
OSS-Fuzzgen: Automated Fuzzing of Open Source Java Projects

Sheung Chi Chan
Ada Logics

London, England, UK
arthur.chan@adalogics.com

Adam Korczynski
Ada Logics

London, England, UK
adam@adalogics.com

David Korczynski
Ada Logics

London, England, UK
david@adalogics.com

Abstract—OSS-Fuzz is an open source service for managing the
fuzzing of open source projects. Open source projects integrate
into OSS-Fuzz by adding a set of fuzzing harnesses targeting their
project and relevant build logic for the OSS-Fuzz infrastructure.
OSS-Fuzz will then build and run these harnesses continuously
and report when finding any security or reliability issues. To date,
OSS-Fuzz has reported tens of thousands of bugs in software
and the list is continuously growing. Unfortunately, the process
of integrating projects into OSS-Fuzz is still largely manual
and both the creation of fuzzing harnesses and build setup are
time-consuming tasks. In this paper, we propose OSS-Fuzzgen,
a system that can automatically generate OSS-Fuzz integrations
for open source Java projects, including fuzzing harness synthesis
and build infrastructure generation. The input to OSS-Fuzzgen
is a GitHub URL to a given open source project. The output
is a list of ranked OSS-Fuzz integration candidates that can be
run by OSS-Fuzz. We empirically evaluate our setup by running
the system through more than 200 open source projects, which
resulted in more than 100 generated OSS-Fuzz integrations. We
manually inspect the results and submit 31 of these to OSS-
Fuzz resulting in more than 50 reported bugs across the 31
projects. For 11 of these bugs, we submitted fixes to the relevant
open source projects, and 9 fixes were accepted and merged into
the upstream open source project. We have open-sourced OSS-
Fuzzgen and the code is available on GitHub[1].

Keywords—OSS-Fuzz; Fuzz-Introspector; Java; fuzzing; secu-
rity testing; libfuzzer.

I. INTRODUCTION

Fuzzing is an effective technique for finding security and re-
liability issues in software. The high-level idea behind fuzzing
is to pass arbitrary inputs to a given application and monitor if
unexpected behaviour happens. There are many success stories
from fuzzing, both in terms of finding difficult-to-catch issues
and also rapidly catching regressions in software. OSS-Fuzz is
an open source fuzzing service that currently manages fuzzing
infrastructure for more than 1000 widely used open source
projects and has reported tens of thousands of security and
reliability bugs in these projects[2][3].

To integrate fuzzing in a project, coverage-feedback fuzzing
specifically, the general approach is to write fuzzing harnesses
that execute the target software package with input seeded by
data from the fuzzing engine. In coverage-guided fuzzing, a
harness is a small program that aims to explore the target
code base by continuously mutating its input and collecting
seeds (inputs) that trigger unique code execution in the target.
They are often similar to unit tests, but instead of testing
a specific input, the harnesses test a generalised domain of
inputs, and the domain is often much larger than what is
feasible to brute-force, e.g. arbitrarily large buffer, hence the

use of genetic mutational algorithms in the fuzzing engine.
During execution, the fuzzing engine observes the execution
of the target code and uses coverage data to guide the input
generation and mutation, resulting in the creation of inputs to
the fuzzing harness that incrementally explore the target code
base[4].

The harnesses comprise a central role when fuzzing a
software package and many projects have several harnesses to
trigger different parts of the project’s code base. For example,
OSS-Fuzz has around 1100 projects integrated into the fuzzing
service but runs more than 4500 fuzzing harnesses daily[5].
Another central component when fuzzing is to have a build
infrastructure in place that makes it possible to build the
target software using an environment that supports fuzzing.
Specifically, the target codebase needs to be instrumented
appropriately, which happens during the compilation stage and
the harnesses need to be appropriately linked to the project.

The process of writing harnesses for a software package as
well as constructing the built environment that makes fuzzing
possible is cumbersome and time-consuming. It can often take
several weeks to integrate fuzzing into medium-sized software
packages, and many years to integrate fuzzing into extensive
code bases such as modern browsers or operating systems.
Furthermore, despite the success of OSS-Fuzz fuzzing more
than 1100 software packages continuously, there remain tens
of thousands of open source software packages that are not
being fuzzed.

