

VR-DeltaDebugging: Visualization Support for Delta Debugging in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract – Debugging is a challenging activity involved in
software development and maintenance processes. Delta
Debugging (DD) is an automatic debugging algorithm and
methodology that applies a scientific recurrent hypothesis, trial,
and result loop to systematically reduce failure-inducing inputs
to a minimal set. Yet, especially for larger (structured) input
sets, how DD arrived at its results and its intermediate inputs
and test results may not be intuitively evident to practitioners.
This paper contributes our solution concept VR-
DeltaDebugging for an immersive visualization in Virtual
Reality to support comprehension, analysis, and collaboration.
A prototype demonstrates its feasibility, and a cased-based
evaluation on execution, comprehension and analysis, and
scalability provides insights into its capabilities and potential.

Keywords – delta debugging; visualization; virtual reality;
debugging; software engineering.

I. INTRODUCTION
Debugging is a costly and time-consuming activity

incurred during software development and maintenance
processes. A 2021 study [1] found debugging sessions (even
during programming) occurred on average every eight
minutes, with sessions lasting from less than a few minutes to
over 100 minutes. A 2020 survey [2] of 73 developers
reported that roughly a quarter of their time (26%) was spent
reproducing and fixing failing tests, averaging 13 hours to fix
a single bug. A study on debugging [3] found that almost half
of the 303 developers (47%) spend 20-40% of their time
debugging, with 26% spending even 40–60%. Over half had
no formal debugging knowledge or training, and over 70%
were unaware of more advanced debugging tools or
approaches, which only very few applied.

Among automated software fault localization techniques
and tools, Delta Debugging (DD) [4] is a method and
algorithm that simplifies and isolates failure-inducing input
automatically and systematically by testing subsets and
complements of the input. This can reduce debugging effort
by narrowing the relevant inputs that cause a test to fail.
Debugging and testing are often performed
contemporaneously, and one application area that exemplifies
DD’s applicability and benefit is fuzzing. Fuzzing (or fuzz
testing) is an automated dynamic test technique that injects
random, invalid, or unexpected inputs and observes a
software’s behavior (crash, memory leak, vulnerabilities,
etc.). Yet fuzzing can result in a large (random) input set for a
test failure. DD has been shown to be effective and efficient
at isolating some input to the minimum set that still reproduces

the failure [5]. DD is also applied in compiler development
when dealing with program code as structure text inputs, as
exemplified in [6]. As to DD’s benefits, the empirical study
on DD by Yu et al. [7] found that two thirds of isolated
changes in the studied programs were helpful in terms of
accuracy and efficiency, providing (in)direct clues in locating
regression bugs; yet a third were superfluous changes or
incorrect isolations. Thus, DD practitioners should have better
analysis and process support tooling for insights into
determining the validity of a DD result. This is a problem and
underlying motivation for this paper’s contribution. We seek
a solution that can support DD practitioners in comprehending
and analyzing the DD reduction input sets and results, and
thus more readily determine valid results (or input or test case
issues) and the intermediate steps that led to it. Visualization
could support DD and make advanced debugging approaches
more accessible to practioners. While 2D debugging tools
(textual, visual, or Integrated Development Environment
(IDEs)) are prevalent, there has been relatively little
investigation into the potential of Virtual Reality (VR) for
debugging support, in particular for DD and structured inputs.

In this paper, we propose and investigate applying
immersive VR to support the DD method. In prior work, we
investigated the application of VR to various other areas. A
selection of our prior VR-related contributions in the Software
Engineering (SE) space: VR-SDLC [8] models development
lifecycles, VR-Git [9] models Git repositories, VR-DevOps
[10] models Continuous Development pipelines, VR-SBOM
[11] models Software Bill of Materials (SBOM) and software
supply chains. HyDE [12] showed a VR-based multi-display
IDE that could also be used for debugging support. This paper
contributes our VR-DeltaDebugging solution concept towards
immersive visualization support for Delta Debugging in VR.
A prototype demonstrates its feasibility, while a case-based
evaluation provides insights into its capabilities and potential
for supporting comprehension, analysis, and collaboration.

This paper is structured as follows: the next section
discusses related work. Section 3 describes our solution. In
Section 4, our realization is presented, which is followed by
our evaluation in Section 5. Finally, a conclusion is provided.

