the practical significance of STM, naturally there 
is rich support in various programming languages, in the 
forms of various libraries, or being implemented in the 
standard library. Without the need to be exhaustive, some 
examples are as follows. Haskell, as a purely functional 
language suitable for parallel programming, has native STM 
support through its standard library. Similarly, Clojure has this 
kind of built-in STM support. In C/C++, STM is not natively 
supported, but throughout the years several libraries were 
built, such as stmmap, or cpp_stm_free, etc., but none of the 
implementations were standardized yet. Similarly, Java offers 
several STM implementation libraries, examples are JVSTM, 
Deuce or DSTM2. Naturally, these extensions exist in all the 
other popular languages as well, such as in Ruby, Rust or 
Golang. 

During our evaluations we focused on STM 
implementations in Scala and one written in Kotlin; in the 
following we briefly recap these. We selected Scala as our 
main focus, because of its popularity as a functional 
programming language supporting concurrent and parallel 
programming on the Java Virtual Machine (JVM). Scala 
offers a variety of STM APIs to test. We also looked at Kotlin, 
as a similar, but less functional programming language. Our 
goal was to compare both purely functional and imperative 
STM APIs. 

 
Figure 1. Lee’s algorithm 

 
Figure 2. Lee’s algorithm with occupied cells 
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Cats STM [10] is a Scala library enabling composable in-

memory transactions. It implements fine grained optimistic 
concurrency handling with no global locks; automatic retries 
and composing complex transactions out of elementary ones 
with its purely functional API. Cats STM supports using 
multiple runtimes. Also, Cats STM does not have a built-in 
transactional array, or similar type, so in the implementation 
we store grid matrices in array of transactional variables. 

CHOAM’s Rxn [11] is our own Scala based 
implementation. It does not use locks, instead it uses a lock-
free multi-word compare-and-swap algorithm [17] to commit 
transactions. It has both a purely functional, and an imperative 
API; these use the same underlying engine, so we were able 
to compare their performance. Rxn is technically not a full-
featured STM, but it is close enough: it does not have Haskell-
style modular blocking (i.e., the orElse combinator), but that 
is not necessary for parallelizing Lee’s algorithm. It has a 
built-in Ref.Array type (transactional array), which we use for 
the board matrices. 

The next implementation we tested is based on Kyo [12], 
a library for algebraic effects in Scala. One of its built-in 
effects is STM. This STM implementation uses fine-grained 
locking and has a purely functional API. We run the 
transactions on Kyo’s own runtime with its default 
configuration. For the board matrices we use an array of 
transactional variables (Array[TRef[A]]), because Kyo does 
not have a built-in transactional array type. 

ScalaSTM is a lightweight STM implementation [13][14] 
inspired by the STM API in the Haskell standard library. It has 
a mostly imperative API and uses fine-grained locking. It also 
has a sophisticated contention manager for retrying 
conflicting transactions. We use ScalaSTM’s built-in TArray 
(transactional array) for the board matrices. 

ZSTM is an implementation in the ZIO concurrency 
framework [15]. It has a purely functional API, similar to the 
one in the Haskell standard library. We run the ZSTM 
transactions on their own zio.Runtime and we use ZSTM’s 
TArray for the board matrices. 

The Kotlin implementation we tested is within the Arrow 
concurrency framework [16]. The algorithm is written in 
Kotlin, with a thin Scala wrapper. The API of arrow-fx-stm is 
inspired by Haskell’s STM package, but it is nevertheless 
mostly imperative. We run the STM transactions on the 
default coroutine dispatcher of Kotlin. We use TArray for the 
grid matrices.  

During the evaluation of results in Section 0, we refer to 
two possible basic solutions for STM with regards to the 
implementations listed above, that is opacity and early 

release. Opacity [19] is a consistency property specifically for 
STM systems. The consistency of committed transactions is 
usually guaranteed by all STM systems (e.g., by performing a 
validation step during commit). However, an opaque STM 
also guarantees the consistency of all running transactions. 
That is, a transaction in an opaque STM is never able to 
observe an inconsistent view of memory. Conversely, a 
transaction in a non-opaque (i.e., transparent) STM might 
observe such an inconsistent view, and then later (e.g., when 
trying to commit) detect the inconsistency, roll back, and 
retry. Depending on the specific logic of a transaction, the lack 
of opacity could lead to observing violation of invariants, 
which in turn could lead to, e.g., out-of-bounds reads or 
infinite loops. On the other hand, if an STM guarantees 
opacity, it will typically need to roll back and retry 
transactions more often, which could lead to performance 
degradation. 