There has been efforts into automating fuzzing harness
writing[6][7][8][9][10][11] and also related efforts for infer-
ring API specifications[12][13]. In general, a fuzzing harness
requires the effort from OSS-Fuzz to observe and mutate the
input to extensively cover the underlying code base of the
target projects. Otherwise, there is no difference compared
to unit testing. These efforts are, however, not targeted open
source projects and are only generating fuzzing harnesses
but not the full OSS-Fuzz integrations. Some of the efforts
require manual studying of the target projects to specify target
methods or classes for the fuzzing harnesses generation. This
setting makes it difficult to automatically generate the full
OSS-Fuzz integration and requires extensive manual efforts
before and after the automatic generation process.

In this paper, we introduce OSS-Fuzzgen, a system for au-
tomatically generating OSS-Fuzz integrations for open source
Java projects. Our system takes as input a list of GitHub
repositories and will output a set of fuzzing harnesses and
build infrastructure for the projects such that the projects

51Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



can be fuzzed by way of OSS-Fuzz. Our system relies on
static and dynamic program analysis techniques, which are
developed as extensions to Fuzz Introspector[14]. To verify
our system, we present an empirical evaluation of running our
system against 257 open source projects which resulted in
more than 100 possible project submissions to OSS-Fuzz. We
submit 31 resulting projects with high coverage and fuzzing
performance to OSS-Fuzz. For several of the bugs found by
the generated harnesses, we reported them to the relevant open
source projects, which confirmed that the bugs found were
legit and accepted our patches to fix the issues.

Contributions This paper makes the following contribu-
tions:

• We present a novel system for automatically synthesising
Java fuzzing harnesses.

• We present the first system to automatically construct
OSS-Fuzz project integrations.

• We present an extensive empirical evaluation of more
than 200 open source projects and verify that our system
finds real bugs in widely used Java projects.

The remainder of this paper is structured as follows. In
Section II, we introduce the OSS-Fuzz and Fuzz Introspector
services. In Section III, we give an overview of the OSS-
Fuzzgen tool. In Section IV, we illustrate the detailed design
of the OSS-Fuzzgen tool. In Section V, we give details of
the empirical evaluation of the OSS-Fuzzgen tool. We then
discuss the limitation and future enhancement plan for the
OSS-Fuzzgen tool in Section VI and conclude the paper in
Section VII.

II. BACKGROUND

In this section, we introduce OSS-Fuzz and Fuzz Introspec-
tor, each comprising a central role in our system. Specifically,
our solution is built as an extension to Fuzz Introspector while
we rely on OSS-Fuzz as the runtime environment for our
generated harnesses.

A. OSS-Fuzz

OSS-Fuzz[2] is a free online service that manages the
execution of fuzzing harnesses for open source projects. The
process for integrating into the service is that an open source
project develops a set of fuzzing harnesses targeting the project
and also some necessary glue for OSS-Fuzz to build these
harnesses. This glue is composed of a project.yaml file with
metadata, a Dockerfile to construct the container in which the
harnesses are built and also a shell script, build.sh, that holds
the commands for building the target project and harnesses
inside the container.

To submit the project for OSS-Fuzz integration, a pull
request is made to the OSS-Fuzz repository with the specific
glue in the dedicated project directory. Once the pull request is
merged OSS-Fuzz will daily build the fuzzing harnesses using
the latest upstream code. OSS-Fuzz then runs these harnesses
for an extended period and reports to the people listed in
the project.yaml metadata if any of the harnesses find any
bugs. OSS-Fuzz provides the infrastructure to build and run

harnesses locally for each project integrated into OSS-Fuzz. In
this way, there is a unified interface for building and running
more than 4500 fuzzing harnesses spread across more than
1100 projects.

B. Fuzz Introspector

Fuzz Introspector[14] is a tool for providing introspection
capabilities into the fuzzing of a given software package. Fuzz
Introspector can, for example, analyse the static reachability
of fuzzing harnesses, find candidate methods in the target code
that are likely good targets for fuzzing and combine runtime
code coverage data with static analysis capabilities to identify
potential runtime blockers for the fuzzing harnesses [15].

Fuzz Introspector is architecturally split between multiple
frontends and a single backend. The frontends are language-
specific static analysis tools, often in the form of compiler
extensions, which extract data about the software under anal-
ysis. The Java frontend of Fuzz Introspector is built on top
of SOOT[16] and this is the primary component of Fuzz
Introspector that OSS-Fuzzgen uses.

