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Abstract—An essential criterion for software design and im-
plementation is the effectiveness of requirements specification,
development, and verification. One possibility is the use of high-
level models and languages. A particular disadvantage is the
need to transform models into a production environment, either
manually or automated. In both cases, the link to the original
models is often lost, degrading their usability in the future. In
this paper, using a demonstration example, we will look at the
possibility of modeling requirements using Object-Oriented Petri
Nets (OOPN) and then transforming them into Java to maintain
the model’s and implementation’s correlation. We will discuss
the automation of this process and possible ways to increase
efficiency.

Keywords—Object Oriented Petri Nets; model transformation;
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I. INTRODUCTION

Model and Simulation-Based System Design (MSBD) refers
to a set of techniques and tools for developing software
systems that are based on formal models and simulation tech-
niques throughout the development process. The fundamental
problem with model transformations is often the impossibility
of a fully automated process and, therefore, the mismatch
between models and their implementation. In this paper, using
a demonstration example, we will look at the possibility
of modeling requirements using Object-Oriented Petri Nets
(OOPN) and then transforming them into Java to maintain
the model’s and implementation’s correlation. We will discuss
the automation of this process and possible ways to increase
efficiency.

There are many approaches to code generation. First, the
generation of models in the chosen language from UML mod-
els [1]–[3], the transformation of different levels of diagrams
[4], or the transformation of conceptual models described,
e.g., in SysML into simulation models [5]. Second, more
accurate code generation from simplified variants of UML
models (xUML or fUML) [6][7]. The biggest pitfall of these
approaches at the moment is tool support. Freely available
tools often fail to exploit the full potential of the underlying
principles. Our closest approaches are probably the Network-
within-a-Network (NwN) formalism and the associated tool
Renew [8]. Like us, NwN combines Petri nets and the Java
language, and the models are directly translated into Java.
Nevertheless, our approach works not only with one language,
but we can combine Smalltalk, Java, or C++, including directly
writing the code within models. We aim to create a system

and tool for more efficient modeling and model deployment,
including code generation on languages like Java and C++.

The paper is structured as follows. In Section II, we intro-
duce the basics of the OOPN formalism. Section III introduces
the demonstration example and describes the basic principles
of modeling components and layers based on the Discrete
Event System Specification (DEVS) formalism. Section IV
describes the way we can move from DEVS like components
to objects. Section V discusses possibilities of code generation
in two ways – unsupervised and sipervised.

II. OBJECT ORIENTED PETRI NETS FORMALISM

An OOPN is a set of classes specified by high-level Petri
nets [9]. Formally, an OOPN is a triple (Σ, c0, oid0) where Σ
is the class set, c0 is the initial class, and oid0 is the name
of the initial object of c0. A class is determined primarily by
the object net and the set of method nets. Object nets describe
the possible autonomous actions of objects, while method nets
describe the reactions of objects to messages sent to them from
outside.
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Figure 1. Example of the OOPN model.

An example illustrating the essential elements of the OOPN
formalism is shown in Figure 1. Two classes are depicted, C0
and C1. The object net of the class C0 consists of places p1
and p2 and one transition t1. The object net of the class C1
is empty. The class C0 has a method init:, a synchronous port
get:, and a negative predicate empty. The class C1 has the
method doFor:. An invocation of the method doFor: leads to
the random generation of x numbers and a return of their sum.

Object nets consist of places and transitions. Each place
has an initial marking. Each transition has conditions (i.e.,
inscribed test arcs), preconditions (i.e., inscribed input arcs),
guard, action, and postconditions (i.e., inscribed output arcs).
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Method nets are similar to object nets, but each net has a
multiplicity of parameter places and the return place. Method
nets can access the places of the corresponding object nets to
allow running methods to change object states.

III. REQUIREMENTS MODELING

This section presents a demonstration example and the
essence of requirements modeling using the OOPN and DEVS
formalisms.

A. Demonstration Example

Let us start with the following example, which is inspired
by the simple game LightBulb. First, let’s give the basic text
description. The game board consists of fields that are either
empty, contain connections (only the edges of a square can
be connected), an energy power, or a light (bulb). Connectors
can connect two, three, or four edges. There is just one source
and at least one bulb in the game. The player can rotate each
field 90 degrees to the right. At the beginning, the fields are
rotated so there is no connection between the power and the
bulbs. The game’s goal is to rotate the boxes so that the source
connects with all the bulbs and thus lights them up. If a field is
energized (connected to the power), indicate this by changing
color. We will focus here on defining the behavior of each
field.

