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Abstract  – Debugging is a challenging activity involved in 
software development and maintenance processes. Delta 
Debugging (DD) is an automatic debugging algorithm and 
methodology that applies a scientific recurrent hypothesis, trial, 
and result loop to systematically reduce failure-inducing inputs 
to a minimal set. Yet, especially for larger (structured) input 
sets, how DD arrived at its results and its intermediate inputs 
and test results may not be intuitively evident to practitioners. 
This paper contributes our solution concept VR-
DeltaDebugging for an immersive visualization in Virtual 
Reality to support comprehension, analysis, and collaboration. 
A prototype demonstrates its feasibility, and a cased-based 
evaluation on execution, comprehension and analysis, and 
scalability provides insights into its capabilities and potential. 

Keywords – delta debugging; visualization; virtual reality; 
debugging; software engineering. 

I.  INTRODUCTION 
Debugging is a costly and time-consuming activity 

incurred during software development and maintenance 
processes. A 2021 study [1] found debugging sessions (even 
during programming) occurred on average every eight 
minutes, with sessions lasting from less than a few minutes to 
over 100 minutes. A 2020 survey [2] of 73 developers 
reported that roughly a quarter of their time (26%) was spent 
reproducing and fixing failing tests, averaging 13 hours to fix 
a single bug. A study on debugging [3] found that almost half 
of the 303 developers (47%) spend 20-40% of their time 
debugging, with 26% spending even 40–60%. Over half had 
no formal debugging knowledge or training, and over 70% 
were unaware of more advanced debugging tools or 
approaches, which only very few applied. 

Among automated software fault localization techniques 
and tools, Delta Debugging (DD) [4] is a method and 
algorithm that simplifies and isolates failure-inducing input 
automatically and systematically by testing subsets and 
complements of the input. This can reduce debugging effort 
by narrowing the relevant inputs that cause a test to fail. 
Debugging and testing are often performed 
contemporaneously, and one application area that exemplifies 
DD’s applicability and benefit is fuzzing. Fuzzing (or fuzz 
testing) is an automated dynamic test technique that injects 
random, invalid, or unexpected inputs and observes a 
software’s behavior (crash, memory leak, vulnerabilities, 
etc.). Yet fuzzing can result in a large (random) input set for a 
test failure. DD has been shown to be effective and efficient 
at isolating some input to the minimum set that still reproduces 

the failure [5]. DD is also applied in compiler development 
when dealing with program code as structure text inputs, as 
exemplified in [6]. As to DD’s benefits, the empirical study 
on DD by Yu et al. [7] found that two thirds of isolated 
changes in the studied programs were helpful in terms of 
accuracy and efficiency, providing (in)direct clues in locating 
regression bugs; yet a third were superfluous changes or 
incorrect isolations. Thus, DD practitioners should have better  
analysis and process support tooling for insights into 
determining the validity of a DD result. This is a problem and 
underlying motivation for this paper’s contribution.  We seek 
a solution that can support DD practitioners in comprehending 
and analyzing the DD reduction input sets and results, and 
thus more readily determine valid results (or input or test case 
issues) and the intermediate steps that led to it. Visualization 
could support DD and make advanced debugging approaches 
more accessible to practioners. While 2D debugging tools 
(textual, visual, or Integrated Development Environment 
(IDEs)) are prevalent, there has been relatively little 
investigation into the potential of Virtual Reality (VR) for 
debugging support, in particular for DD and structured inputs. 

In this paper, we propose and investigate applying 
immersive VR  to support the DD method. In prior work, we 
investigated the application of VR to various other areas. A 
selection of our prior VR-related contributions in the Software 
Engineering (SE) space: VR-SDLC [8] models development 
lifecycles, VR-Git [9] models Git repositories, VR-DevOps 
[10] models Continuous Development pipelines, VR-SBOM 
[11] models Software Bill of Materials (SBOM) and software 
supply chains. HyDE [12] showed a VR-based multi-display 
IDE that could also be used for debugging support. This paper 
contributes our VR-DeltaDebugging solution concept towards 
immersive visualization support for Delta Debugging in VR. 
A prototype demonstrates its feasibility, while a case-based 
evaluation provides insights into its capabilities and potential 
for supporting comprehension, analysis, and collaboration. 