III. OSS-FUZZGEN OVERVIEW

OSS-Fuzzgen takes as input one or more URLs to a given
set of open source projects on GitHub. OSS-Fuzzgen outputs
a set of OSS-Fuzz integrations for each of the provided open
source projects, where each integration includes the base OSS-
Fuzz files (Dockerfile, build.sh and project.yaml) and a fuzzing
harness. Each of these integrations can be built and run locally
using the OSS-Fuzz setup.

The mechanics behind OSS-Fuzzgen are divided into five
sequential stages, and these five stages happen for each open
source project input to OSS-Fuzzgen:

• Stage 1: Build system generation. This stage creates
a build system comprising the OSS-Fuzz Dockerfile and
build.sh to build the target codebase. The challenge of
this stage is to automatically build a Java project purely
based on the GitHub URL.

• Stage 2: Target project static analysis. This stage
uses static program analysis to extract details, such as
method signatures, of the target code which can be used
for fuzzing harnesses generation. This stage relies on
building the target code and performing static program
analysis during the building.

• Stage 3: Fuzzing harness generation. This stage takes
as input the data generated from Stage 2, and uses it
to generate a candidate set of fuzzing harnesses. These
harnesses are Java source code files that can be linked to
the target’s project build artefacts.

• Stage 4: Fuzzing harness validation. This stage com-
bines the output from stage 1 and stage 3 into a set of
candidate OSS-Fuzz project integrations and then builds
and runs the fuzzing harness for each candidate project.
The output of this stage is a set of logs showing the
result of running the fuzzing harness for each candidate
integration.

52Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



• Stage 5: Fuzzing harness integration ranking. This
stage interprets the output from stage 4 and ranks each
of the candidate OSS-Fuzz integrations. The output of
this stage is a list of viable OSS-Fuzz integrations that
are ranked according to which is the best integration.

IV. OSS-FUZZGEN DESIGN

This section describes the stages of OSS-Fuzzgen in de-
tail, including implementation details and higher-level design
decisions.

A. Stage 1: Build system generation

The first stage generates the OSS-Fuzz Dockerfile and
build.sh, which are used to build the project in the OSS-Fuzz
container image. The general problem to be solved is how
to build a given arbitrary Java project and instructions for
building fuzz harnesses against the project’s build artefacts.

Java projects can be built in many different ways, such as
directly compiled by Javac or using managed build systems
like Maven or Gradle. To this end, OSS-Fuzzgen supports
three build systems Maven, Gradle and Ant. OSS-Fuzzgen has
heuristics for recognizing which build system is used by the
target project by traversing the files of the target repository
in the search for build files related to each build system.
Specifically, OSS-Fuzzgen looks for pom.xml for Maven,
build.gradle or build.gradle.kts for Gradle and build.xml for
Ant. If multiple build properties exist, it indicates that the
project can be built using multiple different build systems,
OSS-Fuzzgen will use the first supported build system from
the order: Maven, Gradle, Ant.

In addition to the build system, OSS-Fuzzgen needs to
support different versions of the Java Development Kit (JDK).
The default JDK version adopted by OSS-Fuzz is OpenJDK-
15 at the time of writing. However, many projects require a
different version of JDK to compile. To support this, OSS-
Fuzzgen tries building the project using different versions
of JDK until a successful build is found. The order of the
JDK used are OpenJDK-15, OpenJDK-17, OpenJDK-11 and
OpenJDK-8 and OSS-Fuzzgen will record and use the first
successful build.

Finally, in addition to the build system and JDK version, an
important step is identifying the class and jar files produced
by the project, as these are necessary when linking fuzzing
harnesses to the code. To support this, OSS-Fuzzgen traverses
the folder of the project post-building to find the class files
generated by the build and packs these class files into a single
jar file. Additionally, OSS-Fuzzgen locates possible project
jars, including dependencies, and moves them to a suitable
classpath location so the generated fuzzing harnesses can use
them.

B. Stage 2: Target project static analysis

The next task is to extract information about the target code
for generating fuzzing harnesses. To do this, OSS-Fuzzgen
relies on the Java frontend of Fuzz Introspector to retrieve
a list of methods and classes of the target project. The list

includes type information for each function, including both
return type and argument types.