II. RELATED WORK
Regarding DD, the survey by Wong et al. on software fault

localization [13] analyzed 587 papers and 68 theses, with the
discussion also encompassing DD - yet there is no mention of
visualization or VR. Further, all searches found no work
directly involving DD visualization. Any work, tools, or

72Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

libraries are text-based or involve a Command Line Interface
(CLI). As to IDE integration, DDinput [14] was an Eclipse
plugin (appears to no longer appears be supported [15]). Work
regarding DD tools or libraries includes Picire [16] as
described in [17], and that cited in Wong et al. above [13].

As to debugging in general, VR-based work includes
Mauer et al. [18] with a VR-based 3D-debugging prototype,
demonstrating how VR can be used for programming
comprehension and debugging. Our own prior work HyDE
[12] demonstrated a VR-based multi-display IDE (Integrated
Development Environment), which could also be used for
direct programming and debugging support. 3D visualization
work includes Code Park [19], which provides a code-centric
environment for code comprehension, yet offers no debugging
or editing support. Examples of 2D visualization tools
supporting fault localization include Tarantula [20] and
GZoltar [21], which showed that visualizations can drastically
reduce debugging time.

In contrast, VR-DeltaDebugging is a VR solution directly
addressing DD visualization support for (un)structured inputs.

III. SOLUTION CONCEPT
Our solution concept is grounded on prior VR research in

areas related to modeling, analysis, and collaboration, some of
which is highlighted here. Akpan & Shanker’s systematic
meta-analysis [22] in discrete event modeling found VR/3D
to be advantageous for model development, analysis, and
Verification and Validation (V&V). 95% of 23 papers
concluded 3D was more potent and provided better analysis
than 2D (e.g., evaluating model behavior or what-if analysis).
Another finding was a consensus that 3D/VR can present
results convincingly and understandably for decision-makers.
In 74% of 19 papers, model development tasks improved
significantly in 3D/VR (team support, precision, clarity).

Figure 1. Conceptual map of our published VR solution concepts
highlighting their differentiation (VR-DeltaDebugging highlighted in blue).

Our conceptual map of Figure 1 shows our VR-
DeltaDebugging solution concept (blue) within the SE and
SysE (Systems Engineering) area and in relation to our other
prior VR solutions. VR-MF, our generalized VR Modeling
Framework (detailed in [23]), provides the basis, providing a
domain-independent hypermodeling framework addressing
the VR aspects of visualization, navigation, interaction, and
data integration. We have published VR-based solutions
specific to the Enterprise Architecture (EA) and Business
Process (BP) space (EA & BP): VR-EA [23] for mapping EA
models to VR, VR-BPMN for BPMN models, VR-EAT for

enterprise repository integration, VR-EA+TCK [24] for
knowledge and content integration, and VR-EvoEA+BP [25]
for EA evolution and business process animation, and VR-
SBOM [11]. Solutions in the SE and SysE areas include: VR-
Git [9], VR-GitCity, and VR-GitEvo+CI/CD for git-related
solutions, VR-DevOps [10], VR-V&V (Verification and
Validation), VR-TestCoverage, VR-SDLC [8], VR-ISA for
Informed Software Architectures, and VR-UML and VR-
SysML for software and systems modeling. HyDE [12] is our
VR-based multi-display IDE, and while it can be used for
debugging, hitherto none of our work focused directly on
supporting debugging in VR.

With regard to structured inputs, Hierarchical Delta
Debugging (HDD) [26] has been proposed as a variant to
improve DD’s effectiveness. However, the study by Yu et al.
[27] found that HDD suprisingly did not improve accuracy nor
efficiency. Thus, while our solution concept is compatible
with HDD, our prototype initially focuses on DD support,
incorporating HDD in future work. Since HDD is an AST-
oriented reducer, our AST-based nexus can be seen as a
precursor to eventual AST-based input support for HDD.

A. Visualization in VR
For text visualization (both input and test code), an

interactive scrollable billboard analogy is used for the main
screen, similar to terminal screens but enhanced for DD
support. It offers a large interaction and viewing space for
text-centric analysis. A menu is provided on the side to readily
offer interaction without interfering in the analysis. The nexus
view is kept synchronized and to the side of the billboard.