This paper is structured as follows: the next section 
discusses related work. Section 3 describes our solution. In 
Section 4, our realization is presented, which is followed by 
our evaluation in Section 5. Finally, a conclusion is provided. 

II. RELATED WORK 
Regarding DD, the survey by Wong et al. on software fault 

localization [13] analyzed 587 papers and 68 theses, with the 
discussion also encompassing DD - yet there is no mention of 
visualization or VR. Further, all searches found no work 
directly involving DD visualization. Any work, tools, or 

72Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances



 

 

libraries are text-based or involve a Command Line Interface 
(CLI). As to IDE integration, DDinput [14] was an Eclipse 
plugin (appears to no longer appears be supported [15]). Work 
regarding DD tools or libraries includes Picire [16] as 
described in [17], and that cited in Wong et al. above [13]. 

As to debugging in general, VR-based work includes 
Mauer et al. [18] with a VR-based 3D-debugging prototype, 
demonstrating how VR can be used for programming 
comprehension and debugging. Our own prior work HyDE 
[12] demonstrated a VR-based multi-display IDE (Integrated 
Development Environment), which could also be used for 
direct programming and debugging support. 3D visualization 
work includes Code Park [19], which provides a code-centric 
environment for code comprehension, yet offers no debugging 
or editing support. Examples of 2D visualization tools 
supporting fault localization include Tarantula [20] and 
GZoltar [21], which showed that visualizations can drastically 
reduce debugging time.  

In contrast, VR-DeltaDebugging is a VR solution directly 
addressing DD visualization support for (un)structured inputs. 

III. SOLUTION CONCEPT 
Our solution concept is grounded on prior VR research in 

areas related to modeling, analysis, and collaboration, some of 
which is highlighted here. Akpan & Shanker’s systematic 
meta-analysis [22] in discrete event modeling found VR/3D 
to be advantageous for model development, analysis, and 
Verification and Validation (V&V). 95% of 23 papers 
concluded 3D was more potent and provided better analysis 
than 2D (e.g., evaluating model behavior or what-if analysis). 
Another finding was a consensus that 3D/VR can present 
results convincingly and understandably for decision-makers. 
In 74% of 19 papers, model development tasks improved 
significantly in 3D/VR (team support, precision, clarity).  

 
Figure 1.  Conceptual map of our published VR solution concepts 
highlighting their differentiation (VR-DeltaDebugging highlighted in blue). 

Our conceptual map of Figure 1 shows our VR-
DeltaDebugging solution concept (blue) within the SE and 
SysE (Systems Engineering) area and in relation to our other 
prior VR solutions. VR-MF, our generalized VR Modeling 
Framework  (detailed in [23]), provides the basis, providing a 
domain-independent hypermodeling framework addressing 
the VR aspects of visualization, navigation, interaction, and 
data integration. We have published VR-based solutions 
specific to the Enterprise Architecture (EA) and Business 
Process (BP) space (EA & BP): VR-EA [23] for mapping EA 
models to VR, VR-BPMN for BPMN models, VR-EAT for 

enterprise repository integration, VR-EA+TCK [24] for 
knowledge and content integration, and VR-EvoEA+BP [25] 
for EA evolution and business process animation, and VR-
SBOM [11]. Solutions in the SE and SysE areas include: VR-
Git [9], VR-GitCity, and VR-GitEvo+CI/CD for git-related 
solutions, VR-DevOps [10], VR-V&V (Verification and 
Validation), VR-TestCoverage, VR-SDLC [8], VR-ISA for 
Informed Software Architectures, and VR-UML and VR-
SysML for software and systems modeling. HyDE [12] is our 
VR-based multi-display IDE, and while it can be used for 
debugging, hitherto none of our work focused directly on 
supporting debugging in VR. 