The Java frontend logic analyses the project’s class and
jar files, including third-party dependencies. However, OSS-
Fuzzgen is not interested in generating harnesses for third-
party dependencies, and, therefore, limits the analysis to the
code within the source code directory of the target project.
This is achieved by introspecting the source code location of
the methods and classes within the jar files.

The static analysis component depends on the Soot frame-
work, and a limitation of this is that the Soot framework fails
to discover generic types and lambda expressions in the target
code. For this reason, OSS-Fuzzgen can only generate general
parameters for methods requiring generic type parameters or
lambda expressions as input.

Following the static program analysis step, OSS-Fuzzgen
creates a base OSS-Fuzz project integration directories and
generates the correct set of base files from the template and
the build configurations obtained in stage 1. OSS-Fuzzgen also
includes an empty base fuzzing harness in the directory. At this
point, OSS-Fuzzgen has created a Dockerfile, build.sh and a
fuzzing harness, although the fuzzing harness is empty. The
setup can now be tested in the OSS-Fuzz container images.

C. Stage 3: Fuzzing harness generation

This stage uses the output of the static analysis stage to
create fuzzing harness source codes and combine them with
the build artefacts from stage 1 to create working OSS-Fuzz
integrations. To do this, OSS-Fuzzgen uses three steps to
transform the raw data from Fuzz Introspector to a set of
candidate OSS-Fuzz integrations, each with a fuzzing harness
targeting the project.

The first step is extracting the specific methods in the target
code to add metadata describing how to call these methods.
Fuzz Introspector iterates through all the possible methods
and classes in the project where each method may require
different handling to execute. For example, some methods may
be declared static which allows direct invocation, and some
methods may require object creation or other code initializa-
tion. Furthermore, some methods may be class constructors or
throw exceptions that need specific handling. This step extracts
this information from the Fuzz Introspector result and groups
the target methods accordingly.

The second step is filtering methods to reduce the candidate
set of target methods. It is not uncommon for a medium-sized
Java project to have more than a thousand methods, where
many of them are not good targets to fuzz. OSS-Fuzzgen
applies four filters to discard non-relevant methods:

• Inaccessible methods filter. This filter discards inacces-
sible classes and methods. This includes abstract classes,
interfaces or protected / private elements which are not
accessible by fuzzing harnesses and will likely fail in the
fuzzing harnesses validation stage.

• Helper methods filter. This filter discards methods that
do not have a lot of complexity. This includes general

53Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



methods from the Object class, methods with no param-
eters or helper methods that only get or set variables.

• Out-of-scope methods filter. This filter discards methods
that do not belong to the target project. Some projects
include third-party dependencies in their resulting jar
files. OSS-Fuzzgen identifies the source code location for
the target project and filters out all methods and classes
which are not part of the source files for the target project.

• Method call-depth filter. This filter discards methods
that may be hit by other possible entry points. Specifi-
cally, OSS-Fuzzgen extracts the call tree of each method
and discards methods if other possible entry points will
reach the given method. This filter consists of two stages.
The first stage sorts all target methods by calling tree
depth descendingly. Target methods with deeper call trees
likely cover more logic which is a desired property when
fuzzing. OSS-Fuzzgen then keeps the top 20% of the
sorted method target list. The second stage adds any
methods that are not called by any other methods, as
these are considered public APIs which are determined
to be good candidates for fuzzing.

Following the filtering step, OSS-Fuzzgen now has the list
of method candidates to target and metadata on how to invoke
each of these methods. Next, OSS-Fuzzgen proceeds to apply
10 heuristics for creating fuzzing harnesses against the target
methods. These heuristics create a fuzzing harness that calls
the target method in a manner where the arguments to the
method are seeded with fuzzer-provided data. Some of these
heuristics may produce code that won’t run for a given target
method.

The idea behind this step is to generate a lot of potential fuzz
harness candidates and then use runtime evaluation later in the
process to assess the quality of each harness. These heuristics
are summarised in Table I. We came up with these heuristics
by studying the existing OSS-Fuzz projects and abstracting
existing fuzzing harnesses into higher-level code patterns.

In addition to creating the logic around the heuristics, OSS-
Fuzzgen adds possible exception handling by traversing the
call tree of each method, as well as including the import
statements necessary for the code. OSS-Fuzzgen augments
the code with comments that indicate the target methods and
heuristics used.