B. Components and Layers in the Model

In the specification and design, we will assume that a field is
a component that operates on specific input values and passes
information about changes through outputs. It will settle the
initial design and reasoning over the requirements and their
modeling. We can combine the OOPN (behavioural model)
and DEVS (structure and component model) formalisms for
these purposes. We start specifying a field as a DEVS com-
ponent with four input and four output ports. Each input and
output pair represents the information transfer between fields
adjacent to the corresponding edge, as shown in Figure 2.
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Figure 2. Component model using DEVS formalism.

The behaviour will be defined using the OOPN formalism,
where we will create so-called layers. Each layer represents
a separate functionality, which can then be modeled as part
an object net or a method net. Working with layers allows us

to structure behavior better and manipulate the distribution of
responsibilities.

C. Initial Requirements Model and Layers

In specifying the requirements, we will start from the
elements that follow from the specification, model them using
the OOPN formalism, and gradually reveal other essential
components.
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Figure 3. Initial model of the Field component.

The basic definition assumes that each field knows whether
an edge is part of a connection. The information is stored
in the place ports and can be modeled by a sequence of
true/false values indicating whether the edge is connected.
The sequence always starts with the top edge and proceeds
clockwise. For example, the sequence (true, true, false, false)
corresponds to the left bottom field shown in Figure 2. The
field stores information about the surrounding fields (modeled
as U, R, D, and L places) and informs the surrounding fields
of the change (modeled as U O, R O, D O, and L O output
ports). The information indicates whether the field is connected
to power. Finally, the place state indicates whether this field
is under the power (values true or false). Figure 3 shows the
basic model of the Field component. The model is initialized
by the constructor initUp:right:down:left:.

init turn change_in

check check

produce change_out

Field initialization rotation of the field change of input

verification of 

connection

informs all

surrounding fields

about the change

informs the output

fields about 

the change

Figure 4. The model flow including layers.

Depending on the task, we can distinguish three basic
actions – initialization, rotation, and reaction to a change
coming from the surroundings. Figure 4 depicts the basic
flows. When the corresponding event is triggered (i.e., the
trigger place receives a token), the field is always checked
to see whether the field is connected to the energy source,
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i.e., whether the triggered action caused the change. However,
the subsequent actions differ according to the originator, so
that we can find two basic flows. In the case of initialization
and rotation, we have to inform all the surrounding fields,
since a link between fields may have been created or broken.
In the case of a change coming from the surroundings, we
only inform the fields connected through existing links of the
change, if any.

D. Basic Layers

Now, we will look at the model’s layers. First, the check
layer, which is shown in Figure 5. The model clearly shows
how the new state is evaluated.

res := (in_up = up = true)

|| (in_right = right = true)

|| (in_down = down = true)

|| (in_left = left = true)

t1 (up, right, down, left)

res

old

in_up

in_right

in_down

in_left (old, res)

U

R

D

L

<trigger>check ports

state

<trigger>check_res

Figure 5. The check layer.

The evaluation is based on the knowledge of the state of the
surrounding fields (places U, R, D, and L) and whether the
corresponding edge contains a connection to the corresponding
fields (see the place ports). If at least one edge containing a
connection is true, this field is connected to the energy power.
The new value has been rewritten in the state place. The
execution of the layer is conditioned by the token in the place
check, and termination is indicated by inserting the previous
and new state pairs in the place check res.

<trigger>turn

ports

(u, r, d, l) (l, u, r, d)

<trigger>check

Figure 6. The turn layer.

The next layer is turn, which is captured in Figure 6. The
principle of modeling this functionality is evident from the
model – the original sequence is removed from the place ports
and new sequence, which rotates one position to the right, is
inserted back. The execution of the layer is conditioned by
the token in the trigger place turn. The termination can be
indicated by the addition of an exit place, similar to the check
layer. The necessity of such an addition will become apparent
during model creation.
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Figure 7. The change in layer.

The next layer is change in, which is captured in Figure
7. This layer responds to a change in an input port value
and ensures that the contents of the corresponding places
are changed. Ports are modeled by special places; see, e.g.,
PIN U in Figure 7. If the new value is accepted from the
surrounding, it is placed to the input port. The layer updates
field’s information about the surrounding and activates the
check layer by inserting a token in the place check. The model
assumes that the change occurs at exactly one input port at a
time.
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Figure 8. The produce layer.

The next layer is produce, which is captured in Figure 8.
This layer is activated by inserting a pair of values of the
original and new value of the field state. The layer ensures
that the new value is distributed to the surrounding patches
through the output ports. However, the insertion of the new
value is conditional on a connection on the corresponding
edge. If there is no connection, it informs the connected patch
of the false state (if there was a connection in the previous
state, the connected patch must process this change).
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Figure 9. The change out layer.
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The next layer is change out, which is captured in Figure
9. This layer is fundamentally similar to the layer produce,
it captures an alternative modeling option. First, it checks
whether the state has changed. If so, all surrounding fields are
informed, i.e., the new value is inserted into the appropriate
output port if it exists on that link edge. If there is no
connection on the edge, no value is inserted (the field is not
informed).

