ICSEA 2024 : The Nineteenth International Conference on Software Engineering Advances

On the Object Oriented Petri Nets Model Transformation into Java Programming
Language

Radek Koci

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence
Bozetechova 2, 612 66 Brno, Czech Republic
email: koci@fit.vut.cz

Abstract—Nowadays, high-level languages and approaches to
software design and implementation are often used. The main
reasons for this are the possibility of faster and more efficient
design and more efficient verification of the design produced.
To deploy a system created in this way, either a framework
can be used to handle the formalism used or the design can
be transformed into a programming language or lower-level
formalism. In this paper, we focus on the Object Oriented Petri
Net (OOPN) formalism and introduce the idea of transforming
OOPN models into the Java programming language.

Keywords—Object Oriented Petri Nets; model transformation;
Java.

I. INTRODUCTION

The key activities in system development are specification,
testing, validation, and analysis (e.g., performance or through-
put). Most methodologies use models for system specification,
i.e., to define the structure and behavior of the system under
development. There are different kinds of models, ranging
from low-level formal-based models to purely formal models.
Each kind has its advantages and disadvantages. Less formal
models, e.g., Unified Modeling Language (UML), allow the
basic concepts of a system to be quickly described; on the
other hand, they do not allow the correctness or validity of
the system to be verified through testing or formal methods
— the system must be implemented before it can be tested.
More advanced approaches, e.g., Executable UML (ExUML)
or Model Driven Architecture (MDA) [1], allow models to
be simulated, i.e., provide simulation testing. Purely formal
models, e.g., Petri nets, allow formal or simulation approaches
to be used for testing, verification, and analysis.

Model and Simulation-Based System Design (MSBD) refers
to a set of techniques and tools for developing software
systems that are based on formal models and simulation
techniques. It aims to improve the efficiency and reliability
of development processes, including software system deploy-
ment. One way to increase the efficiency and reliability of
development processes is to work with high-level languages
and models throughout the development process. In traditional
system development methodologies, models are typically cre-
ated in the analysis and design phases and are input in the
implementation phase. The system code is implemented man-
ually by reflecting the created models or by transformations.
The fundamental problem with model transformations is often

the impossibility of a fully automated process and, therefore,
the mismatch between models and their implementation. The
transformed code needs to be modified manually, and these
changes are not fully reflected in the models. However, if we
use a formalism that allows us to include parts of the code, the
resulting transformed code does not need further modification.
The Object Oriented Petri Nets (OOPN) language is one of
these formalisms. This paper focuses on transforming models
described by the OOPN formalism into the Java programming
language.

There are many approaches in the field of code generation.
One direction [2]-[4] generates models in the chosen language
from UML models, usually from a class diagram. Other work
[5] transforms different levels of diagrams. Still, other ap-
proaches attempt to transform conceptual models described in,
e.g., SysML into simulation models [6]. There are approaches
working with simplified variants of UML models (xUML or
fUML) from which it is possible to generate the resulting
system more precisely [7][8]. However, freely available tools
allow only partial output (often, only a skeleton in the chosen
language is generated). The approach closest to ours is based
on the Network-within-a-Network (NwN) formalism, with
which the Renew [9] tool is associated. NwNs combine Petri
nets and the Java language, and models are directly translated
into Java. Our approach works with Smalltalk, which can be
transformed into Java or C++, or we can directly use these
languages for inscription. Our goal is to create a more efficient
representation of models for deployment on commonly used
platforms and languages (Java, C++).

The paper is structured as follows. In Section II, we intro-
duce the basics of the OOPN formalism. Section III describes
the basic structure of the OOPN, which is subject to the
transformation whose basic principle is described in Section
IV. Chapters V and VI discuss the essential element of the
transformation, the component, and its runtime in the Java
environment.

II. OBJECT ORIENTED PETRI NETS FORMALISM

An OOPN is a set of classes specified by high-level Petri
nets [10]. Formally, an OOPN is a triple (3, ¢g, 0idy) where
Y is the class set, cg is the initial class, and oidy is the name
of the initial object of cg. A class is determined primarily by
the object net and the set of method nets. Object nets describe

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-194-7

38

ICSEA 2024 : The Nineteenth International Conference on Software Engineering Advances

the possible autonomous actions of objects, while method nets
describe the reactions of objects to messages sent to them from
outside.

— COis_aPN — Clis_aPN
I— emp‘y—l |_get: ° —I ; doFor: x
o ix t1 p1
° ¢ = CO0 new. T’O
X init: x p2 c init: x. IC Q
- o 1 13 N cget:n
; cem e —ean
it o] SERY | [s=s+n
H X#e !
‘ #e sl S s ‘J S
o1 ' p2
............... \\—//return

return

Figure 1. Example of the OOPN model.