Heuristics 1-4 are simple heuristics that consider different
ways to execute static methods and instance methods directly.
Static methods can be invoked directly while instance methods
require object initialisation. For these four heuristics, OSS-
Fuzzgen handles methods with up to 20 parameters where the
parameters have to be primitive types, an array of primitive
types and String (or CharSequence in general). Each argument
is seeded with data from the fuzzing engine.

Heuristics 6-10 are more complicated than heuristics 1-4.
Heuristic 6 considers some method execution that requires
prerequisite settings and auto-discover possible settings meth-
ods and invokes them before the target method is executed.
Heuristic 7 considers testing the consistency of method calling
of some supposedly deterministic method. Heuristic 8-10

TABLE I. HEURISTICS FOR GENERATING FUZZING HARNESSES

Heuristic 1 Each possible target contains a fuzzing harness calling
to one of the static methods in the target method list
directly.

Heuristic 2 Each possible target contains a fuzzing harness calling
to one of the instance methods in the target method
list after the creation of the required object with the
object constructor. It will search for a constructor from
the subclass if the target object is an abstract class or
interface.

Heuristic 3 Each possible target contains a fuzzing harness calling
to one of the instance methods in the target method list
after the creation of the required object using a static
method like get instance or else.

Heuristic 4 Each possible target contains a fuzzing harness calling
to one of the instance methods in the target method
list after the creation of the required object with static
or instance factory methods. It will also create an
instance of the class containing the factory methods
if necessary.

Heuristic 6 Similar to Heuristic 2-4, but before the target method is
called, some setting methods will be called to simulate
the case that some methods have some prerequisite
method before the real execution logic.

Heuristic 7 Similar to Heuristic 2-4, but it will execute the target
method twice and compare the result to fuzz for a
deterministic result.

Heuristic 8 Similar to Heuristic 2-4, but it will handle enum type
parameters with random choice of enum value.

Heuristic 9 Similar to Heuristic 2-4, but it will handle parameters
that request a static number of choices.

Heuristic 10 Similar to Heuristic 2-4, but it will handle class type
parameters of the target method.

Heuristic 11 Each possible target contains a fuzzing harness calling
to one of the class constructors from classes in the
project, excluding throwable classes or test classes.

considers complicated parameters in addition to simple object
creation, primitive types, an array of primitive types and string
considered in heuristic 1-4. Those complicated parameter types
include Class object, Enum object and parameters that require
a fixed set of choices. Last but not least, heuristic 11 considers
various kinds of parameters for executing public and concrete
class constructors.

The result of this stage is a set of candidate fuzzing
harnesses where each of them is stored in an OSS-Fuzz
integration directory together with the generated Dockerfile,
build.sh and project.yaml. At this point, each of these direc-
tories represents a candidate OSS-Fuzz project.

A sample fuzzing harness is shown in Figure 1. The target
method in this example is feign.template.UriUtils::encode
and the heuristic applies is Heuristic 1. The heuristic simply
calls into the static method using arguments seeded with data
from the fuzz engine.

D. Stage 4: Fuzzing harness validation

Following the fuzzing harness generation, OSS-Fuzzgen has
assembled a list of possible fuzzing harness integrations. OSS-
Fuzzgen then validates each fuzzing harness by building and
running it using the wrapping OSS-Fuzz project integration.
The output from the runtime execution is logged and the
return value and messages are used to judge if the execution

54Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



import com.code_intelligence.jazzer.api.FuzzedDataProvider;
import feign.template.UriUtils;

// jvm-autofuzz-heuristics-1
public class Fuzz {
public static void fuzzerTestOneInput(FuzzedDataProvider data) {
// Heuristic name: jvm-autofuzz-heuristics-1
// Target method: [feign.template.UriUtils] public static java.lang.String
// encode(java.lang.String,boolean)
feign.template.UriUtils.encode(data.consumeString(100),data.consumeBoolean());
}

}

Figure 1. Sample fuzzing harness generated by OSS-Fuzzgen on feign.template.UriUtils::encode method of project feign using heuristic 1

is successful or not. The runtime execution time can be set by
the user of OSS-Fuzzgen and is by default set to 20 seconds.

OSS-Fuzzgen determines the status of the run with some
additional fuzzing statistics including coverage information.
These logs are stored in a separate directory together with a
summary.json recording key statistical data for later analysis
purposes. Both the building and running of the harness may
break, either due to limitations in the artefacts produced,
SOOT, Fuzz Introspector or the generated code.