The authors of [18] proposed early release as an 
optimization for STM transactions. This is a mechanism to 
remove items from the read set of a transaction, in effect 
releasing those memory locations earlier than the commit of 
the transaction (because the transaction does not need them 
anymore). On one hand, this has the potential to reduce the 
number of conflicts the transaction encounters, thus 
potentially increasing performance. On the other hand, the 
released memory locations will not be part of any later 
automatic validation (e.g., during commit), so early release 
must be used with care, to preserve the correctness of the 
transaction.   

IV.  IMPLEMENTATION ARCHITECTURE AND TEST 

ENVIRONMENT 

To enable better understanding of the results, main design 
and implementation considerations are introduced in the 
following subsections. 

A. Design and implementation  

The bases of main building blocks of the software 
implemented to test performance of various STM 
implementations is shown in Figure 3. The first block is 
responsible for parsing the input file given to the algorithm; 
that contains the description of the board (grid) and the source-
destination (S-D) pairs between which the routes are to be 
laid. Then there is an initial optimization, as for all the source-
destination pairs a simple grid-distance is calculated, and S-D 
pairs are sorted in increasing order. For those pairs that have 
the same grid-distance, a pseudorandom shuffling is applied, 
to reduce the number of trivial conflicts (because S-D pairs 
with coordinates close to each other are often also specified 
close to each other in the input files). Lee’s algorithm will be 
then executed on the S-D pairs in this order. 

In this implementation, a small generalization of Lee’s 
algorithm is introduced, compared to the basics shown in 
Section II. Namely, in this version, we still allow routes to 
cross in the grid. In terms of route laying on a circuit board, 
this mimics the case when there can be multiple layers. 
However, in this version of the algorithm we assign a cost to 
the routes. That is, we assign a unit cost to each cell allocated 
for a route and if another route crosses an already existing one, 

 
Figure 3. Functional blocks of the implementation 

Input file 
parsing

Input routes 
S-D pairs 

preprocessing

Lee’s 
algorithm STM API

API 
wrapper
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there is a double cost associated to that cell within this next 
route. Similarly, if a third route is to be laid using this same 
cell, that would again double this cell’s cost (hence it would 
cost four units) and so on, each layer doubles the cost 
(exponentially rising cost). Finally, the algorithm selects the 
route with the lowest cost. Note that the original version of the 
algorithm that does not allow route crossing is a subset of this 
approach with allocating infinite cost to route crossing. 

The parallelization is handled in the following manner: the 
S-D pairs are evaluated in parallel batches that have the size 
equivalent to available CPU threads. Whenever a thread 
finishes (a route for an S-D pair is laid), the next one from the 
ordered list starts. Note that the algorithm finishes when an S-
D route is found; when the transaction should abort and restart 
for example due to validation error or commit error, that is 
handled by the STM engine itself. 

In Figure 3 the functional blocks of the algorithm, the 
tested STM API (listed in Section II) and a block labelled as 
”API wrapper” are interwoven. This is because we have 
implemented the algorithm for each STM API in a way that 
the implementation natively uses the API and its data 
structures, therefore, the very implementation code is specific 
to the given API. For example, for a functional API a function 
itself can be passed, hence the STM engine itself can call 
”back” to the algorithm. 

The API wrapper part in the Figure is specific to testing 
the ScalaSTM API. Namely, ScalaSTM was tested in an 
idiomatic way, using its default imperative API. However, as 
in general we would like to harness the strengths of functional 
programming, we have also implemented and tested a thin 
layer, that wraps the ScalaSTM API in a monadic (purely 
functional) API similar to that of Cats STM. This way we can 
also get some ideas about the overhead of a monadic 
(“programs as values”) API in Scala. (We have considered 
creating a unified API for all the STM libraries, and 
implementing Lee’s algorithm only once, using this API. 
However, as measurements on the wrapped ScalaSTM API 
showed significant performance degradation due to the 
wrapping, we have not done this.) We summarize all the 
variants we implemented, and the STM libraries we used in 
Table I. 

CHOAM has both a purely functional and an imperative 
API; it also has various optimization options. To compare the 
performance effect of these variations, we have implemented 
four versions of Lee’s algorithm with CHOAM: 

 One using the default (purely functional and safe) 
API (RxnSolver). 

