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Abstract— This paper presents an analysis of defects found in a 

software project at a Capability Maturity Model Integration 

(CMMI) Level 5 public institution, required to manage and 

improve their processes using statistical and other quantitative 

techniques, develops software for other public organizations. A 

dataset of software defects collected via a task and issue 

management platform was analyzed, focusing on defect 

severity, defect type, detected activity and affected 

components. Defects were classified and a root cause analysis 

was conducted to identify defect-prone areas and underlying 

causes. The motivation of this work is providing a practical 

perspective on how public-sector software teams operating 

under governmental regulatory constraints can use defect data 

to fix defects and to support long-term process improvement 

and quality assurance. The results of this research are intended 

to contribute future projects of the organization and provide 

referenceable value to other governmental software units 

aiming to enhance their defect management capabilities. 

Keywords— software defect analysis; software quality; root 

cause analysis 

I. INTRODUCTION 

In software engineering, the identification, classification, 
and analysis of defects play a key role in providing product 
quality and maintaining process efficiency. Defects which 
are broadly defined as flaws, errors, or bugs in software have 
direct consequences on system reliability, maintainability 
and user satisfaction. Their early detection and resolution are 
crucial for reducing rework and cost while preserving the 
credibility of organizations, particularly in high-stakes public 
sectors. Defect analysis is an important component of 
software improvement process. It enables organizations to 
trace the origins of defects, understand the conditions under 
which they arise, and implement preventive measures to 
reduce their recurrence. Many studies have shown that 
systematic defect tracking and root cause analysis contribute 
significantly to achieving higher maturity in software 
processes, as seen in models such as the CMMI. 
Organizations at higher maturity levels (such as Level 5) are 
expected to leverage quantitative defect data for continuous 
process optimization and predictive quality management. 

While defect analysis is a well-established practice in the 
private sector, its application within public-sector software 
development presents unique challenges and opportunities. 

Public institutions are often subject to greater regulatory 
oversight, extended stakeholder ecosystems, and longer 
procurement cycles. These factors underscore the importance 
of software quality and magnify the implications of defects. 
Moreover, since public-sector software is frequently reused, 
integrated, or interfaced with systems from other agencies, 
the downstream effects of unresolved or recurring defects 
can be profound. 

The remainder of this paper is structured as follows. In 
Section 2, a review of the relevant literature and related 
works is presented in order to contextualize the study. In 
Section 3, the methodology is described, including the 
motivation for the study, its scope, the dataset and variables 
used, and the expected outcomes. In Section 4, the data is 
analyzed from multiple perspectives to uncover significant 
patterns and insights. Finally, in Section 5, the main 
conclusions are drawn and potential directions for future 
work are outlined. 

II. RELATED WORK 

Defect tracking is a critical component to a successful 
software quality effort. In fact, Robert Grady of Hewlett-
Packard stated in 1996 that “software defect data is the most 
important available management information source for 
software process improvement decisions,” and that “ignoring 
defect data can lead to serious consequences for an 
organization’s business” [1]. Defect and problem metrics are 
among the few direct and quantifiable indicators of software 
process and product quality. Although customer perceptions 
of software quality may vary, the frequency of defects is 
widely recognized as being inversely proportional to quality. 
Such measurements provide objective insights into 
reliability, correctness, efficiency, and usability of the 
software system [2]. Preventing defects early in the software 
development lifecycle is more effective and less costly than 
detecting them later. Key defect prevention strategies—such 
as formal methods, process improvements (e.g., CMMI), 
training, and automation—play a crucial role in enhancing 
software quality. This proactive approach complements the 
focus on post-deployment defect analysis by underscoring 
the importance of early quality assurance practices [3]. 
Defect Causal Analysis (DCA) is a structured approach used 
to identify systematic errors that repeatedly cause software 
defects and failures. This technique aims not only to prevent 
similar defects in the future but also to enable their earlier 
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detection through root cause analysis [4]. A common method 
within DCA is the use of defect classification data—such as 
Pareto charts—to identify the most frequent defect types, 
which often point to underlying process weaknesses [5]. 
Once these patterns are recognized, organizations can 
implement targeted process improvements to reduce 
recurrence of similar issues [6]. The present study follows a 
similar rationale by examining defect distributions and 
contributing factors to support software process 
improvement. 