E. Stage 5: Fuzzing harness integration ranking

The OSS-Fuzzgen results are ready to use after the fuzzing
harnesses validation phase, however, OSS-Fuzzgen may have
generated several hundred successful runs for any given
project. To aid the analysis and choosing of the best result to
be integrated into OSS-Fuzz, OSS-Fuzzgen also provides some
post-processing and summarization of data. OSS-Fuzzgen
ranks the possible targets according to the maximum code
coverage achieved and the maximum difference in coverage
between the start and finish of each fuzzing run.

OSS-Fuzzgen also comes with several utilities for extracting
an overview when analysing many open source projects at
the same time, to ease the efforts needed to identify the
best performing harnesses. The resulting OSS-Fuzz integra-
tion directories for each successfully generated target can be
integrated directly into OSS-Fuzz.

V. EMPIRICAL STUDY OF OSS-FUZZGEN PROCESS AND
GENERATED FUZZING HARNESSES

In this section, we present the empirical evaluation of our
work. The evaluation process consists of two experiments:
a large-scale study running OSS-Fuzzgen autonomously and
an extension of this study where we integrate a subset of
the successful projects into OSS-Fuzz with minor manual
additions.

A. Large scale evaluation

To empirically verify OSS-Fuzzgen, we ran it against 257
open source Java projects not covered by OSS-Fuzz yet. We
made an effort to pick popular Java libraries or frameworks,

where popularity was based on the number of GitHub Star
and GitHub Watch rankings. There were no UI applications
in the target projects and in general, we picked libraries that
are meant for use by applications rather than stand-alone
applications as such. To set up the experiment, we created a
text file containing the URLs to each of the 257 projects and
provided it as input to OSS-Fuzzgen. For the validation phase
of OSS-Fuzzgen, we set the fuzzing harnesses to run for 20
seconds. We divide the results into the following categories:

1) S1: Successful build and generate fuzzing harness. A
build script and some fuzzing harnesses were generated.
Fuzzing harnesses may not be runnable.

2) S2: Successful build and generate fuzzing harness
that runs. A build script and fuzzing harnesses were
generated. Some fuzzing harnesses are built and run
successfully.

3) S3: Successful build and generate fuzzing harness
that runs and increases coverage. A build script and
fuzz harnesses were generated. Some fuzzing harnesses
build and run successfully and explore more than one
code path within 20 seconds of execution.

TABLE II. RESULTS FROM RUNNING OSS-FUZZGEN ON OPEN
SOURCE SOFTWARE

# Total java project targets 257 100%
S1 Successful build and generate fuzzing harness 123 47%
S2 Successful build and generate fuzzing harness

that runs
116 45%

S3 Successful build and generate fuzzing harness
that runs and increases coverage

94 37%

Table II shows the results of our evaluation. Amongst
the 257 total targets, OSS-Fuzzgen succeeded in generating
project integrations that match category S2 for 116 (45% of
the total) projects. However, 22 of these generated projects
failed to increase coverage during the initial 20 seconds of
fuzzing harnesses validation, meaning a total of 94 projects
(37% of the total) got results matching group S3.

B. Submitting projects to OSS-Fuzz

The goal of OSS-Fuzzgen is to generate OSS-Fuzz integra-
tions that are useful in testing and fuzzing the code of the target

55Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



projects. To empirically validate this goal, we submitted 31 of
the 94 resulting OSS-Fuzz integrations where we picked those
projects with the most promising signs of code exploration.
We identified this by looking at the code coverage delta of the
harnesses achieved from the 20-second initial fuzzing run. The
goal was to monitor if the fuzzing harnesses found any issues
in the target projects and ensure the projects ran continuously.

Before submitting the generated projects to OSS-Fuzz, we
applied some manual efforts on several resulting projects.
First, when OSS-Fuzzgen generated multiple targets for a
given project, we hand-picked the best targets, in terms of
code coverage and target method call depth, and merged them
into a single directory. Second, sometimes the auto-generated
code may reveal additional entry points in the target code
that are good for fuzzing. For example, additional functions
that are fuzzable within the same class as an auto-generated
fuzzing harness, and we added these. Third, some of the
promising generated harnesses would run into issues early in
the execution due to missing initialization code and in these
cases, we added logic to the fuzzing harnesses that would
properly initialise the relevant logic. Finally, we went over
the auto-generated code to improve readability by e.g., setting
the names of variables appropriately and cleaning up code
formatting.