 An optimized one, which uses “early release” [18] 
to make the transaction log smaller 
(ErtRxnSolver). This optimization would not be 
safe in arbitrary transactions, but as discussed in 
[5], it is safe for Lee’s algorithm. This version also 
uses non-opaque (i.e., “transparent”) reads [19], to 
further decrease the probability of conflicts. 

 Another optimized version, which uses “tentative 
reads”, as an alternative implementation of early 
release (ErRxnSolver). 

 A version which (unlike the other three) uses the 
imperative API of CHOAM (ImpRxnSolver). It 
has no early release, or other extra optimization 
(thus, it can be seen as the direct imperative 
equivalent of RxnSolver). 

We run the various implementations on asynchronous 
runtimes they are designed for. When they are not designed 
for a specific runtime, we run them on the thread-pool of Cats 
Effect. We configure these runtimes by turning off features 
which could have a negative performance impact.  

The transactions in these implementations of Lee’s routing 
algorithm are read heavy, but at the end they always write to 
some locations (to lay a route). This means that read-only 
transactions, and transactions which only access a very small 
number of memory locations are not measured. 

We also have implemented a sequential (non-parallelized) 
version of the same algorithm, which serves as the baseline 
for comparison to the parallel ones. This sequential 
implementation is intentionally not very well optimized, 
because we wanted to compare it to similarly high-level and 
easy-to-use STMs. 

All the implementations used for this benchmarking are 
available as open source [20]. 

 
Figure 4. Completion time for simple input 

 
Figure 5. Completion time for simple input, zoomed 
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B. Experimental setup 

We run the benchmarking software described above on the 
Java Virtual Machine (JVM). This is packaged into a Docker 
container, because we wanted the measurement software to be 
portable and easily automatable, and the measurement easily 
reproducible. 

The server used has two Intel Xeon E5-2680 v3 processors 
running at 2.5 GHz, with 12 physical cores, that is 24 cores in 
total. During the measurements hyperthreading was disabled, 
therefore each thread is running on a physical core. Turbo 
boost was also disabled. During the measurements, one 
control parameter is the number of cores allocated to the JVM, 
and the software itself implements parallelization in a way that 
the number of available cores is queried from the JVM. 

The server is equipped with 256 Gbytes of physical 
memory, but the JVM heap size was configured to be 16 
Gbytes. All the implementation is based on Scala 3.7.0 and 
OpenJDK 21.0.7 (Corretto). 

We used three inputs (circuit boards for laying routes) with 
different sizes in terms of the number of cells in the grid and 
number and length of routes to be laid, as will be discussed in 
the next section: a well parallelizable simple synthetic input, 
a modest one, and a complex one coming from real circuitry. 

The algorithm for laying routes in the simple and moderate 
complexity boards was continuously run for 300 seconds for 
each input, and for each implementation, for a given number 
of available CPUs. Based on the completion times needed for 
solving an input (see next section), this results in several 
hundreds to several thousands of runs for each data point. For 
the complex input, due to its excessive complexity, 20 runs 
were performed for each data point. 

We used the Java Microbenchmark Harness (JMH) [21] to 
perform the measurements, in its default time-based “average 
time” benchmark mode. In this mode JMH repeatedly calls a 
benchmark method until a timeout of 10 seconds is reached 
(JMH calls this 1 iteration). JMH performs the measurements 
in a forked JVM (i.e., it launches a separate process just for 
the measurement); we configured it to repeat this forking 6 
times. We performed 5 warmup iterations and 5 measurement 
iterations (that is, 50+50 seconds total per fork); the 
measurement results of the warmup iterations are ignored, and 
the execution times of the benchmark method during the 

measurement iterations are averaged. (An exception to this is 
the last complex input, where we used the “single-shot” mode 
of JMH, resulting in the average of 20 benchmark method 
executions, as mentioned above.) The purpose of the warmup 
iterations is to avoid measuring in a “cold” JVM, i.e., in which 
the just-in-time compiler (JIT) did not yet optimize the 
running methods.  

V. RESULTS AND EVALUATION 

The charts in this Section show the results of our 
measurements. On the vertical axis, we show the completion 
time, i.e., the time required (in seconds) to solve one particular 
input board. The curves show the average time required to run 
on the input; the shaded area shows a 99.9% confidence 
interval (it is not visible on some of the curves). The horizontal 
axis shows the number of CPU cores available to the solvers. 
This way we can analyze the scalability of the various STM 
engines when used for parallelization. 