With regard to structured inputs, Hierarchical Delta 
Debugging (HDD) [26] has been proposed as a variant to 
improve DD’s effectiveness. However, the study by Yu et al. 
[27] found that HDD suprisingly did not improve accuracy nor 
efficiency. Thus, while our solution concept is compatible 
with HDD, our prototype initially focuses on DD support, 
incorporating HDD in future work. Since HDD is an AST-
oriented reducer, our AST-based nexus can be seen as a 
precursor to eventual AST-based input support for HDD. 

A. Visualization in VR 
For text visualization (both input and test code), an 

interactive scrollable billboard analogy is used for the main 
screen, similar to terminal screens but enhanced for DD 
support. It offers a large interaction and viewing space for 
text-centric analysis. A menu is provided on the side to readily 
offer interaction without interfering in the analysis. The nexus 
view is kept synchronized and to the side of the billboard. 

For structured DD text inputs, a common alternative 
graphical visualization form is an Abstract Syntax Tree (AST) 
(e.g., source code input to debug a compiler/interpreter, or any 
JSON/XML/HTML/YAML inputs). In VR, we visualize this 
AST as a nexus graph of nodes and edges on the surface of an 
invisible sphere. 3D nodes depict syntactical elements 
(classes, functions), while the edges (directed lines) are used 
to indicate semantic relationships, such as calls or class 
affiliations. A sphere was chosen to reduce dependency 
collisions while holding the entire graph spatially compact for 
immersive flythrough navigation. A Boundary Box (BB) is 
used to delimit the context of the visual model in case multiple 
models or model versions are loaded. 

B. Navigation in VR 
Dual navigation modes are supported in our solution: 

default gliding controls for fly-through VR, and teleporting to 
instantly place the camera at a selected position in space.  
Although teleporting can be potentially disconcerting, it may 
reduce the likelihood of VR sickness. 

C. Interaction in VR 
User-element interaction is supported through the VR 

controllers. A DD Replay capability is provided via a slider 
above the main screen. It is labeled with the total number of 
DD steps invoked. By adjusting the slider, the DD step and its 
result are correspondingly displayed on the main screen. 
Green line numbers indicate the input that passed, and red 
denotes inputs that failed. Since during main screen 
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interaction no movement is involved, DD interaction controls 
are offered either directly on the main screen, or via a side 
screen with a menu to change the context of the main screen. 
The VR-Tablet travels with the VR camera to support nexus 
interaction, in particular AST filtering by node type, and can 
provide detailed context-specific information for a selected 
element (e.g., node or relations) from the AST data. 

IV. REALIZATION 
The logical architecture of our prototype realization is 

shown in Figure 2. The VR visualization aspects of our 
prototype (referred to as our frontend) were realized in C# 
using Unity 2022.3.5f1 (LTS) with the XR Interaction Toolkit 
2.3. Our backend consists of our Data Hub that contains a data 
repository and adapters for invocation and data transformation 
using Python 3.10. While the Data Hub is conceptually 
separated via a communication channel, in our prototype this 
would have created unnecessary overhead. The necessary 
JSON data could be readily transferred via a socket or Web 
API. Thus, invocation from C# of the Python adapters utilized 
subprocesses instead. 

 
Figure 2.  Logical architecture. 

 
Figure 3.  Extract snippets of DD execution step log output in JSON 
(intermediate results removed at line 25 for brevity), showing step number, 
input and corresponding line numbers, and test result for that subset. 

A. Backend 
We utilized the Picire [16] Python DD implementation. It 

splits input (by characters or lines) into n chunks (we used 
n=2), testing these to see if any remain interesting. We created 
a generic DD logging proxy for testcases, which tracks 
separate testcase invocation sequences, storing corresponding 
step, input, line numbers, and result, shown in our JSON-
based log output snippet in Figure 3. This retains DD 
execution state for subsequent playback and analysis. 

Visual analysis for structured DD inputs (like source code 
for compilers/interpreters, JSON, markup) is supported via an 
AST. We exemplify feasibility by initially supporting Python. 
The Python Astroid module (extends the Python ast module) 
provides an enhanced AST with additional semantic 
information. We then generate a JSON-based AST data model 
with the following features: 

• Nodes for syntactic units: classes, functions, variable 
assignments, imports. 