For structured DD text inputs, a common alternative
graphical visualization form is an Abstract Syntax Tree (AST)
(e.g., source code input to debug a compiler/interpreter, or any
JSON/XML/HTML/YAML inputs). In VR, we visualize this
AST as a nexus graph of nodes and edges on the surface of an
invisible sphere. 3D nodes depict syntactical elements
(classes, functions), while the edges (directed lines) are used
to indicate semantic relationships, such as calls or class
affiliations. A sphere was chosen to reduce dependency
collisions while holding the entire graph spatially compact for
immersive flythrough navigation. A Boundary Box (BB) is
used to delimit the context of the visual model in case multiple
models or model versions are loaded.

B. Navigation in VR
Dual navigation modes are supported in our solution:

default gliding controls for fly-through VR, and teleporting to
instantly place the camera at a selected position in space.
Although teleporting can be potentially disconcerting, it may
reduce the likelihood of VR sickness.

C. Interaction in VR
User-element interaction is supported through the VR

controllers. A DD Replay capability is provided via a slider
above the main screen. It is labeled with the total number of
DD steps invoked. By adjusting the slider, the DD step and its
result are correspondingly displayed on the main screen.
Green line numbers indicate the input that passed, and red
denotes inputs that failed. Since during main screen

VR-SysML+Traceability

SysML

Enterprise
Models

Enterprise
Views
ATLAS

Blueprints

Archimate

DataNaviga3onVisualiza3on Interac3on

KMS ECMS
VR-EAT

VR-EA

VR-MF

VR-EA+TCK

VR-BPMN
BPMN

SE & SysE

VR-SysMLVR-ProcessMine VR-UML

EA & BP
VR-SBOMVR-EvoEA+BP

VR-V&VVR-TestCoverage

VR-SDLC
LML

VR-ISA
VR-EDStream+EDA

VR-DevOps
VR-GitCityVR-GitEvo+CI/CD
VR-Git Git

SySML

SPDX/CDX VR-DeltaDebugging

HyDE
UML

73Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

interaction no movement is involved, DD interaction controls
are offered either directly on the main screen, or via a side
screen with a menu to change the context of the main screen.
The VR-Tablet travels with the VR camera to support nexus
interaction, in particular AST filtering by node type, and can
provide detailed context-specific information for a selected
element (e.g., node or relations) from the AST data.

IV. REALIZATION
The logical architecture of our prototype realization is

shown in Figure 2. The VR visualization aspects of our
prototype (referred to as our frontend) were realized in C#
using Unity 2022.3.5f1 (LTS) with the XR Interaction Toolkit
2.3. Our backend consists of our Data Hub that contains a data
repository and adapters for invocation and data transformation
using Python 3.10. While the Data Hub is conceptually
separated via a communication channel, in our prototype this
would have created unnecessary overhead. The necessary
JSON data could be readily transferred via a socket or Web
API. Thus, invocation from C# of the Python adapters utilized
subprocesses instead.

Figure 2. Logical architecture.

Figure 3. Extract snippets of DD execution step log output in JSON
(intermediate results removed at line 25 for brevity), showing step number,
input and corresponding line numbers, and test result for that subset.

A. Backend
We utilized the Picire [16] Python DD implementation. It

splits input (by characters or lines) into n chunks (we used
n=2), testing these to see if any remain interesting. We created
a generic DD logging proxy for testcases, which tracks
separate testcase invocation sequences, storing corresponding
step, input, line numbers, and result, shown in our JSON-
based log output snippet in Figure 3. This retains DD
execution state for subsequent playback and analysis.

Visual analysis for structured DD inputs (like source code
for compilers/interpreters, JSON, markup) is supported via an
AST. We exemplify feasibility by initially supporting Python.
The Python Astroid module (extends the Python ast module)
provides an enhanced AST with additional semantic
information. We then generate a JSON-based AST data model
with the following features:

• Nodes for syntactic units: classes, functions, variable
assignments, imports.

• Edges between semantically-linked nodes, such as
method calls or class affiliations.

• Additional data such as line numbers, code snippet, node
type, and parent nodes.

B. Frontend
The nexus assists with structured inputs, exemplified with

Python source code. The nexus layout is based on the
Fibonacci sphere algorithm for spatial separation together
with a force-directed graph algorithm, which adjusts node
placement proximity based on relations, the results of which
is illustrated in Figure 4. To depict directed relations between
elements, rather than adding arrow heads, direction is
indicated by coloring from the source (black) to the
destination (white) as a gradient, as seen in Figure 5.