IV. TRANSFORMATION OF DEVS COMPONENTS TO
OBJECTS

So far, we have considered the model of the field as a
DEVS component that communicates with its surroundings
through ports. However, we need a conventional approach for
use in classical programming languages and environments,
i.e., communication via messaging. At the same time, in the
modeling, we worked with a sequence of logical values at
the port location, which determined which edges contained
the connector. It carries specific modeling implications, e.g.,
repetitive capture of the same functionality over different
edges, since the result must always be placed in a different
component output port. This section illustrates two steps. First,
the edges are named for more flexible handling, and then the
DEVS component is transformed into an object component.

A. Ports identification

For our simple example, we choose naming using symbols
that bind to the pair (name, exist) in the place ports.
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U_O
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Figure 10. Modification of the init layer.

Figure 10 shows a preview of the change at the init layer.
At the same time, we introduced the outPort:value: method,
which inserts the specified value into the output port identified
by name. We make similar modifications for the check and turn
layers (see Figures 11 and 12).

B. Replacement of Ports

We will show more substantial modifications to the produce
layer. Since we have the output ports named, we can use the
concept of foreach as shown in Figure 13. The basic idea

res := (in_up = up = true)

|| (in_right = right = true)

|| (in_down = down = true)

|| (in_left = left = true)

t1

((#U, up), (#R, right), 

 (#D, down), (L, left))

res

old

in_up

in_right

in_down

in_left (old, res)

U

R

D

L

check

ports

state

check_res

Figure 11. Modification of the check layer.

of the foreach loop is based on list processing in the Prolog
language.

<trigger>turn

ports

((#U,u), (#R,r),

 (#D,d), (#L,l))

((#U,l), (#R,u),

 (#D,r), (#L,d))

<trigger>check

Figure 12. Modification of the turn layer.

Let us return to the produce layer (Figure 13). We build on
the original solution, but instead of inserting a value into a
specific output port, we call the outPort:value: method. This
evaluation is done only once for all edges stored in the place
ports. A similar modification could be made for the check out
layer.

(old, res)

check_res

ports

foreach: ((dir, exist) | _)

(res, dir, exist)

(res, dir, true)

(res, dir, false)

self outPort: dir value: res

(false, dir)

(res, dir)

(res, dir)

Figure 13. Modification of the produce layer.

Finally, we replace ports with methods or method calls. We
generate a corresponding method for each input port with the
same name and one argument. Instead of passing data through
DEVS components, objects will send messages to each other.
An example of changing the PIN U input port to a method
is shown in Figure 14.

Output ports are replaced by calling the corresponding
method. For instance, for the output port U O, it is necessary
to call the method PIN D:, because the output of the up field
corresponds to the down input of the connected field (see the
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PIN_U: v

U

old

v
v

<trigger>
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self

return

Figure 14. Replacing the input port with the method.

DEVS component model in Figure 2). An example is shown
in Figure 15.

outPort: name value: v

...

#U

v

field U_O

R_O

D_O

L_O

field PIN_D: v.

Figure 15. Replacing the output port with the method call.

Figure 16 schematically depicts the resulting OOPN model
– places, methods, and basic layers initiated by trigger places.

V. CODE GENERATION

This section presents the possible outputs of the model
transformation into Java. We build on the work of [10]. Due
to the generality of the OOPN formalism, the fundamen-
tal transformation mechanism is cumbersome (unsupervised
generation), but introducing some additional information can
make code generation more efficient (supervised generation).
This information can be supplied manually, or it can be derived
by automated analysis of the model. We will present examples
of generated code for only one part of the model. In both
cases, we obtain executable code that differs in complexity
and efficiency.

A. Basic Framework Classes

The created OOPN models, which correspond to the princi-
ples mentioned so far, can be automatically translated into
Java. The resulting class system needs a basic framework
prepared for these purposes [10]. Figure 17 shows the basic
structure of classes and interfaces required to transform OOPN
models into Java.

The class Place represents the collection corresponding to a
place. The OOPN class is always derived from the PN class,
which provides the primary means for object handling and
communication. The object net is represented by the construc-
tor. The object net’s places can be considered attributes (object
variables) of the object, and their declarations are, therefore,
placed in the member fields space. Because the OOPN lan-
guage is typeless, the common type of all variables is the
PNObject class, and communication, i.e., sending messages,
must be done specially.
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false
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constructor initUp: u right: r down: d left: l 

outPort: name value: v
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turn

<trigger>check
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Figure 16. Model of the class Field overview.