• Edges between semantically-linked nodes, such as 
method calls or class affiliations. 

• Additional data such as line numbers, code snippet, node 
type, and parent nodes. 

B. Frontend 
The nexus assists with structured inputs, exemplified with 

Python source code. The nexus layout is based on the 
Fibonacci sphere algorithm for spatial separation together 
with a force-directed graph algorithm, which adjusts node 
placement proximity based on relations, the results of which 
is illustrated in Figure 4. To depict directed relations between 
elements, rather than adding arrow heads, direction is 
indicated by coloring from the source (black) to the 
destination (white) as a gradient, as seen in Figure 5.  

To support immersive interaction in the nexus sphere, a 
VR-Tablet offers a Nexus Stepper check box: when 
unchecked, the entire AST is depicted; if checked, only the 
corresponding portion of the input for that step is shown. It 
also offers a filtering capability (to ghost or make opaque in 
the nexus) of the visible node types using checkboxes, as 
shown in  Figure 5. To simplify tablet interaction while 
keeping its size small, pagination was used instead of 
scrolling. The node type options depend on the loaded AST, 
and can include, e.g.: Module, Import, classdef, functionsdef, 
arguments, assign, assignname, assignattr, etc. The BB around 
the nexus offers a legend of the node type color assignment, 
and well as metrics such as the total number of nodes visible. 
To retain and utilize a user’s spatial memory, rather than 
optimize spatial distance, the nexus is not relocated or its 
layout changed once instantiated, even if steps or filtering 
cause far fewer nodes to be visible. 

Support for selecting a DD Replay step was implemented 
as a slider on top of the main screen, ranging from initial input 
on the left to the final result on the right. During Replay 
interaction in VR, the corresponding input is shown, and the 
line numbers are colored according to the step and test result 
(green for pass, red for fail). A menu screen to the right of the 
main screen provides the ability to load and execute a different 
DD context. 

3D Environment

Laser Pointer 
via Controller

VR-Tablet

Structure 
Visualiza<on

3D Object 
Selec<on

ScriptsAssets

Frontend (Unity) Backend 
(Data Hub)

Repository

AST

Python 
Adapters

DD Logs

Tools/Libraries
Picire (DD)

Others
JSON

Astroid (AST)

Test Code

Samples
Code Input

74Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-296-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICSEA 2025 : The Twentieth International Conference on Software Engineering Advances



 

 

 
Figure 4.  Input nexus of AST code graph. 

 
Figure 5.  Nexus closeup showing directional dependencies via gradients 
and the node type filtering ability in the VR-Tablet. 

As our evaluation did not necessitate text entry, a virtual 
keyboard was not included. The implementation could readily 
be enhanced with a virtual keyboard using laser pointer key 
selection, as demonstrated in our other VR solutions. 

V. EVALUATION 
The evaluation of our VR solution concept is based on the 

design science method and principles [28], in particular a 
viable artifact, problem relevance, and design evaluation 
(utility, quality, efficacy). A case study is used based on the 
following scenarios: DD execution support, DD 
comprehension and analysis support, and nexus scalability. 

A. DD Execution Support in VR 
To evaluate DD execution capability in VR, various tests 

with structured and unstructured inputs were run. The nexus 
only applies to structured input. To illustrate unstructured 
input support, input and a Python test from a DD reference site 
[29] were slightly adapted for our implementation, shown in 
Figure 6 and Figure 7 respectively.  

 
Figure 6.  Example unstructured text input. Adapted from [29]. 

 
Figure 7.  Example provided Python DD testcase. Adapted from [29]. 

After execution, the initial result (Step 1/9) is as shown in 
Figure 8, and moving the stepper to the end (Step 9/9) shows 
the final result of the line found that causes the test to fail, 
shown in Figure 9.  

 
Figure 8.  Unstructured input (left) and step and result status (top). Unclear 
as yet if the input can be further reduced to a single line (or set of characters).  

 
Figure 9.  A single input line found to cause the DD test to fail. 