Figures 4 and 5 show measurement results for a 200×200 
circuit board with 90 routes (i.e., source-destination pairs), 
which is the simple input. The routes are all very short (10), 
the solutions are trivial (each is a straight line), and they never 
cross each other. (This board is a smaller version of the board 
called “simple” in [6].) Thus, solving this synthetic input is, in 
theory, perfectly parallelizable. While this is not a realistic 
circuit board, we use it to measure the ability of the various 
STM engines to exploit the potential parallelism (which is 
very high here). Figure 4 shows results for all the STM 
engines and variants we measured. The smaller results (i.e., 
results for the faster implementations) are not visible on that 
chart, so they are shown in Figure 5 (which is essentially the 
zoomed in version of the bottom of Figure 4). 

In Figure 4, we can see that the slowest STM 
implementation on this particular input is Cats STM (labeled 
CatsStm). As we increase the number of cores, at first it scales 
well until around 4 cores; then performance starts to degrade. 
We suspect the reason for this is the behavior of the locks used 
under higher contention (Cats STM uses the built-in locks of 
Cats Effect, which use a single atomic reference). Even at the 
best point in the chart (at 4 cores), this engine is slower than 
the non-parallelized baseline implementation (Baseline in the 
chart). The reason for this is probably (at least in part) the high 

Figure 7. Moderate complexity input, zoomed 
 

Figure 6. Moderate complexity input 

35Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances



overhead of the immutable and purely functional data 
structures used by Cats STM. 

In the same chart, we can see that the STM engine of Kyo 
(labeled KyoStm) seems to scale well with the number of 
processors, although there is less and less improvement the 
more cores are used (this is expected of any parallelization 
scheme that requires some coordination between cores). On 
the other hand, ZSTM seems unable to scale beyond 2 cores; 
we suspect the reason is that the locks it uses are blocking 
physical threads, and its runtime does not seem to start other 
threads, or compensate somehow for these threads that are not 
doing useful work. 

On Figure 5 we can see the implementations which are 
able to solve this input much faster. All of them show a scaling 
curve similar to KyoStm (i.e., they scale well, but the 
improvements are smaller and smaller). If we compare the 
default ScalaSTM implementation (ScalaStm), and its variant 
wrapped in a purely functional API (WrStm), we can see that 
the purely functional API has a very significant overhead 
(around 2-3 times slower). We see similar, but smaller 
differences between the solvers using the functional and 
imperative APIs of CHOAM (RxnSolver and ImpRxnSolver 
respectively). The variants using the various forms of early 
release (ErRxnSolver and ErtRxnSolver) show little or no 
performance advantage over RxnSolver; this is expected, as 
early release is used to decrease the number of conflicting 
transactions, and due to the nature of the input, there are no 
(or very few) conflicting transactions here. (ErtRxnSolver is 
even slower here, due to the overhead associated with that 
particular implementation of early release.) 

Figures 6 and 7 show results for another input with 
moderate complexity, a “small but realistic board” 
(testBoard.txt from [7]). This board is 75×75, and has 203 
routes to solve, both short and long. This input has lots of 
potential conflicts, so we expect solving it to scale worse with 
the number of cores. (As before, some implementations are 
significantly faster than others, so Figure 7 shows the zoomed-
in lower part of Figure 6.) 

As expected, we see the implementations becoming only 
modestly faster as the number of cores increases, or not at all. 
An interesting exception to this is ErtRxnSolver, which seems 
to scale very well from 1 to 5 cores (and it is mostly flat after 
that). We suspect this is due to the relatively high overhead of 

implementing early release this way, which is then able to be 
overcome by more parallelism (allowed by using early release 
and non-opaque reads to decrease transaction conflicts). 

As Figure 6 shows, the slowest implementation is Cats 
STM as previously. The fact that it is the slowest on both 
inputs suggests that it has very high single-threaded overhead 
(probably due to the immutable data structures used and the 
purely functional API). 

The STM engine of Kyo shows some limited ability to 
scale, but despite this, it is slower than ZSTM, which (as 
before) does not scale well. This contrasts with the previously 
discussed results, where Kyo’s superior scalability was able to 
overtake ZSTM at 4 cores. 

Interestingly, none of these three implementations 
(CatsStm, KyoStm, ZSTM) is faster than the baseline non-
parallelized implementation (on this input). 

In Figure 7 we see the results of the faster implementations 
on the same input. All of them are faster than the Baseline 
(non-parallelized) version. The fact that they are faster even 
on a single core (i.e., no parallelism) is because we did not 
bother optimizing the baseline (we wanted to compare 
“conveniently coded”, high level implementations). As 
mentioned before, all of them show no or limited scaling. 
Interestingly, ScalaStm (and its purely functional variant, 
WrStm) show only performance degradation with more cores 
(i.e., they are fastest with 1 core). This suggests that they are 
unable to exploit the very limited potential parallelism of this 
input. 