The outputs produced by a process can be characterized 
by some quality attributes, the values of which generally 
show some variation. The causes of variation can be 
classified as natural causes (also called common causes) or 
assignable causes (also called special causes). Natural causes 
are those that are inherent in the process and that are present 
all the time. Assignable causes are those that occur 
sometimes and that can be prevented. A process is said to be 
under statistical control if all the variation in the attributes is 
caused by natural causes [7][8]. Therefore, Statistical 
Process Control (SPC) control limits were used to detect 
defects throughout the software development process. Usage 
of control charts can lead to reduction in the control limits 
causing process improvements. It has been observed that 
rigorous monitoring of control charts plotted for process 
parameters like defect density and taking timely corrective 
and preventive actions would lead to process improvements 
[9]. 

III. METHODOLOGY 

This section outlines the methodological approach 
adopted to investigate defect trends and root causes within a 
public sector software project. It describes the rationale 
behind the study, the scope and structure of the dataset, the 
selected variables, and the expected outcomes, all of which 
contribute to a systematic and data-driven defect analysis 
process. 

A. Rationale and Scope 

This study was carried out in response to a noticeable 
increase in software defects detected in the production 
environment of a public sector software project. Given the 
potential impact of such defects in public services, it became 
essential to investigate the nature, distribution, and timing of 
these issues. The primary objective was to identify critical 
defect patterns, root causes, and components most affected. 

Software quality metrics are periodically monitored using 
dashboards visualized through a Business Intelligence (BI) 
tools. When defect counts began to increase, a more detailed 
investigation was required to identify trends, seasonal 
patterns, and component-level defect concentrations. 
Moreover, since data interpretation and context play a crucial 
role in defect analysis, the project's technical lead and project 
manager were actively involved in scoping the dataset. Their 
input ensured the inclusion of relevant variables and the 
exclusion of irrelevant entries, thereby improving the 
accuracy and relevance of the analysis. It is emphasized that 
the reactive aspect of defect management by analyzing 
already reported and resolved issues, aiming to support 

transition toward proactive quality assurance in future 
phases. It aligns with the principles of Total Quality 
Management (TQM) and CMMI, focusing on continuous 
improvement, data-driven decision-making, and stakeholder 
engagement [10].  

B. Dataset and Variables 

The dataset used in this study was obtained from a task 
and issue management platform employed by the institution 
to coordinate and oversee software development activities. 
This platform is deeply integrated into the organization’s 
software lifecycle and serves as a central hub for managing 
project workflows, including backlog planning, sprint 
execution, issue tracking and quality assurance processes. 

Acting as the authoritative repository for work-related 
records, the platform enables the systematic logging, 
categorization, assignment, and resolution of software issues. 
It facilitates end-to-end traceability by capturing detailed 
metadata for each issue, including attributes such as issue 
type, impacted components, severity, detected activity, sprint 
association, assignee and current status. Additionally, the 
system records all updates, comments, workflow transitions, 
and timestamps, allowing for detailed temporal analysis and 
retrospective evaluations. The tool is actively used by cross-
functional teams comprising developers, testers, analysts, 
project managers, and technical leads. It supports both agile 
and hybrid project methodologies through features such as 
sprint boards, user story hierarchies, version tagging, and 
customizable workflows. This makes it possible to track the 
lifecycle of a defect from discovery through resolution with a 
high degree of transparency and consistency. 

For the purposes of this analysis, the scope of the issues 
was narrowed to defects. The selection criteria included: 

 Only resolved and closed issues were considered, to 
ensure that the analysis reflects confirmed defects 
rather than pending or misclassified reports. 

 Only defects reported in production environments 
were included, as these are considered more critical 
due to their direct impact on end users and 
operational services. Issues identified in test 
environments were excluded, since their occurrence 
is expected and does not necessarily indicate 
process deficiencies. 

 The analysis covers the period from January 2024 
to April 2025, selected in collaboration with 
project’s technical lead to focus on periods when 
defect trends increased. 

A total of 147 defect issues met the inclusion criteria. 
Rather than including the entire dataset, we present a 
representative snapshot of the dataset and its fields in Table 
1.  

To ensure the relevance and reliability of the dataset, a 
preliminary validation process was conducted with the 
project’s technical lead and project manager. This included 
reviewing ambiguous entries, verifying proper classification 
of defect types and deciding on the most appropriate 
variables. During pre-processing, a limited number of 
missing values were addressed by directly consulting project 
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team, whose validated input was used to complete the 
dataset. 
 