B. DD Comprehension and Analysis Support in VR 
DD comprehension and analysis are supported in two 

ways: DD Replay (via the stepper slider) and the graphical DD 
nexus, which provides a synchronized graphical view for 
structured DD input, which text-based tools do not offer. 

 
Figure 10.  Complete input AST nexus (Tablet Nexus Stepper unchecked). 
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Figure 11.  Replay synchronized AST nexus (left) shows reduced input set 
for Step 4 of 28 on screen (red line numbers indicate set in testcase failure).  

To illustrate the comprehension capability, a full AST 
nexus (since the Nexus Stepper is unchecked on VR-Tablet) 
of 1500 elements, based on the complete structured text input 
of 500 lines of assignments in Python code, is shown in Figure 
10. A faulty line was intentionally placed on line 250. The 
nexus view supports DD comprehension by also depicting any 
known structural relations of the input in a graphical and 
immersive form, allowing the user to better understand large 
structured input sets as they may relate to the DD 
(intermediate) results. A Python AST was used to illustrate 
this capability, but any structures that can be transformed to a 
graph-based form could use this capability. 

To support analysis of DD results, with the Nexus Stepper 
checked, moving the slider to Step 4 shows a reduced nexus 
as well as a reduced textual input set on the main console, as 
shown in Figure 11. At Step 8, the nexus is further reduced, 
and the main console shows the passing input (via green line 
numbers), as seen in Figure 12.  The Replay final result shows 
the failing line found, with a reduced nexus visible on the left 
that contains only 3 elements, shown in Figure 13.  

Immersion in the nexus allows the user to perceive the 
relations between element types in structured input. The 
filtering capability by node type is illustrated in Figure 14. 
Here, the assign nodes were deselected in the VR-Tablet and 
thus ghosted, enabling the user to focus on (a) specific AST 
node type(s) of interest. 

 
Figure 12.  Replay synchronized AST nexus showing reduced input set on 
Step 8 (main screen green line numbers indicate input passing testcase). 

 
Figure 13.  Replay final result showing failing line (reduced nexus on left 
contains only 3 elements, pointed to by red arrow annotation). 

 
Figure 14.  AST nexus filtering (assign nodes are ghosted since deselected). 

 
Figure 15.  DD test execution input and result status. 

C. Nexus Scalability in VR 
VR has no theoretical spatial limitations. However, the 

number of visible elements depicted affects the frame rates, 
which are dependent on software and hardware capabilities. 
For our scalability scenario, the setup was a desktop Win 11 
PC AMD Ryzen 9 7900X with 32GB RAM and NVIDIA 
RTX 4070 using Unity 2022.3.5f1 (LTS). A large structured 
input (500 lines of Python code) was depicted as an AST as 
shown in Figure 4. It consists of  1500 visible elements of 
three different types (ASSIGN, ASSIGNNAME, CONST) of 
500 each and their associated dependencies, as shown on the 
BB in No negative usability issues were encountered, and it 
demonstrates the feasibility and scalability of the nexus 
visualization concept for structured inputs such as ASTs. 
Future work will evaluate larger code repositories. 

VI. CONCLUSION AND FUTURE WORK 
Debugging has received relatively little visualization 

support, especially investigating 3D and VR enhancements 
opportunities and integration with automated debugging tools. 
This paper described our VR-DeltaDebugging solution 
concept that offers immersive visualization support for Delta 
Debugging in VR. Instead of relying on purely text-based DD 
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invocation, comprehension, and analysis, it offers an 
interactive cockpit with visual support offering intermediate 
DD result replay the DD steps that led to the DD result. 
Structured DD inputs are enhanced with an optional graphical 
nexus visualization that depicts elements and relations within 
the input, which might affect the failure, and it’s depiction is 
synchronized with the DD Replay results. 

The prototype demonstrates its feasibility. The case-based 
evaluation  provided insights into its capabilities and potential 
for supporting comprehension, analysis, and scalability. VR 
could also offer a collaboration space regarding DD issues. 

Future work includes support for Hierarchical Delta 
Debugging (HDD), git-bisect integration, and a 
comprehensive empirical study that also includes usability. 
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