An example illustrating the essential elements of the OOPN
formalism is shown in Figure 1. Two classes are depicted, CO
and CI. The object net of the class CO consists of places pl
and p2 and one transition #/. The object net of the class C/
is empty. The class CO has a method init:, a synchronous port
get:, and a negative predicate empty. The class CI has the
method doFor:. An invocation of the method doFor: leads to
the random generation of x numbers and a return of their sum.

Object nets consist of places and transitions. Each place
has an initial marking. Each transition has conditions (i.e.,
inscribed test arcs), preconditions (i.e., inscribed input arcs),
guard, action, and postconditions (i.e., inscribed output arcs).
Method nets are similar to object nets, but each net has a
multiplicity of parameter places and the return place. Method
nets can access the places of the corresponding object nets to
allow running methods to change object states.

Synchronous ports are special (virtual) transitions that can-
not be executed independently but are dynamically joined to
some other transitions that activate them from their guards via
messaging. Each synchronous port contains a set of condi-
tions, preconditions, and postconditions over the places of the
corresponding object nets, a guard, and a set of parameters.
Thus, synchronous ports combine the concepts of transitions
(must satisfy preconditions and guards; when a synchronous
port is invoked, postconditions are executed) and method net
(must be invoked from the guard of another transition). The
parameters of an activated synchronous port s can be bound
to constants or unified with variables defined at the transition
level or port that activated the port s.

Negative predicates are special variants of synchronous
ports. Their semantics are reversed - the calling transition is
executable if the negative predicate is not.

III. BASIC STRUCTURE

Objects create a network of dependencies through their
links, which gradually arise and disappear. On the other hand,
the internal nets of an object (object net or method nets)
have a clearly defined structure that defines actions and the
conditions under which actions can be performed. Each net
contains transitions and places. Transitions represent actions

whose execution is conditioned on both the existence of the
corresponding objects at the entry points and the guarding of
the transition. The guard defines the conditions imposed on
objects entering the transition. If these conditions are not met,
the transition cannot be executed (fired). A transition may be
evaluated as feasible and executed for different objects avail-
able at the entry points satisfying the guard conditions. Thus,
a transition can be viewed as a special kind of component
that is dynamically duplicated when the transition is executed
and terminates after the last transition action is executed. Thus,
transitions, or their execution, represent the internal parallelism
of the nets.

Place
+satisfy(cmd:Function<PNObject, PNObject>)
ReturnPlace

+isEmpty ()
+put() Y
+remove () +getl)
+add ()
+get ()
<<interface>>
PNObject < - T _
+send(msg,arg,...): PNObject
Transition
+guard(): boolean
+action(): void
+copy(): Transition

Figure 2. Basic Java classes for OOPN transformation.

Figure 2 shows the basic structure of classes and interfaces
required to transform OOPN models into Java. The class Place
represents the collection corresponding to a place. In addition
to the standard and expected operations for adding, retrieving,
and deleting elements, it contains an operation for evaluating
a condition placed on the collection’s contents. The condition
is represented by a function (the Java functional interface
Function). When the condition is met, the operation returns
an object from the collection that satisfies the condition. The
special class ReturnPlace represents the return place of the
method nets. It overrides the get method, which is blocking
here (it waits for the object to be inserted into the collection,
i.e., for the called method to terminate). The meaning of the
other elements will be explained in sections IV and V.

pit pi
a

a

a>=10

a<10
code2

codet

p2
Figure 3. Example: Object net of the class Cl1.
Consider the simple example in Figure 3. This is an object

net of class Cl1 consisting of two transitions conditioned on
places pll and pl, each transition having in addition its

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-194-7

39

ICSEA 2024 : The Nineteenth International Conference on Software Engineering Advances

feasibility condition (guardl: a >= 10 and guard2: a < 10).
The result of each transition execution is placed at place p2.
Thus, executing this net produces a copy of component t1 (for
binding a = 5 and b = 10) and a copy of component t2 (for
binding a = 15).

IV. STRUCTURE TRANFORMATION

A view of the transition as a component can be used to
transform the model into a programming language, in this case,
Java.

public class Cl extends PN {
protected Place pll;
protected Place pl;
protected Place p2;
public C1() {

pll = new Place (this);

pl = new Place (this);

p2 = new Place (this);

class T_1 extends Transition { ... }
T_1 t1 = new T_1();

class T.2 { ... }

T 2 tl = new T_2();

tl.precond(pll,
t2 .precond(pl);
pl.add(5;
pl.add(15);
pll.add(10);

pl);

Figure 4. Translation of the OOPN model of class C1 into Java.