TABLE 1 DATASET SNAPSHOT FOR FIELDS  

Field Value 

Issue Key 143 

Issue Type Defect 

Sprint Period 01.04.24 

Severity Medium 

Defect Type Coding 

Component/s A 

Detected 

Activity 

System 

Monitoring 

Resolution Done 

Status Closed 

 
The following key variables were extracted from the task 

and issue management platform and used in the analysis: 

 Severity: This attribute indicates the relative 
criticality of the defect, typically ranked on a scale 
(e.g., minor, medium, major). It reflects the 
potential functional or user-facing impact of the 
issue. 

 Detected Activity: This captures the specific 
development or operational phase in which the 
defect was discovered (e.g., Development, 
Integration Test, Code Review, System 
Monitoring). This variable supports root cause 
analysis by highlighting gaps in earlier detection 
efforts. 

 Component(s): This denotes the subsystem(s) or 
modules affected by the defect. The platform allows 
for multiple components to be tagged per issue, 
enabling an analysis of module-level quality. 

 Detected Sprint: This indicates the sprint during 
which the issue was logged. This supports time-
based analysis, especially within agile projects 
where delivery and quality metrics are tracked in 
sprint cycles. 

 Defect Type: This refers to the technical nature of 
the defect (e.g., coding, architectural design, data, 
integration, User Interface (UI), performance). 
Accurate classification in this field is crucial for 
identifying systemic weaknesses in development or 
architectural design practices. 

Each of these structured variables was used to segment 
the dataset and support both descriptive and diagnostic 
analysis. By leveraging standardized fields available within 
the task and issue management platform, the study ensured 
traceable, reproducible, and context-aware outcomes. 
Nevertheless, several data quality considerations were taken 
into account: 

 Timeliness and accuracy of data entry: As the 
platform relies on manual inputs from team 

members, discrepancies in timing or completeness 
of entries may affect the accuracy of the dataset. 

 Subjectivity in classification: The interpretation of 
what constitutes a "defect" versus another issue type 
may vary across individuals or teams, potentially 
introducing inconsistency. 

 Dataset size: Although the 147 production defects 

analyzed provide sufficient detail for meaningful 

pattern recognition, the moderate size limits the 

statistical generalizability of the results. Software 

engineering experiments often have small sample 

sizes [11]. One way to manage this challenge is 

through improving the dataset itself, as it has been 

noted that "the improvement of data sets through 

enhanced data collection, pre-processing and 

quality assessment should lead to more reliable 

prediction models, thus improving the practice of 

software engineering" [12].  
Despite these limitations, the active use of a task and 

issue management platform significantly enhances the 
reliability and depth of the analysis. Its integration into daily 
workflows ensures that the defect data reflects the 
operational reality of software development in a complex 
institutional environment. 

C. Expexted Outcomes 

Identifying the conditions under which defects most 
frequently arise, determining whether specific modules or 
time periods exhibit elevated defect counts, and tracing the 
root causes behind these occurrences form the basis of this 
study. By leveraging this knowledge, the institution can 
reduce defect density—an outcome strongly correlated with   
maintainability and user satisfaction [13]. Improvements in 
defect management ultimately lead to shorter release cycles, 
lower maintenance costs, and enhanced end-user trust. 

IV. ANALYSIS 

This section presents a structured analysis of production 

defect data by leveraging variables extracted from the task 

and issue management platform. The aim is to identify 

defect trends, classify defect types, assess component-level 

impact, and examine detection patterns to support actionable 

quality improvement and data-driven decision-making. 

A. Monthly Defect Counts 

Several analyses were performed by using the available 

fields within the task and issue management platform. 

Monthly total defect counts and especially major defect 

counts were visualized in Figures 1a and 1b to monitor 

trends over time. It was observed that defect counts 

increased notably in certain months, prompting further 

statistical investigation. 

To determine whether these increases were statistically 

significant or merely due to natural variation, an Upper 

Control Limit (UCL) was defined using the formula mean + 

standard deviation (1σ).  
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Figure 1.  Monthly defect counts 

This method provides a practical upper limit to identify 

months in which the defect count significantly exceeds the 

expected range, assuming a roughly normal distribution of 

the data. The rationale behind selecting the mean ± 1σ 

approach lies in its sensitivity to moderate but potentially 

meaningful anomalies. While traditional Shewhart control 

charts commonly employ mean ± 3σ, which encompasses 

99.7% of all observations, such a strict threshold is more 

suitable for large datasets with high process stability, where 

false alarms must be minimized. A mean ± 2σ limit, 

capturing 95% of observations, offers a compromise but 

may still exclude relevant fluctuations in smaller or less 

stable datasets. In contrast, a mean ± 1σ threshold includes 

approximately 68% of data points under the normality 

assumption. This makes it particularly useful in exploratory 

analyses or early warning systems, where the primary aim is 

to flag unusual patterns for further review [14]. 