RxnSolver and ErRxnSolver show modest scaling, (but 
still, they are slower than ScalaSTM). Of the two, 
ErRxnSolver is the faster: as expected, using early release 
helps to reduce transaction conflicts. 

The fastest implementation (on this input) is ArrowStm, 
which scales reasonably well, and overtakes ScalaSTM at 3 
cores. 

Figure 8 shows our measurement results on a complex real 
circuit board of a memory module (board “mem” in [6]). This 
is a 600×600 board, with 3101 routes to solve. As this board 
is much bigger and more complicated than the previous two, 
solving it requires orders of magnitude more time (minutes 

Figure 8. Completion time of complex realistic board 

TABLE I. SUMMARY OF THE IMPLEMENTED VARIANTS 
Name STM library API style 

CatsStm Cats STM functional 

RxnSolver 

CHOAM 

functional 

ErRxnSolver functional 

ErtRxnSolver functional 

ImpRxnSolver imperative 
 

KyoStm Kyo functional 

ScalaStm 
ScalaSTM 

imperative 

WrStm functional 

ZSTM ZIO functional 

ArrowStm Arrow imperative 
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instead of fractions of seconds as before). For this input, we 
do not show results for Cats STM, ZSTM or Kyo as they 
showed limited performance even for the moderately complex 
board. 

As for the previous input, we see all the (faster) 
implementations improving on the Baseline (even at 1 core). 
ScalaSTM is the fastest here, showing an interesting curve: 
when running on multiple cores, it is first slower than on 1 
core, but slowly getting faster, and overtaking its single-core 
performance at 6 cores. We suspect ScalaSTM has some 
optimizations specifically for single-threaded execution. (Its 
purely functional version, WrStm shows the same scaling 
behavior, but with a significant overhead due to the API 
wrapping). As before, ArrowStm performs well, and scales 
well, but in this case, cannot overtake ScalaSTM. 

Comparing the various versions implemented with 
CHOAM, we see the unoptimized, purely functional variant 
(RxnSolver) being generally the slowest (and much slower 
than Scala STM). The variant ErRxnSolver (using early 
release) shows a significant improvement, which grows as the 
number of cores increases (this is expected, as the potential 
for conflicts is bigger with more cores, and early release 
reduces these conflicts). ErtRxnSolver (which uses both early 
release and non-opaque reads) starts slower (as before, due to 
the bookkeeping overhead of this particular implementation), 
but scales much better, overtaking all the other CHOAM 
variants, but it is still unable to overtake ArrowStm. Again, 
this scaling behavior is expected, like for testBoard.txt. 

VI. CONCLUSIONS AND FUTURE WORK  

Considering all the measurement results detailed in the 
previous section, we make the following observations. 

Comparing purely functional APIs with their imperative 
counterparts (i.e., WrStm with ScalaStm, and RxnSolver with 
ImpRxnSolver), we see overheads from around 30% to around 
300% for the purely functional APIs. This is probably due to 
the purely functional APIs allocating an enormous amount of 
very small objects, which stresses the garbage collector of the 
JVM. 

If we compare all the functional APIs with all the 
imperative ones, we see a similar trend: imperative ones tend 
to be faster (as expected). However, there is a significant 
difference in performance between the functional ones 
themselves, so there is clearly a way to decrease their 
overhead. 

The Kotlin implementation (ArrowStm) performs 
consistently well and scales well. This is probably in part due 
to its imperative nature, but we suspect it might also have 
something to do with it being executed on the Kotlin co-
routine scheduler. All the other implementations run on 
runtimes of Scala effect systems, which tend to schedule tasks 
differently from the coroutine scheduler. We leave examining 
the precise effect of the scheduler behavior on STM 
performance for future work. 

On inputs where we expect transaction conflicts, using 
early release (and non-opaque reads) shows a clear 
performance advantage. This is expected, as these 
optimizations aim to decrease the number of conflicts, and 
they succeed at that goal. 

Preliminary profiling shows that both Cats STM and 
ZSTM spend a considerable portion of their execution time 
maintaining the transaction log. This is not surprising, as the 
transactions we measured here are relatively big (i.e., their 
logs contain a lot of entries), especially for the last input (the 
memory module). Thus, optimizing their log data structures is 
a potential future performance improvement for these STM 
engines.  
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