Amongst the 31 projects we submitted to OSS-Fuzz, we
received more than 50 bug reports. Commonly, projects with
issues have 2 to 3 issues reported whereas a few projects have
a significantly higher amount. For example, Joni has 7 bugs
reported, however, after root-cause analysis we found that they
are caused by triggering 2 core bugs via different entry points,
meaning the two bugs are triggered in a handful of ways.
The types of bugs found include out-of-memory errors, integer
overflow errors, regular expression Denial-of-Services, index
out-of-bounds errors for array or string accesses, and string
encoding errors.

TABLE III. UPSTREAM BUG FIXING STATUS

Projects # bug
fixes

Status

https://github.com/fusesource/jansi 2 Accepted
https://github.com/jruby/joni 2 Accepted
https://github.com/openfeign/feign 2 Accepted
https://github.com/virtuald/curvesapi 1 Accepted
https://github.com/xdrop/fuzzywuzzy 1 Accepted
https://github.com/graphql-java/graphql-java 1 Accepted
https://github.com/fasseg/exp4j 1 Submitted
https://github.com/locationtech/jts 1 Submitted

To verify that the issues found by the fuzzing harnesses are
valid, we performed a root-cause analysis of 11 of these from 8
different projects. Most of the bugs are invalid input checking
or memory overflow issues. We then generate bug fixes and
make pull requests with fixes on the relevant repositories.
9 bugs from 6 projects have been accepted and merged by
the project maintainers with positive comments. Table III
summarises the bug reports.

VI. LIMITATION AND FUTURE WORK

OSS-Fuzzgen has several limitations in the implementation
domain. First, extending the system to support more build
systems and more versions of JDK would enable more targets
to be processed. For almost half the projects tested OSS-
Fuzzgen created an OSS-Fuzz integration that builds the
project with a fuzzing harness that runs. Extending to further
JDK and build systems will likely increase this proportion.

Additionally, we can extend the system to support lambda
expressions and generic types for fuzzing harness generation.
To do this, we can migrate the existing Fuzz Introspector
frontend with SootUp[17].

A limitation in OSS-Fuzzgen is the scope of generating
fuzzing harnesses. Currently, it’s limited to 10 different heuris-
tics. We can extend this to support additional heuristics to
increase the possible set of fuzzing harnesses to generate.

An interesting avenue for improving fuzzing harness gener-
ation is extending the system with more general approaches.
For example, recent work has explored using Large Language
Models to generate fuzzing harness code which shows promis-
ing results[18].

To integrate the projects in OSS-Fuzz, we picked the best
projects constructed by OSS-Fuzzgen based on how much
a given integration achieved in code coverage exploration.
A limitation is that we made manual assessments in this
case, and further work would explore how we can improve
the ability to rank the auto-generated projects. This includes
features such as automatically identifying the threat model
of a project and matching this with auto-generated fuzzing
harnesses; automatically assessing how security-critical an
open source project is to enable selection of those where
vulnerabilities are most important and also include more data
from Fuzz Introspector as to how promising a given harness
is.

VII. CONCLUSION

In this paper, we introduce OSS-Fuzzgen, a first effort in
automatic OSS-Fuzz project integration. OSS-Fuzzgen enables
automatic fuzzing of open source Java projects by generating
fuzzing harnesses, constructing appropriate build scripts and
validating the generated harnesses to identify those that per-
form the best.

OSS-Fuzzgen significantly lowers the barrier of entry for
continuous fuzzing and to demonstrate these capabilities, we
ran OSS-Fuzzgen against a dataset of 257 open source Java
projects. As a result, OSS-Fuzzgen produced 116 valid OSS-
Fuzz project integrations with some fuzzing harnesses that
build and run. Furthermore, to prove the use of the generated
fuzzing harnesses we added 31 of these projects to OSS-Fuzz
which resulted in more than 50 issues being found. Finally,
we submitted bug fixes for 11 reported issues, 9 of which have
been accepted and merged by the open source projects.

In conclusion, OSS-Fuzzgen provides a good entry point
for open source project fuzzing. This setting could encourage
open source project maintainers to start fuzzing their projects

56Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances



and adopt OSS-Fuzz for continuous security issues and bug
discovery.

ACKNOWLEDGMENT

We would like to thank the OSS-Fuzz team for responding
to our issues on GitHub and reviewing our contributions. We
would also like to thank the maintainers who reviewed our
bug fixes.

REFERENCES

[1] “OSS-Fuzzgen.” https://github.com/AdaLogics/OSS-Fuzzgen, 2023. Re-
trieved: October, 2023.

[2] “OSS-Fuzz.” http://github.com/google/oss-fuzz, 2023. Retrieved: Octo-
ber, 2023.

[3] Z. Y. Ding and C. L. Goues, “An empirical study of OSS-Fuzz bugs,”
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp. 131–142, 2021.

[4] V. M. Manes, H. Han, C. Han, S. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, pp. 2312–2331, nov
2021.

[5] “Fuzzing Introspection of OSS-Fuzz projects.” https://introspector.
oss-fuzz.com/, 2023. Retrieved: October, 2023.

[6] D. Babic, S. Bucur, Y. Chen, F. Ivancic, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “FUDGE: Fuzz Driver Gen-
eration at Scale,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019.

[7] Y. Fu, J. Lee, and T. Kim, “autofz: Automated fuzzer composition
at runtime,” in 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023 (J. A. Calandrino and
C. Troncoso, eds.), USENIX Association, 2023.

[8] K. K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen: Auto-
matic fuzzer generation,” in 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020 (S. Capkun and F. Roesner, eds.),
pp. 2271–2287, USENIX Association, 2020.

[9] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim, and
Y. H. Hwang, “Utopia: Automatic generation of fuzz driver using unit
tests,” in 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023, pp. 2676–2692, IEEE, 2023.

[10] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated ran-
dom testing,” in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, (New
York, NY, USA), p. 213–223, Association for Computing Machinery,
2005.

[11] C. Rahalkar, “Automated fuzzing harness generation for library APIs
and binary protocol parsers,” 06 2023.

[12] M. Pradel and T. R. Gross, “Automatic generation of object usage spec-
ifications from large method traces,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering, pp. 371–382, 2009.

[13] M. Pradel and T. R. Gross, “Leveraging test generation and specification
mining for automated bug detection without false positives,” in 2012
34th International Conference on Software Engineering (ICSE), pp. 288–
298, 2012.

[14] “Fuzz Introspector.” http://github.com/ossf/fuzz-introspector, 2023. Re-
trieved: October, 2023.

[15] W. Gao, V. Pham, D. Liu, O. Chang, T. Murray, and B. I. P. Rubinstein,
“Beyond the coverage plateau: A comprehensive study of fuzz blockers
(registered report),” in Proceedings of the 2nd International Fuzzing
Workshop, FUZZING 2023, Seattle, WA, USA, 17 July 2023 (M. Böhme,
Y. Noller, B. Ray, and L. Szekeres, eds.), pp. 47–55, ACM, 2023.

[16] P. Lam, E. Bodden, O. Lhotak, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” October 2011. Event Title:
Cetus Users and Compiler Infastructure Workshop (CETUS 2011).

[17] “SootUp, howpublished = https://soot-oss.github.io/sootup/, year = 2023,
note = Retrieved: October, 2023.”

[18] “Fuzz target generation using LLMs.” https://google.github.io/oss-fuzz/
research/llms/target generation/, 2023. Retrieved: October, 2023.

57Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-098-8

ICSEA 2023 : The Eighteenth International Conference on Software Engineering Advances

https://github.com/AdaLogics/OSS-Fuzzgen
http://github.com/google/oss-fuzz
https://introspector.oss-fuzz.com/
https://introspector.oss-fuzz.com/
http://github.com/ossf/fuzz-introspector
https://soot-oss.github.io/sootup/
https://google.github.io/oss-fuzz/research/llms/target_generation/
https://google.github.io/oss-fuzz/research/llms/target_generation/

	Introduction
	Background
	OSS-Fuzz
	Fuzz Introspector

	OSS-Fuzzgen Overview
	OSS-Fuzzgen Design
	Stage 1: Build system generation
	Stage 2: Target project static analysis
	Stage 3: Fuzzing harness generation
	Stage 4: Fuzzing harness validation
	Stage 5: Fuzzing harness integration ranking

	Empirical study of OSS-Fuzzgen process and generated fuzzing harnesses
	Large scale evaluation
	Submitting projects to OSS-Fuzz

	Limitation and Future work
	Conclusion
	References