To support immersive interaction in the nexus sphere, a
VR-Tablet offers a Nexus Stepper check box: when
unchecked, the entire AST is depicted; if checked, only the
corresponding portion of the input for that step is shown. It
also offers a filtering capability (to ghost or make opaque in
the nexus) of the visible node types using checkboxes, as
shown in Figure 5. To simplify tablet interaction while
keeping its size small, pagination was used instead of
scrolling. The node type options depend on the loaded AST,
and can include, e.g.: Module, Import, classdef, functionsdef,
arguments, assign, assignname, assignattr, etc. The BB around
the nexus offers a legend of the node type color assignment,
and well as metrics such as the total number of nodes visible.
To retain and utilize a user’s spatial memory, rather than
optimize spatial distance, the nexus is not relocated or its
layout changed once instantiated, even if steps or filtering
cause far fewer nodes to be visible.

Support for selecting a DD Replay step was implemented
as a slider on top of the main screen, ranging from initial input
on the left to the final result on the right. During Replay
interaction in VR, the corresponding input is shown, and the
line numbers are colored according to the step and test result
(green for pass, red for fail). A menu screen to the right of the
main screen provides the ability to load and execute a different
DD context.

3D Environment

Laser Pointer
via Controller

VR-Tablet

Structure
Visualiza<on

3D Object
Selec<on

ScriptsAssets

Frontend (Unity) Backend
(Data Hub)

Repository

AST

Python
Adapters

DD Logs

Tools/Libraries
Picire (DD)

Others
JSON

Astroid (AST)

Test Code

Samples
Code Input

74Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

Figure 4. Input nexus of AST code graph.

Figure 5. Nexus closeup showing directional dependencies via gradients
and the node type filtering ability in the VR-Tablet.

As our evaluation did not necessitate text entry, a virtual
keyboard was not included. The implementation could readily
be enhanced with a virtual keyboard using laser pointer key
selection, as demonstrated in our other VR solutions.

V. EVALUATION
The evaluation of our VR solution concept is based on the

design science method and principles [28], in particular a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). A case study is used based on the
following scenarios: DD execution support, DD
comprehension and analysis support, and nexus scalability.

A. DD Execution Support in VR
To evaluate DD execution capability in VR, various tests

with structured and unstructured inputs were run. The nexus
only applies to structured input. To illustrate unstructured
input support, input and a Python test from a DD reference site
[29] were slightly adapted for our implementation, shown in
Figure 6 and Figure 7 respectively.

Figure 6. Example unstructured text input. Adapted from [29].

Figure 7. Example provided Python DD testcase. Adapted from [29].

After execution, the initial result (Step 1/9) is as shown in
Figure 8, and moving the stepper to the end (Step 9/9) shows
the final result of the line found that causes the test to fail,
shown in Figure 9.

Figure 8. Unstructured input (left) and step and result status (top). Unclear
as yet if the input can be further reduced to a single line (or set of characters).

Figure 9. A single input line found to cause the DD test to fail.

B. DD Comprehension and Analysis Support in VR
DD comprehension and analysis are supported in two

ways: DD Replay (via the stepper slider) and the graphical DD
nexus, which provides a synchronized graphical view for
structured DD input, which text-based tools do not offer.

Figure 10. Complete input AST nexus (Tablet Nexus Stepper unchecked).

75Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

Figure 11. Replay synchronized AST nexus (left) shows reduced input set
for Step 4 of 28 on screen (red line numbers indicate set in testcase failure).

To illustrate the comprehension capability, a full AST
nexus (since the Nexus Stepper is unchecked on VR-Tablet)
of 1500 elements, based on the complete structured text input
of 500 lines of assignments in Python code, is shown in Figure
10. A faulty line was intentionally placed on line 250. The
nexus view supports DD comprehension by also depicting any
known structural relations of the input in a graphical and
immersive form, allowing the user to better understand large
structured input sets as they may relate to the DD
(intermediate) results. A Python AST was used to illustrate
this capability, but any structures that can be transformed to a
graph-based form could use this capability.

To support analysis of DD results, with the Nexus Stepper
checked, moving the slider to Step 4 shows a reduced nexus
as well as a reduced textual input set on the main console, as
shown in Figure 11. At Step 8, the nexus is further reduced,
and the main console shows the passing input (via green line
numbers), as seen in Figure 12. The Replay final result shows
the failing line found, with a reduced nexus visible on the left
that contains only 3 elements, shown in Figure 13.