Figure 17. Basic Java classes for OOPN transformation.

PNObject is the interface implemented by the PN class and,
thus, by all OOPN classes. However, we must consider that
models also work with other objects (e.g., primitive Java data
types and other Java classes). Therefore, we need wrappers for
objects of these classes that implement the PNObject interface
to ensure compatibility. For each transition, a class derived
from the Transition class is generated, containing methods to
verify the input conditions (guard) and a method containing the
actual actions of the transition (action). A place corresponds
to an unordered collection of objects from which objects can
be read and removed, and new objects can be added.

B. Unsupervised Generation

As mentioned, we will demonstrate the transformation (code
generation) capabilities only on selected parts of the model.
The model consists of a single class Field. Figure 18 shows
the generated code for the model layer captured in Figure 16
in the basic (unsupervised) version.

All variables and values are typed as class PNObject. A
special class PNList is used to implement the list of values.
This figure does not capture the whole listing; it is only an
outline of the generated code.
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p u b l i c c l a s s F i e l d ex tends PN {
p r o t e c t e d boolean s t a t e ;
p r o t e c t e d L i s t<L i s t<Dir , Boolean>> p o r t s ;
p r o t e c t e d boolean U, R , D, L ;
p r o t e c t e d boolean U O, R O , D O, L O ;
p u b l i c enum Dir {U, R , D, L} ;
p u b l i c C1 ( boolean u , boolean r , boolean d ,

boolean l ) {
s t a t e = f a l s e ;
p o r t s = new A r r a y L i s t <>();
p o r t s . p u t ( new A r r a y L i s t <>(Di r . U, u ) ) ;
p o r t s . p u t ( new A r r a y L i s t <>(Di r . R , r ) ) ;
p o r t s . p u t ( new A r r a y L i s t <>(Di r . D, d ) ) ;
p o r t s . p u t ( new A r r a y L i s t <>(Di r . L , l ) ) ;
. . .

}
}

Figure 19. Supervised translation of the class Field into Java.

C. Supervised Generation
For supervised generation, we use the constraints introduced

in [9], which allow us to define different constraints on models.
The constraints can be defined manually or derived by ana-
lyzing the model or its simulated run [11]. This analysis finds
the following constraints on the model under consideration.

p u b l i c c l a s s F i e l d ex tends PN {
p r o t e c t e d P l a c e s t a t e ;
p r o t e c t e d P l a c e p o r t s ;
p r o t e c t e d P l a c e U, R , D, L ;
p r o t e c t e d P l a c e U O, R O , D O, L O ;
p u b l i c C1 ( PNObject u , PNObject r , PNObject d ,

PNObject l ) {
s t a t e = new P l a c e ( t h i s ) ;
p o r t s = new P l a c e ( t h i s ) ;
f i e l d s = new P l a c e ( t h i s ) ;
i n p u t s = new P l a c e ( t h i s ) ;

s t a t e . add ( f a l s e ) ;
P N l i s t l s t = new PNLis t ( ) ;
l s t . add ( new PNLis t ( ” #U” , u ) ) ;
l s t . add ( new PNLis t ( ” #R” , r ) ) ;
l s t . add ( new PNLis t ( ” #D” , d ) ) ;
l s t . add ( new PNLis t ( ” #L” , l ) ) ;
p o r t s . add ( l s t ) ;
. . .

}
}

Figure 18. Unsupervised translation of the class Field into Java.

context Field::state: Boolean
context Field::ports: OrderedList
context Field::ports element: OrderedList (Dir, Boolean)
context Dir: enum(U,R,D,L)
. . .

The generated code can be simplified and streamlined based
on the defined constraints, as shown in Figure 19.

VI. CONCLUSION

This paper presented the possibilities of modeling require-
ments using OOPN formalisms (for behavior definition) and

DEVS-like components (for structure description). The model
can then be gradually transformed into a more efficient form
and a programming language (currently Java). The essential
feature we want to achieve is that the resulting code does not
need to be further modified, because the original model allows
the use of code and objects from the target environment. Thus,
all changes and modifications occur at the model level.

In the future, we want to focus on fully automated constraint
derivation over the model (while retaining the possibility of
manual intervention) and automated support for model modifi-
cations. For these purposes, we plan to explore the possibilities
of involving artificial intelligence, particularly large language
models (LLMs). It also assumes tool support, which we will
continue to work on.
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[9] R. Kočı́ and V. Janoušek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309–315.
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