For each transition, a class derived from the Transition
class is generated, containing methods to verify the input
conditions (guard) and a method containing the actual actions
of the transition (action). A place corresponds to an unordered
collection of objects from which objects can be read and
removed, and new objects can be added. The principle of
model translation is shown in Figure 4. It presents a basic
structure of Java code based on the model example shown in
Figure 3. The following section will describe each aspect of
the code.

The class is always derived from the PN class, which
provides the primary means for object handling and com-
munication. The object net is represented by a parameterless
constructor (if a constructor is used in the model, the generated
constructor in Java is adapted to this). The object net’s places
can be considered attributes (object variables) of the object,
and their declarations are therefore placed in the member fields
space. They are then initialized in the constructor, i.e., an
instance of the Place class representing a type of collection is
created. As will be shown later, it is through the place, or by
inserting objects into the place, respectively, that invoke the
check for satisfiability of transition (component) conditions;
the place must pass information about the object through the
constructor.

public PNObject m(PNObject pl) {
Place ret = new ReturnPlace ();
// Transition::action —=> ret.put(result);

return ret.get();
Figure 5. Example of the method translation into Java.

The OOPN object method has a structure similar to an
object net. It differs in the following aspects. It can have input
parameters that are modeled as places in OOPN. However,
since only one object can be inserted into a place when the
method is invoked, a variable can be used directly in the
generated method. The method can also return an object as its
result. In the OOPN model, such a return object is placed into
a place named return by performing some transition. Thus, the
method must wait before placing the object in the return place.
A special ReturnPlace class with a blocking get() method
is provided for this purpose. The method will wait until at
least one object is inserted into the place. An example of the
skeleton of the generated method is shown in Figure 5.

V. COMPONENT DEFINITION

Figure 6 shows an example of a component generated by
the transition. The component takes the form of a class derived
from the Transition class. The implementation of the guard and
action methods depends heavily on the model. The binding of
variables from input places is reflected in the guard method.
In this example, the input places are checked to see if they
are empty and if there is an object that satisfies the condition
given by the guard of the transition tl. If these conditions are
met, the corresponding objects are stored in the component
variables, and the guard method is terminated successfully.
Following the success, the component’s copy is then executed.

Because the OOPN language is typeless, the common type
of all variables is the PNObject class, and communication,
i.e., sending messages, must be done specially. PNObject is
the interface implemented by the PN class and, thus, by all
OOPN classes. However, we must consider that models also
work with other objects (e.g., primitive Java data types and
other Java classes). Therefore, we need wrappers for objects of
these classes that implement the PNObject interface to ensure
compatibility. The messaging is done via a special protocol
(see the call message in Figure 6), ensuring proper redirection
to the target object.

VI. COMPONENT EXECUTION

The question is how to verify the feasibility of transitions,
i.e., the execution of component actions. Repeatedly testing
the satisfaction of conditions is obviously inefficient and
completely inappropriate. For these purposes, the Observer
design pattern can be used. Each place knows the transitions
(components) whose feasibility it affects. At the moment of

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-194-7

40

ICSEA 2024 : The Nineteenth International Conference on Software Engineering Advances

class T_1 extends Transition {

private PNObject a;

private PNObject b;

public boolean guard() {
// guardl: a >= 10
if (pll.isEmpty()) return false;
if (pl.isEmpty()) return false;
a = pl.satisfy ((o) —=> o.send(”>=",
if (a == null) return false;
b = pll.remove();
pl.remove(a);
return true;

10));

public void action () {

// codel: y = a + b
PNObject y = a.send(”+”, b);
p2.put(y);
public Transition copy() {
T_1 t = new T_1();
t.a = a;
t.b = b;
return t;

Figure 6. Implementation of generated transition t1.

change (it is sufficient to watch for the addition of an object to
the place), it notifies all connected components, which verify
their state. Access to these collections must be synchronous,
as each component is generally expected to run in its thread,
and hence, concurrent access may occur. Since verifying the
conditions to trigger a transition action (component) must
be an atomic operation, a method similar to event-driven
programming can be chosen for synchronization. Each object
contains a control thread in which the verification of the
conditions of all object transitions, i.e., the object net and the
method nets, is performed. Since only these nets can access
the object places, this will guarantee exclusive access and
atomicity of each verification. The control thread is created
and started when an instance of the corresponding class is
created, and requests for verification of transition feasibility
conditions are only processed in its code. The disadvantage of
this approach is that the thread exists even after the object is
no longer needed and could be removed from memory.
Another approach is to use a monitor that is implicitly
available in Java. When invoking condition validation, the
object monitor protects the relevant actions within which the
places (whether of object net or method nets) are accessed. The
monitor object is passed by the constructor when creating an
instance of the Place class. A code sample is shown in Figure
7. Each registered transition for which a given place is an input
condition is tested for feasibility (called its guard method). If
the transition is evaluated as feasible, its action (through the
action method) is executed in a separate thread; the executor’s
service is used via the PNSystem class. Since the component
action can be executed simultaneously for different bindings,
we need to run the action method of the component copy with

void add (PNObject obj) {
synchronized (monitor) {
Integer ¢ = content.get(obj);
c = (c!=null) 2 ¢c+1 : 1;
content.put(obj, c);
for (Transition t
if (t.guard()) {
Transition tt = t.copy();
PNSystem.execute (() —> tt.action ());

}

observers) {

}
}
}

Figure 7. The class Place, method add(PNObject).

the current binding in the thread. The copy method is used for
this purpose.

VII. CONCLUSION

This paper aimed to outline the possibilities of transforming
the models described by the OOPN formalism into Java.
The resulting code does not need to be further modified
because the original model allows the use of the code and
also objects from the target environment (in our case, Java).
The basic principle is quite simple. However, the efficiency of
the translated code depends on the analysis of transitions and
appropriate optimization techniques. For example, the place
corresponding to the input parameter of a method does not
need to be generated as a collection because it can contain at
most one object. For the same reason, a dependent transition
can be executed almost once.

If we include the declaration of [10] types in the OOPN
model or automated type derivation, it is possible to replace
the generic PNObject type with a specific type in the gener-
ated code and thus interact with objects directly by sending
messages.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-23-8151.

REFERENCES

[1] C. Raistrick, P. Francis, J. Wright, C. Carter, and 1. Wilkie, Model Driven
Architecture with Executable UML. Cambridge University Press, 2004.

[2] T. Hussain and G. Frey, “UML-based Development Process for IEC
61499 with Automatic Test-case Generation,” in IEEE Conference on
Emerging Technologies and Factory Automation. 1EEE, 2010.

[3] C. A. Garcia, E. X. Castellanos, C. Rosero, and Carlos, “Designing
Automation Distributed Systems Based on IEC-61499 and UML,” in
Sth International Conference in Software Engineering Research and
Innovation (CONISOFT), 2017, pp. 61-68.

[4] 1. A. Batchkova, Y. A. Belev, and D. L. Tzakova, “IEC 61499 Based
Control of Cyber-Physical Systems,” Industry 4.0, vol. 5, no. 1, pp. 10—
13, November 2020.

[5] S. Panjaitan and G. Frey, “Functional Design for IEC 61499 Distributed
Control Systems using UML Activity Diagrams,” in Proceedings of the
2005 International Conference on Instrumentation, Communications and
Information Technology ICICI 2005, 2005, pp. 64-70.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-194-7

41

ICSEA 2024 : The Nineteenth International Conference on Software Engineering Advances

[6]

[7]

[8]

G. D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anag-
nostopoulos, “Model-based system engineering using SysML: Deriving
executable simulation models with QVT,” in IEEE International Systems
Conference Proceedings, 2014, pp. 531-538.

F. Ciccozzi, “On the automated translational execution of the action
language for foundational uml,” Software and Systems Modeling, vol. 17,
no. 4, p. 1311-1337, 2018, doi: 10.1007/s10270-016-0556-7.

E. Seidewitz and J. Tatibouet, “Tool paper: Combining alf and
uml in modeling tools & an example with papyrus,” in 15th
Internation Workshop on OCL and Textual Modeling, MODELS
2015, pp. 105-119, [retrieved: August, 2024]. [Online]. Available:

[9]

[10]

http://ceur-ws.org/Vol-1512/paper09.pdf

L. Cabac, M. Haustermann, and D. Mosteller, “Renew 2.5 - towards a
comprehensive integrated development environment for petri net-based
applications,” in Application and Theory of Petri Nets and Concurrency
- 37th International Conference, PETRI NETS 2016, Torur, Poland,
June 19-24, 2016. Proceedings, 2016, pp. 101-112. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-39086-4_7

R. Koéi and V. Janousek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309-315.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024.

ISBN: 978-1-68558-194-7

42