Immersion in the nexus allows the user to perceive the
relations between element types in structured input. The
filtering capability by node type is illustrated in Figure 14.
Here, the assign nodes were deselected in the VR-Tablet and
thus ghosted, enabling the user to focus on (a) specific AST
node type(s) of interest.

Figure 12. Replay synchronized AST nexus showing reduced input set on
Step 8 (main screen green line numbers indicate input passing testcase).

Figure 13. Replay final result showing failing line (reduced nexus on left
contains only 3 elements, pointed to by red arrow annotation).

Figure 14. AST nexus filtering (assign nodes are ghosted since deselected).

Figure 15. DD test execution input and result status.

C. Nexus Scalability in VR
VR has no theoretical spatial limitations. However, the

number of visible elements depicted affects the frame rates,
which are dependent on software and hardware capabilities.
For our scalability scenario, the setup was a desktop Win 11
PC AMD Ryzen 9 7900X with 32GB RAM and NVIDIA
RTX 4070 using Unity 2022.3.5f1 (LTS). A large structured
input (500 lines of Python code) was depicted as an AST as
shown in Figure 4. It consists of 1500 visible elements of
three different types (ASSIGN, ASSIGNNAME, CONST) of
500 each and their associated dependencies, as shown on the
BB in No negative usability issues were encountered, and it
demonstrates the feasibility and scalability of the nexus
visualization concept for structured inputs such as ASTs.
Future work will evaluate larger code repositories.

VI. CONCLUSION AND FUTURE WORK
Debugging has received relatively little visualization

support, especially investigating 3D and VR enhancements
opportunities and integration with automated debugging tools.
This paper described our VR-DeltaDebugging solution
concept that offers immersive visualization support for Delta
Debugging in VR. Instead of relying on purely text-based DD

76Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

invocation, comprehension, and analysis, it offers an
interactive cockpit with visual support offering intermediate
DD result replay the DD steps that led to the DD result.
Structured DD inputs are enhanced with an optional graphical
nexus visualization that depicts elements and relations within
the input, which might affect the failure, and it’s depiction is
synchronized with the DD Replay results.

The prototype demonstrates its feasibility. The case-based
evaluation provided insights into its capabilities and potential
for supporting comprehension, analysis, and scalability. VR
could also offer a collaboration space regarding DD issues.

Future work includes support for Hierarchical Delta
Debugging (HDD), git-bisect integration, and a
comprehensive empirical study that also includes usability.

ACKNOWLEDGMENT
The author would like to thank Umut Dönmez and Jonas

Kling for their assistance with the implementation,
screenshots, and data preparation.

REFERENCES
[1] A. Alaboudi and T. D. LaToza, “An exploratory study of

debugging episodes,” arXiv preprint arXiv:2105.02162, 2021.
[2] Cambridge University Judge Business School: The business

value of optimizing CI pipelines (2020). [Online]. Available
from: https://info.undo.io/ci-research-report 2025.08.19

[3] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld,
“Studying the advancement in debugging practice of
professional software developers,” Software Quality Journal,
25(1), 2017, pp.83-110.

[4] A. Zeller, “Yesterday, My Program Worked. Today, It Does
Not. Why? ” in Proc. Seventh European Software Eng. Conf.,
Seventh ACM SIGSOFT Symp. Foundations of Software Eng.,
(ESEC/FSE '99), vol. 1687, 1999, pp. 253–267.

[5] A. Zeller and R. Hildebrandt, "Simplifying and isolating
failure-inducing input," in IEEE Transactions on Software
Engineering, vol. 28, no. 2, 2002, pp. 183-200.

[6] D. Stepanov, M. Akhin, and M. Belyaev, "ReduKtor: How We
Stopped Worrying About Bugs in Kotlin Compiler," In: 34th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2019), IEEE, 2019, pp. 317-326.

[7] K. Yu, M. Lin, J. Chen, and X. Zhang, „Towards automated
debugging in software evolution: Evaluating delta debugging
on real regression bugs from the developers’ perspectives,”
Journal of Systems and Software, 85(10), 2012, pp.2305-2317.

[8] R. Oberhauser, "VR-SDLC: A Context-Enhanced Life Cycle
Visualization of Software-or-Systems Development in Virtual
Reality," In: Business Modeling and Software Design (BMSD
2024), LNBIP, vol 523, Springer, Cham, 2024, pp. 112-129.