Using this method, the months of December 2024 and 

January 2025 were identified as exceeding the control 

limits, suggesting the presence of statistically unusual 

behavior. As a result, the possibility of seasonal effects 

influencing defect occurrences was explored. However, 

feedback obtained from the project team lead indicated that 

no seasonality was present. The variation was attributed to 

potential data entry adjustments or changes in reporting 

behavior. It was concluded that the increase in defects 

during these months likely stemmed from reporting-related 

factors rather than genuine increases in software issues. 

Then, it was agreed that team members should be provided 

with training or guidance on accurate and consistent data 

entry practices. Alternatively, the implementation of a 

control mechanism for validating input quality was 

proposed, aiming to improve the reliability of defect-related 

analytics in future reporting periods. 

B. Defect Counts by Defect Type 

Defects were categorized into standard types such as 

coding, functionality, architectural design, data, UI, 

performance, integration and system-related issues. 

According to the Pareto analysis shown in Figure 2a 

Coding defects dominated the dataset (77%), suggesting 

significant opportunities for improvement in development 

practices, code reviews and developer training. Functional, 

architectural design and data-related defects followed, 

indicating lesser but still notable concerns. Understanding 

the origin of major defects is essential for effectively issue 

prioritization, establishing risk management practices and 

enabling teams to focus on areas with the greatest potential 

impact on system reliability and user satisfaction. As shown 

in Figure 2b, the majority of major defects are Coding 

defects. This can be taken into account when planning 

actions. 

Figure 2.  Pareto chart of defect counts by defect type 

C. Defect Counts by Component 

A defect issue can affect multiple components 

simultaneously. As teams conduct a defect analysis to 

understand root causes, it becomes increasingly important to 

identify which specific components are associated with 

higher defect frequencies. This level of granularity enables 

teams to detect recurring patterns, assess component-level 

stability and prioritize quality improvement efforts where 

they are most needed. 

Figure 3.  Defect counts by components 

As illustrated in Figure 3a, a bar chart visualization was 

used to present the distribution of defects across different 

software components. The chart shows that three 

components exhibit a notably high concentration of defects 

compared to the others. Defect counts by severity level for 

each component displays in Figure 3b Identifying such 

major defect-prone components is critical, as it allows 

development teams to prioritize their efforts and conduct 

focused root cause analyses in the most problematic areas of 

the system. In the chart, although Component E exhibits a 

lower total number of defects compared to the others, it has 

a relatively high proportion of major defects. This aspect 

should be considered during task prioritization. Conversely, 

while Component C has a higher overall number of defects, 

the vast majority are classified as minor. Therefore, targeted 

interventions in this component may lead to a substantial 

reduction in the total defect count. 

D. Defect Counts by Detected Activity 

The activity during which a defect is detected serves as a 

critical indicator for understanding the effectiveness of 

quality assurance practices throughout the software 
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development lifecycle. Conducting such analyses is 

essential for identifying defect patterns at a technical level 

and understanding in which activities defects are most 

frequently identified enables the implementation of targeted 

improvements and preventive measures. 

 

 
Figure 4.  Defect counts by detected activity and defect types 

  To the Figure 4a, the analysis of defect detection activities 

revealed that the majority of defects were found after 

deployment, rather than during early development or testing 

stages. Specifically, the “Customer Originated” category 

accounted for the highest number of defects (70 cases), 

indicating that many issues were discovered directly by end 

users or stakeholders during actual system usage. The 

second most frequent detected activity was ”System   

Monitoring”(44 cases), reflecting the role of automated 

monitoring tools in identifying runtime anomalies and 

system-level issues. While this demonstrates that 

monitoring mechanisms are effectively capturing failures in 

the production environment, it also reinforces the need for 

earlier detection to reduce operational risk and customer 

impact. 

  Figure 4b presents the distribution of major defects 

categorized by detected activity and defect type. As 

illustrated, Coding defects represent the predominant defect 

type across all detected activities. This suggests that efforts 

aimed at minimizing coding-related defects could lead to a 

substantial reduction in the overall number of major defects. 

It may also mean that fewer of them will leak to the 

customer. 

E. Analysis of Defect Issue Summarries  

As illustrated in Figure 5, detailed analysis of the defect 

issue summaries revealed that the most frequently reported 

defect issues were related to NULL (NPE) handling (26 

instances), followed by business rule violations (23), and 

query-related defects (20). Additionally, a notable number 

of issues stemmed from incorrect data insertion operations 

(16), functional logic defects (13), and update operation 

failures (11).  

 

 
Figure 5.  Defect issue summaries 

This distribution indicates that a large proportion of the 

defects originate from NPEs, which typically occur when 

the code attempts to access or modify an object reference 

that has not been initialized. Previously, Figure 2 also 

highlighted that most defects were rooted in coding-related 

activities. The findings in this figure further corroborate that 

conclusion.  

     As for the null-related problems, static code analysis can 

detect some Null Pointer Exceptions (NPEs), particularly in 

cases where a method might return a null value, and the 

returned result is used directly—such as accessing a field or 

invoking a method—without checking for null. However, it 

cannot identify null values that originate from external 

sources such as databases or API inputs. In practice, many 

NPEs encountered during development tend to arise from 

such dynamic sources, which static analysis tools are 

generally unable to detect. Business rule violations rank as 

the second most common defect type after NPEs. 

Accordingly, allocating adequate resources and providing 

targeted training to address NPEs could significantly 

enhance code robustness. Furthermore, a detailed 

investigation into the origin of business rule violations 

specifically, whether they arise from customer 

miscommunication or analyst defects, would provide 

valuable insights to inform project decisions and process. 

Ultimately, software defects are often the result of 

multiple, interrelated factors. Limited or superficial test 

coverage, insufficient domain knowledge, and time pressure 

can all contribute to quality issues. Late requirement 

changes and urgent requests disrupt planned workflows, 

reducing the time available for proper analysis and testing. 

Inadequate refactoring and poor adherence to clean code 

practices further degrade maintainability. Since many 

defects arise under complex conditions, identifying their 

root causes often requires detailed investigation. 

V. CONCLUSION AND FUTURE WORK 

In this study, a comprehensive defect analysis was 

conducted for a public institution engaged in software 

development for public organizations. Given the critical 

nature of software applications and their direct impact on 

end users, identifying and understanding defects was of high 

importance. Monthly analyses were performed both for total 

defects and major defects, using ±1 sigma control limits to 

identify significant increases. Defects were categorized by 

defect type, component, detected activity. A Pareto analysis 

revealed that the majority of issues stemmed from Coding 
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defects. Components A and B were identified as the most 

defect-prone areas, both in terms of total and major defects. 

When analyzed by detected activity, a significant portion 

of the defects, including major ones, originated from 

Customer Originated issues. The majority of these customer 

originated major defects were also related to coding. A 

deeper technical classification showed that most of the 

defects were associated with null-related problems, 

particularly Null Pointer Exceptions. Furthermore, a 

considerable number of defects resulted from 

misunderstandings of business rules, highlighting potential 

gaps in requirement analysis. 

These findings highlight specific areas that require 

focused attention. The predominance of Customer 

Originated defects may indicate the need to intensify testing 

activities to identify issues prior to deployment. The high 

frequency of Coding defects related to null value handling 

suggests the necessity for targeted developer training and 

the establishment of best practices in coding standards.  

Additionally, relying solely on happy path testing is 

insufficient; comprehensive test coverage should include 

diverse input sets to ensure robustness against edge cases 

such as null values. The prevalence of business rule 

violations underscores the importance of conducting a 

thorough investigation into their root causes particularly to 

determine whether they stem from customer 

miscommunication or analyst errors. Such insights are 

expected to inform both project decisions and process 

improvements. The analysis presented here may serve as a 

foundation for future initiatives, such as increasing the 

involvement of analysts during early project phases. 

While this study provides a detailed retrospective 

analysis of current defects, future efforts should shift 

towards predictive and preventive measures. To this end, a 

broader range of quality measures and metrics will be 

incorporated into the future work to demonstrate 

effectiveness and strengthen its scientific value. A potential 

direction for future research is the development of a 

predictive model capable of anticipating defect occurrences 

prior to deployment. Such a model would enable proactive 

mitigation strategies and contribute to enhanced overall 

software quality. 
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