[9] R. Oberhauser, "VR-Git: Git Repository Visualization and Im-
mersion in Virtual Reality," 17th Int’l Conf. on Software Engi-
neering Advances (ICSEA 2022), IARIA, 2022, pp. 9-14.

[10] R. Oberhauser, “VR-DevOps: Visualizing and Interacting with
DevOps Pipelines in Virtual Reality,” Nineteenth International
Conference on Software Engineering Advances (ICSEA 2024),
IARIA, 2024, pp. 43-48.

[11] R. Oberhauser, “VR-SBOM: Visualization of Software Bill of
Materials and Software Supply Chains in Virtual Reality,” In:
Business Modeling and Software Design (BMSD 2025),
LNBIP, vol 559, Springer, Cham, 2025, pp. 52-70.

[12] R. Oberhauser, A. Matic, and C. Pogolski, “HyDE: A Hyper-
Display Environment in Mixed and Virtual Reality and its
Application in a Software Development Case Study,”

International Journal on Advances in Software, 11(1 & 2),
2018, pp.195-204.

[13] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Transactions on
Software Engineering, 42(8), 2016, pp.707-740.

[14] P. Bouillon, M. Burger, and A. Zeller, “Automated debugging
in Eclipse: (at the touch of not even a button),” In: Proceedings
of the 2003 OOPSLA workshop on eclipse technology
eXchange, 2003, pp. 1-5.

[15] DDinput. [Online]. Available from: https://www.st.cs.uni-
saarland.de/eclipse/ 2025.08.19

[16] Picire. [Online]. Available from:
https://github.com/renatahodovan/picire/ 2025.08.19

[17] R. Hodován and Á. Kiss, “Practical improvements to the
minimizing delta debugging algorithm,” In: International
Conference on Software Engineering and Applications, Vol. 2,
SciTePress, 2016, pp. 241-248.

[18] S. T. Mauer et al., „A Novel Approach for Software 3D-
Debugging in Virtual Reality,” In: International Conference on
Human-Computer Interaction (HCII 2024), LNCS, vol 14708.
Springer, Cham, 2024, pp. 235-251.

[19] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner and J.
Laviola, "Code Park: A New 3D Code Visualization Tool,"
2017 IEEE Working Conference on Software Visualization
(VISSOFT), 2017, pp. 43-53, doi: 10.1109/VISSOFT.2017.10.

[20] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for
fault localization,” In: Proceedings of ICSE 2001 Workshop on
Software Visualization, 2001, pp. 71-75

[21] C. Gouveia, J. Campos, and R. Abreu, “Using HTML5
visualizations in software fault localization,” In: Proceedings
of the First IEEE Working Conference on Software
Visualization, IEEE, 2013, pp. 1–10.

[22] I. J. Akpan and M. Shanker, “The confirmed realities and
myths about the benefits and costs of 3D visualization and
virtual reality in discrete event modeling and simulation: A
descriptive meta-analysis of evidence from research and
practice,” Computers & Industrial Engineering, 112, 2017, pp.
197-211

[23] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Business Modeling and Software
Design (BMSD 2019), LNBIP, vol. 356, Springer, Cham,
2019, pp. 170-187.

[24] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EA+TCK: Vis-
ualizing Enterprise Architecture, Content, and Knowledge in
Virtual Reality," In: Business Modeling and Software Design
(BMSD 2022), LNBIP, vol 453, Springer, 2022, pp. 122-140.
https://doi.org/10.1007/978-3-031-11510-3_8.

[25] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EvoEA+BP: Us-
ing Virtual Reality to Visualize Enterprise Context Dynamics
Related to Enterprise Evolution and Business Processes," In:
Business Modeling and Software Design (BMSD 2023),
LNBIP, vol 483, Springer, 2023, pp. 110-128,
https://doi.org/10.1007/978-3-031-36757-1_7.

[26] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,”
In: International Conference on Software Engineering (ICSE
2006), ACM, 2006, pp. 142–151.

[27] K. Yu, M. Lin, J. Chen, and X. Zhang, „Towards automated
debugging in software evolution: Evaluating delta debugging
on real regression bugs from the developers’ perspectives,”
Journal of Systems and Software, 85(10), 2012, pp. 2305-2317.

[28] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105.

[29] A. Zeller, “Reducing Failure-Inducing Inputs.” [Online].
Available from: https://www.debuggingbook.org/html/
DeltaDebugger.html 2025.08.19

77Copyright (c) IARIA, 2025. ISBN: 978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances

